Advertisement

Estuaries

, Volume 3, Issue 1, pp 38–54 | Cite as

The chironomid (Insecta: Diptera) and other fauna of aMyriophylum spicatum L. plant bed in the lower Hudson River

  • Charles A. Menzie
Article

Abstract

The benthic fauna of a small cove of the Hudson River containing the aquatic plantMyriophyllum spicatum L. was studied for a one-year period. The fauna was characteristic of oligohaline zones of United States east coast estuaries. Total abundance of invertebrates retained on a 0.12 mm mesh sieve averaged 124,631 organisms m−2 (sediment and plant populations combined) and ranged up to 196,000 m−2. During the May–August period, invertebrates living on the plants comprised 16–35% of the invertebrate fauna in the cove. Chironomid larvae were the most abundant organisms on plants and the third most abundant in the sediments. Two assemblages of chironomid species were recognized; one lived solely in the sediments, the other lived primarily on the plants.Chironomus decorus andTanytarsus sp. dominated the former group andCricotopus sylvestris the latter. The chironomidDicrotendipes modestus utilized both habitats. During the May–August period, chironomid biomass on the plants comprised approximately 50% of total chironomid biomass in the cove. The mean dry-weight biomass of chironomids in the cove (1.6 g m−2) is estimated to be sixteen times greater than that of the fauna in the deeper areas of the river. Because chironomid larvae are eaten by fish and invertebrates, shallow water regions with their rich chironomid (and other fauna) may contribute importantly to the trophic dynamics of estuarine systems. *** DIRECT SUPPORT *** A01BY009 00004

Keywords

Aquatic Plant Standing Crop White Perch Myriophyllum Spicatum Water Mite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Bay, E. C. 1974. Predator-prey relationships among aquatic insects.Annu. Rev. Ent. 19:441–492.CrossRefGoogle Scholar
  2. Bayley, S., V. D. Stotts, P. F. Springer andJ. Steenis. 1978. Changes in submerged aquatic macrophyte populations at the head of Chesapeake Bay, 1958–1975.Estuaries 1:171–182.CrossRefGoogle Scholar
  3. Benke, A. C. 1976. Dragonfly production and prey turnover.Ecology 57:915–927.CrossRefGoogle Scholar
  4. Boesch, D. F., R. J. Diaz, andR. W. Virnstein. 1976. Effects of tropical storm Agnes on soft-bottom macrobenthic communities of the James and York estuaries and the lower Chesapeake Bay.Chesapeake Sci. 17:246–259.CrossRefGoogle Scholar
  5. Borutsky, E. V. 1939. Dynamics of the biomass ofChironomus plumosus in the profundal of Lake Beloie.Arb. Limnol. Sta. Kassino 22:156–195.Google Scholar
  6. Brinkhurst, R. O., andB. G. Jamieson. 1971. Aquatic Oligochaeta of the World. Oliver and Boyd, Edinburg. 860 p.Google Scholar
  7. Burbanck, W. D. 1962. An ecological study of the distribution of the isopodCyathura polita from brackish waters of Cape Cod, MA.Amer. Midland Nat. 67:449–476.CrossRefGoogle Scholar
  8. Darby, R. E. 1962. midges associated with California rice fields, with special reference to their ecology (Diptera: Chironomidae).Hilgardia 32:1–206.Google Scholar
  9. Diaz, R. J. 1977. The effects of pollution on benthic communities of the tidal James River. Ph.D. Thesis. University of Virginia.Google Scholar
  10. Dymond, J. R. 1926. The fishes of Lake Nipigon. Univ. Toronto Stud. Biol. Ser. 27, Publ. Ont. Fish. Res. Lab. 27:1–108.Google Scholar
  11. Emery, K. O. 1969. A Coastal Pond. Amer. Elsevier Publ. Co., Inc., New York. 80 p.Google Scholar
  12. Gaevskaya, N. S. 1969. The Role of Higher Aquatic Plants in the Nutrition of the Animals of Fresh-Water Basins. National Lending Library for Science and Technology. Boston Spa. Yorkshire, England. 533 p.Google Scholar
  13. Gerking, S. D. 1957. A method of sampling the littoral macrofauna and its application.Ecology 38:219–226.CrossRefGoogle Scholar
  14. — 1962. Production and food utilization in a population of bluegill sunfish.Ecol. Monogr. 32:31–78.CrossRefGoogle Scholar
  15. Gillespie, D. M., andC. Brown. 1966. A quantitative sampler for macroinvertebrates associated with aquatic macrophytes.Limnol. Oceanogr. 11:404–406.Google Scholar
  16. Gomez, R. 1970. Food habits of young of the year striped bass,Roccus saxatilis (Walbaum), in Canton Reservoir.Proc. Okla. Acad. Sci. 50:79–83.Google Scholar
  17. Gosner, K. L. 1971. Guide to Identification of Marine and Estuarine Invertebrates. Wiley Interscience, John Wiley & Sons, Inc., New York. 639 p.Google Scholar
  18. Grabe, S., and R. Schmidt. 1978. Overlap and diet variations in feeding habits ofAlosa spp. juveniles from the lower Hudson River estuary. Presented at Annual Meeting, New York Chapter, American Fisheries Society; 3–4 February 1978.Google Scholar
  19. Hayne, D. W., andR. C. Ball. 1956. Benthic productivity as influenced by fish predation.Limnol. Oceanogr. 1:162–175.Google Scholar
  20. Hilsenhoff, W. L. 1963. Predation by the leechHelobdella stagnalis onTendipes plumosus (Diptera: Tendipedidae) larvae.Ann. Entomol. Soc. Amer. 56:252.Google Scholar
  21. Hynes, H. B. N., andM. J. Coleman. 1968. A simple method for assessing the annual production of stream benthos.Limnol. Oceanogr. 13:569–582.CrossRefGoogle Scholar
  22. Kajak, Z. 1971. Benthos of standing water.In W. T. Edmondson and G. G. Winberg (eds.), A Manual for Assessing the Secondary Productivity of Freshwaters. IBP Handbook No. 17.Google Scholar
  23. Leach, J. F. 1962. Summer food and feeding of the white perchRoccus americanus (Gmelin) in the Bay of Quinte. M.A. Thesis. Univ. Toronto, Toronto, Ontario. 58 p.Google Scholar
  24. Legner, E. F., H. S. Yu, R. A. Medved, and M. E. Badgley. 1975. Mosquito and chironomid midge control by planaria. California Agriculture. 4 p.Google Scholar
  25. Macan, T. T. 1949. Survey of a moorland fishpond.J. Animal Ecol. 18:160–186.CrossRefGoogle Scholar
  26. MacKey, A. P. 1977a. Quantitative studies on the Chironomidae (Diptera) of the Rivers Thames and Kennet. III. TheNuphar zone.Arch. Hydrobiol. 79:62–102.Google Scholar
  27. — 1977b. Quantitative studies on the Chironomidae (Diptera) of the Rivers Thames and Kennet. IV. Production.Arch. Hydrobiol. 80:327–348.Google Scholar
  28. Marsh, G. A. 1970. A seasonal study ofZostera epibiota in the York River, Virginia. Ph.D. Thesis, The College of William and Mary.Google Scholar
  29. McCauley, V. J. E. 1974. Instar differentiation in larval Chironomidae (Diptera).Can. Ent. 106:179–200.CrossRefGoogle Scholar
  30. McLarney, W., S. Henderson, andM. M. Sherman. 1974. A new method for culturingChironomus tentans Fabricius larvae using burlap substrate in fertilized pools.Aquaculture 4:267–276.CrossRefGoogle Scholar
  31. Menzie, C. A. 1978. Productivity of chironomid larvae in a littoral area of the Hudson River Estuary. Ph.D. Thesis. The City University of New York.Google Scholar
  32. Miller, R. B. 1941. A contribution to the ecology of the Chironomidae of Costello Lake, Algonquin Park, Ontario.Univ. Toronto Stud. 49:1–63.Google Scholar
  33. Mozley, S. C. 1966. Distribution and responses to salinity of larval chironomids from the upper Pocasset River.Biol. Bull. 131:399.Google Scholar
  34. Mundie, J. H. 1957. The ecology of chironomidae in storage reservoirs.Lond. Trans. Roy. Ent. Soc. 109:149–232.Google Scholar
  35. Orange and Rockland Utilities, Inc. 1977. Bowline Point Generating Station. Near-field effects of once-through cooling system operation on Hudson River biota. Orange and Rockland Utilities, Inc. Spring Valley, New York 10977.Google Scholar
  36. Paterson, C. G. 1970. Water mites (Hydracarina) as predators of chironomid larvae (Diptera).Can. J. Zool. 48:610–614.CrossRefGoogle Scholar
  37. —, andC. H. Fernando. 1971. A comparison of sample corer and an Ekman grab for sampling shallow-water benthos.J. Fish. Res. Board Can. 28:365–368.Google Scholar
  38. Patten, B. 1955. Seasonal dynamics and ecology ofMyriophyllum spicatum. M.S. Thesis, Rutgers University.Google Scholar
  39. Remane, A. 1971. Ecology of brackish water.Die Binnengawasser 25:1–210.Google Scholar
  40. Reynoldson, T. B. 1966. The distribution and abundance of lake dwelling triclads—towards a hypothesis.Advanc. Ecol. Res. 3:71.Google Scholar
  41. Ringger, T. G. 1973. The aquatic macroinvertebrates fauna of Theresa Marsh, Washington, and Dodge counties, Wisconsin. M.S. Thesis, University of Wisconsin, Milwaukee.Google Scholar
  42. Roback, S. S. 1969. Notes on the food of Tanypodinae larvae.Ent. News. 80:13–18.Google Scholar
  43. Sanders, H. L., P. C. Mangelsdorf, andG. R. Hampson. 1967. Salinity and fauna of the Pocasset River.Limnol Oceanogr. 10 (Supplement):220–225.Google Scholar
  44. Scott, W. B., and E. J. Crossman. 1973. Freshwater Fishes of Canada.Fish. Res. Board Can. Bull. 184. 966 p.Google Scholar
  45. Townes, H. K. 1936. Studies on the food organisms of fish.In A Biological Survey of the Lower Hudson Watershed. State of New York Conservation Dept. XXVI Annual Report.Google Scholar
  46. Walshe, B. M. 1951. The feeding habits of certain chironomid larvae (subfamily Tendipedinae).Proc. Zool. Soc. Lond. 121:63–79.Google Scholar
  47. Waters, T. F. 1977. Secondary production in inland waters.Adv. Ecol. Res. 10:91–164.CrossRefGoogle Scholar

Copyright information

© Estuarine Research Federation 1980

Authors and Affiliations

  • Charles A. Menzie
    • 1
  1. 1.EG&G, Environmental ConsultantsWaltham

Personalised recommendations