Estuaries

, Volume 12, Issue 4, pp 300–317

Accretion rates and sediment accumulation in Rhode Island salt marshes

  • S. Bricker-Urso
  • S. W. Nixon
  • J. K. Cochran
  • D. J. Hirschberg
  • C. Hunt
Article

Abstract

In order to test the assumption that accretion rates of intertidal salt marshes are approximately equal to rates of sea-level rise along the Rhode Island coast,210Pb analyses were carried out and accretion rates calculated using constant flux and constant activity models applied to sediment cores collected from lowSpartina alterniflora marshes at four sites from the head to the mouth of Narragansett Bay. A core was also collected from a highSpartina patens marsh at one site. Additional low marsh cores from a tidal river entering the bay and a coastal lagoon on Block Island Sound were also analyzed. Accretion rates for all cores were also calculated from copper concentration data assuming that anthropogenic copper increases began at all sites between 1865 and 1885. Bulk density and weight-loss-on-ignition of the sediments were measured in order to assess the relative importance of inorganic and organic accumulation. During the past 60 yr, accretion rates at the eight low marsh sites averaged 0.43±0.13 cm yr−1 (0.25 to 0.60 cm yr−1) based on the constant flux model, 0.40±0.15 cm yr−1 (0.15 to 0.58 cm yr−1) based on the constant activity model, and 0.44±0.11 cm yr−1 (0.30 to 0.59 cm yr−1) based on copper concentration data, with no apparent trend down-bay. High marsh rates were 0.24±0.02 (constant flux), 0.25±0.01 (constant activity), and 0.47±0.04 (copper concentration data). The cores showing closest agreement between the three methods are those for which the excess210Pb inventories are consistent with atmospheric inputs. These rates compare to a tide gauge record from the mouth of the bay that shows an average sea-level rise of 0.26±0.02 cm yr−1 from 1931 to 1986. Low marshes in this area appear to accrete at rates 1.5–1.7 times greater than local relative sea-level rise, while the high marsh accretion rate is equal to the rise in sea level. The variability among the low marsh sites suggests that marshes may not be poised at mean water level to within better than ±several cm on time scales of decades. Inorganic and organic dry solids each contributed about 9% by volume to low marsh accretion, while organic dry solids contributed 11% and inorganic 4% to high marsh accretion. Water/pore space accounted for the majority of accretion in both low and high marshes. If water associated with the organic component is considered, organic matter accounts for an average of 91% of low marsh and 96% of high marsh accretion. A dramatic increase in the organic content at a depth of 60 to 90 cm in the cores from Narragansett Bay appears to mark the start of marsh development on prograding sand flats.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Appleby, P. G., andF. Oldfield. 1978. The calculation of210Pb dates assuming a constant rate of supply of unsupported210Pb to the sediment.Catena 5:1–8.CrossRefGoogle Scholar
  2. Armentano, T. V., andG. M. Woodwell. 1975. Sedimentation rates in a Long Island marsh determined by210Pb dating.Limnol. Oceanog. 20:452–455.Google Scholar
  3. Benninger, L. K. 1979.210Pb balance in Long Island Sound.Geochim. Cosmochim. Acta. 42:1165–1174.CrossRefGoogle Scholar
  4. Benninger, L. K., D. M. Lewis, andK. K. Turekian. 1975. The use of natural210Pb as a heavy metal tracer in the river-estuarine system, p. 202–210.In T. M. Church (ed.), Marine Chemistry in the Coastal Environment. ACS Symposium Series, 18. American Chemical Society, Washington, D.C.Google Scholar
  5. Biggs, R. B., J. H. Sharp, andB. A. Howell. 1984. Suspended sediments, p. 107–116.In J. H. Sharp (ed.), The Delaware Estuary: Research as Background for Estuarine Management and Development. Univ. Delaware Sea Grant College Program. Newark, Delaware.Google Scholar
  6. Boothroyd, J. C., N. E. Friedrich, andS. R. McGinn. 1985. Geology of microtidal coastal lagoons: Rhode Island.Mar. Geol. 63:35–76.CrossRefGoogle Scholar
  7. Casey, W. H., A. Guber, C. Bursey, andC. Olsen. 1986. Chemical controls on ecology in a coastal wetland.EOS 67: 1305–1311.Google Scholar
  8. Chalmers, A. G. 1982. Soil dynamics and the productivity ofSpartina alterniflora, p. 231–242.In V. S. Kennedy (ed.), Estuarine Comparisons. Academic Press, New York.Google Scholar
  9. Chrzastowski, M. J., J. C. Kraft, andS. M. Stedman. 1987. Coastal Delaware sea-level rise based on marsh mud accumulation rates by210Pb dating.Geol. Soc. Am. (Abstracts and Programs) 9:8.Google Scholar
  10. Church, T. M., R. B. Biggs, andP. Sharma. 1987. The birth and death of salt marshes; Geochemical evidence for sediment accumulation and erosion.EOS 68:305.Google Scholar
  11. Church, T. M., C. J. Lord, III, andB. L. K. Somayajula. 1981. Uranium, thorium, and lead nuclides in a Delaware salt marsh sediment.Estuarine Coastal Shelf Sci. 13:267–275.CrossRefGoogle Scholar
  12. Coleman, P. 1963. The Transformation of Rhode Island, 1790–1860. Brown Univ. Press, Providence, Rhode Island. 314 p.Google Scholar
  13. Collins, B. P. 1974. Suspended material transport in lower Narragansett Bay and western Rhode Island Sound. M.S. Thesis, Univ. Rhode Island. 85 p.Google Scholar
  14. Davis, C. A. 1910. Salt marsh formation near Boston and its geological significance.Econ. Geol. 5:623–639.CrossRefGoogle Scholar
  15. Dean, W. E. 1972. Determinations of carbonate and organic matter in calcareous sediments and sedimentary rocks by losson-ignition: Comparison with other methods.J. Sediment. Petrol. 44:242–248.Google Scholar
  16. Delaune, R. D., R. H. Baumann, andJ. G. Gosselink. 1983. Relationships among vertical accretion, coastal submergence, and erosion in a Louisiana Gulf Coast marsh.J. Sediment. Petrol. 53:157–157.Google Scholar
  17. DeLaune, R. D., W. H. Patrick, Jr., andR. J. Buresh. 1978. Sedimentation rates determined by137Cs dating in a rapidly accreting salt marsh.Nature 275:532–533.CrossRefGoogle Scholar
  18. DeLaune, R. D., C. N. Reddy, andW. H. Patrick, Jr. 1981. Accumulation of plant nutrients and heavy metals through sedimentation processes and accretion in a Louisiana salt marsh.Estuaries 4:328–334.CrossRefGoogle Scholar
  19. DeLaune, R. D., C. J. Smith, W. H. Patrick, Jr., andH. H. Roberts. 1987. Rejuvenated marsh and bay-bottom accretion on the rapidly subsiding coastal plain of U.S. Gulf Coast: A second-order effect of the emerging Atchafalaya delta.Estuarine Coastal Shelf Sci. 25:381–389.CrossRefGoogle Scholar
  20. Donn, W. L., andD. M. Shaw. 1963. Sea level and climate of the past century.Science 142:1166–1167.CrossRefGoogle Scholar
  21. Drier, C. A. 1982. Trace metal accumulations in Delaware salt marshes. M.S. Thesis, Univ. Delaware. Newark, Delaware. 89 p.Google Scholar
  22. Emery, K. O., andE. Uchupl. 1972. Western North Atlantic Ocean: Topography, rocks structure, water, life, and sediments. AAPGMem. 17. Am. Assoc. Petrol. Geol., Tulsa, Oklahoma. 532 p.Google Scholar
  23. Fairbridge, R. W. 1960. The changing level of the sea.Sci. Am. 202:70–79.Google Scholar
  24. Flessa, K. W., K. J. Constantine, andM. K. Cushman. 1977. Sedimentation rates in a coastal marsh determined from historical records.Chesapeake Sci. 18:172–176.CrossRefGoogle Scholar
  25. Flynn, W. W. 1968. The determination of low levels of polonium-210 in environmental materials.Anal. Chim. Acta 43: 221–227.CrossRefGoogle Scholar
  26. Gagliano, S. M., K. J. Meyer-Arendt, andK. M. Wicker. 1981. Land loss in the Mississippi River deltaic plain.Trans. Gulf Coast Assoc. Geol. Soc. 31:295–300.Google Scholar
  27. Giblin, A. E. 1986. Comparisons of the processing of elements by ecosystems, II. Metals, p. 158–179.In P. J. Godfrey, E. R. Kaynor, S. Pelcazrski, and J. Benforado (eds.), Ecological Considerations in Wetlands Treatment of Municipal Wastewater. Van Nostrand Reinold, New York.Google Scholar
  28. Gleason, M. L., andE. L. Dunn. 1982. Effects of hypoxia on root and shoot respiration ofSpartina alterniflora, p. 243–253.In V. S. Kennedy (ed.), Estuarine Comparisons. Academic Press, New York.Google Scholar
  29. Goldberg, E. D. 1963. Geochronology with210Pb, p. 121–131.In Radioactive Dating. Proc. Symposium on Radioactive Dating. The International Atomic Energy Agency, Joint Commission on Applied Radioactivity. International Atomic Energy Agency, Vienna.Google Scholar
  30. Goldberg, E. D., J. J. Griffin, V. Hodge, M. Koide, andH. Windom. 1979. Pollution history of the Savannah River Estuary.Environ. Sci. Technol. 3:588–594.CrossRefGoogle Scholar
  31. Good, R. E., N. F. Good, andB. R. Frasco. 1982. A review of primary production and decomposition dynamics of the belowground marsh component, p. 135–137.In V. S. Kennedy (ed.), Estuarine Comparisons. Academic Press, New York.Google Scholar
  32. Gornitz, V., andS. Lebedeff. 1987. Global sea-level changes during the past century, p. 3–16.In D. Nummedal, O. H. Pilkey, and J. D. Howard (eds.), Sea-Level Fluctuation and Coastal Evolution. SEPM Special Publication No. 41. Society of Economic Paleontologists and Mineralogists, Tulsa, Oklahoma.Google Scholar
  33. Halvorson, W. L., and W. E. Gardiner. 1976. Atlas of Rhode Island salt marshes. Univ. Rhode Island, Marine Memorandum No. 44.Google Scholar
  34. Harlin, M. M., B. Thorne-Miller, J. C. Boothroyd. 1982. Seagrass-sediment dynamics of a flood-tidal delta in Rhode Island (U.S.A.).Aquat. Bot. 14:127–138.CrossRefGoogle Scholar
  35. Harrison, E. Z., andA. L. Bloom. 1977. Sedimentation rates on tidal salt marshes in Connecticut.J. Sediment. Petrol. 47: 1484–1490.Google Scholar
  36. Hatton, R. S., R. D. DeLaune, andW. H. Patrick, Jr. 1983. Sedimentation, accretion, and subsidence in marshes of Barataria Basin, Louisiana.Limnol. Oceanogr. 28:494–502.Google Scholar
  37. Helz, G. R., G. H. Setlock, A. Y. Cantillo, andW. S. Moore. 1985. Processes controlling the regional distribution of210Pb,226Ra and anthropogenic zinc in estuarine sediments.Earth Planet. Sci. Lett. 76:23–34.CrossRefGoogle Scholar
  38. Hicks, S. D., H. A. Debaugh, Jr., andJ. E. Hickman, Jr. 1983. Sea level variations for the United States 1855–1980. U.S. Dept. of Commerce, NOAA, Rockville, Maryland. 170 p.Google Scholar
  39. Howarth, R. W., andJ. M. Teal. 1979. Sulfate reduction in a New England salt marsh.Limnol. Oceanogr. 24:999–1013.CrossRefGoogle Scholar
  40. Hughes, W. D. 1982. Peat resources and glacial geology of Chapman Swamp and surrounding area, Westerly, Rhode Island. M.S. Thesis, Univ. Rhode Island. 135 p.Google Scholar
  41. Hurtt, C. A. 1978. The distribution of hydrocarbons in Naragansett Bay cores. M.S. Thesis, Univ. Rhode Island. Kingston, Rhode Island. 69 p.Google Scholar
  42. Knight, J. B. 1934. A salt marsh study. Am. J. Sci. 28(165): 161–181.Google Scholar
  43. Koide, M., A. Soutar, andE. D. Goldberg. 1972. Marine geochronology with210Pb.Earth Planet. Sci. Lett. 11:442–446.CrossRefGoogle Scholar
  44. Lee, V. 1980. An elusive compromise: Rhode Island coastal ponds and their people. Coastal Resources Center, Marine Tech. Rep. 73. Univ. Rhode Island. Kingston, Rhode Island. 82 p.Google Scholar
  45. Lewis, D. M. 1977. The use of210Pb as a heavy metal tracer in the Susquehanna River system.Geochim. Cosmochim. Acta 41:1557–1564.CrossRefGoogle Scholar
  46. Mathieu, G. G. 1977.222Rn and226Ra Technique of Analysis. Project Report ERDA Contract EY76-S-02-2185.Google Scholar
  47. McCaffrey, R. J., andJ. Thomson. 1980. A record of the accumulation of sediment and trace metals in a Connecticut salt marsh, p. 165–236.In B. Saltzman (ed.), Advances in Geophysics, Estuarine Physics and Chemistry: Studies in Long Island Sound, Vol. 22. Academic Press, New York.Google Scholar
  48. McMaster, R. L. 1960. Sediments of Narragansett Bay system and Rhode Island Sound, Rhode Island. J. Sed. Pet. 39(2): 249–274.Google Scholar
  49. Mendelssohn, I. A., K. L. McKee, andW. H. Patrick, Jr. 1981. Oxygen deficiency inSpartina alterniflora roots: Metabolic adaptation to anoxia.Science 214:449–431.CrossRefGoogle Scholar
  50. Morton, R. W. 1972. Spatial and temporal distribution of suspended sediment in Narragansett Bay and Rhode Island Sound.Geol. Soc. Am. Mem. 133:131–141.Google Scholar
  51. Mudge, B. F. 1862. The salt marsh formations of Lynn.Proc. Essex Inst. 2(1856–1860):117–119.Google Scholar
  52. National Oceanic and Atmospheric Association 1985. National Estuarine Inventory, Data Atlas. U.S. Dept. of Commerce, Oceans Assessment Division, Rockville, Md. 50 p.Google Scholar
  53. Nixon, S. W. 1982. The ecology of New England high salt marshes: a community profile. U.S. Fish and Wildlife Service, Office of Biological Services, Washington, D.C. FWS/OBS/81/55.Google Scholar
  54. Nixon, S. W. 1987. Chesapeake Bay nutrient budgets—A reassessment.Biogeochem. 4:77–90.CrossRefGoogle Scholar
  55. Nixon, S. W., B. N. Furnas, R. Chinman, S. Granger, and S. Heffernan. 1982. Nutrient inputs to Rhode Island coastal lagoons and salt ponds. Final Report to Rhode Island State-wide Planning Department. Unpublished manuscript. 26 p.Google Scholar
  56. Nixon, S. W., C. D. Hunt, andB. L. Nowicki. 1986. The retention of nutrients (C, N, P), heavy metals (Mn, Cd, Pb, Cu), and petroleum hydrocarbons in Narragansett Bay, p. 99–122.In P. Lasserre and J-M. Martin (eds.), Biogeochemical Processes at the Land Sea Boundary. Elsevier Oceanography Series, 43, Elsevier, New York.CrossRefGoogle Scholar
  57. Nixon, S. W., andC. A. Oviatt. 1973. Ecology of a New England salt marsh.Ecol. Monogr. 43:463–498.CrossRefGoogle Scholar
  58. Oldfield, F., andP. G. Appleby. 1984. Empirical testing of210Pb dating models for lake sediments, p. 93–124.In E. Y. Haworth and J. W. G. Lund (eds.), Lake Sediments and Environmental History. Univ. Minnesota Press, Minneapolis, Minnesota.Google Scholar
  59. Olsen, C. R., I. L. Larsen, P. D. Lowry, N. H. Cutshall, J. F. Todd, G. T. F. Wong, andW. H. Casey. 1985. Atmospheric fluxes and marsh-soil inventories of7Be and210Pb.J. Geo. Res. 90:10487–10495.CrossRefGoogle Scholar
  60. Oviatt, C. A., andS. W. Nixon. 1975. Sediment resuspension and deposition in Narragansett Bay.Estuarine Coastal Mar. Sci. 3:201–217.CrossRefGoogle Scholar
  61. Oviatt, C. A., S. W. Nixon, andJ. Garber. 1977. Variation and evaluation of coastal salt marshes.Environ. Management 1(3):201–211.CrossRefGoogle Scholar
  62. Paez-Osuna, F., andE. F. Mandelli. 1985.210Pb in a tropical coastal lagoon sediment core.Estuarine Coastal Shelf Sci. 20: 367–374.CrossRefGoogle Scholar
  63. Penland, S. M., J. R. Suter, andR. A. McBride. 1987. Delta plain development and sea level history in the Terrebonne coastal region, p. 1689–1705.In N. C. Kraus (ed.), Coastal Sediments ’87. Am. Soc. Civil Engineers, New York.Google Scholar
  64. Pilson, M. E. Q. 1985. On the residence time of water in Narragansett Bay.Estuaries 8:2–14.CrossRefGoogle Scholar
  65. Providence City Engineer’s Annual Report. 1885. The Providence Press: Snow and Farnum and Remington Printing Co., Providence, Rhode Island.Google Scholar
  66. Redfield, A. C. 1965. Ontogeny of a salt marsh estuary.Science 147:50–55.CrossRefGoogle Scholar
  67. Redfield, A. C. 1967. Postglacial change in sea level in the western North Atlantic Ocean.Science 157:687–692.CrossRefGoogle Scholar
  68. Redfield, A. C. 1972. Development of a New England salt marsh.Ecol. Monogr. 42:201–237.CrossRefGoogle Scholar
  69. Redfield, A. C., andM. Rubin. 1962. The age of salt marsh peat and its relation to recent changes in sea level at Barnstable, Massachusetts.Proc. Natl. Acad. Sci. 48:1728–1735.CrossRefGoogle Scholar
  70. Richard, G. A. 1978. Seasonal and environmental variations in sediment accretion in a Long Island salt marsh.Estuaries 1:29–35.CrossRefGoogle Scholar
  71. Santschi, P. H., S. Nixon, M. Pilson, andC. Hunt. 1984. Inputs and accumulations of sediments, trace metals (Pb, Cu) and hydrocarbons in Narragansett Bay.Estuarine Coastal Shelf Sci. 19:427–449.CrossRefGoogle Scholar
  72. Shaler, N. S. 1885. Sea coast swamps of the Atlantic Coast.U.S. Geol. Survey 6:353–398.Google Scholar
  73. Sharma, P., T. M. Church, S. Murray, andR. B. Biggs. 1987. Geochronology and trace metal records in a Delaware salt marsh sediment.EOS 68:331.Google Scholar
  74. Sharma, P., L. R. Gardner, W. S. Moore, andM. S. Bollinger. 1987. Sedimentation and bioturbation in a salt marsh as revealed by210Pb,157Cs, and7Be studies.Limnol. Oceanogr. 32: 313–326.Google Scholar
  75. Short, F. T. 1975. Eelgrass production in Charlestown Pond: An ecological analysis and numerical simulation model. Ph.D. Thesis, Univ. Rhode Island. Kingston, Rhode Island. 180 p.Google Scholar
  76. Siccama, T. G., andE. Porter. 1972. Lead in a Connecticut salt marsh.Bioscience 22:232–234.CrossRefGoogle Scholar
  77. Stevenson, J. C., L. G. Ward, andM. S. Kearney. 1986. Vertical accretion in marshes with varving rates of sea level rise, p. 2412–2459.In D. A. Wolfe (ed.), Estuarine Variability. Academic Press, New York.Google Scholar
  78. Thorne-Miller, B., M. M. Harlin, G. B. Thursby, M. M. Brady-Campbell, andB. A. Dworetzky. 1983. Variations in the distribution and biomass of submerged macrophytes in five coastal lagoons in Rhode Island, U.S.A..Bot. Mar. 26: 231–242.CrossRefGoogle Scholar
  79. Turekian, K. K., L. K. Benninger, andE. P. Dion. 1983.7Be and210Pb total deposition fluxes at New Haven, Connecticut and at Bermuda.J. Geophys. Res. 88:5411–5415.CrossRefGoogle Scholar
  80. Valiela, I., andJ. M. Teal. 1974. Nutrient limitation in salt marsh vegetation, p. 547–563.In R. J. Reimold and N. H. Queen (eds.), Ecology of Halophytes. Academic Press, New York.Google Scholar
  81. Valiela, I., J. M. Teal, andN. Y. Persson. 1976. Production and dynamics of experimentally enriched salt marsh vegetation: Belowground biomass.Limnol. Oceanogr. 21:245–252.Google Scholar
  82. Ward, L. G., M. S. Kearney, andJ. C. Stevenson. 1986. Accretion rates and recent changes in sediment composition of estuarine marshes, Chesapeake Bay.EOS 67:998.Google Scholar

Copyright information

© Estuarine Research Federation 1989

Authors and Affiliations

  • S. Bricker-Urso
    • 1
  • S. W. Nixon
    • 1
  • J. K. Cochran
    • 2
  • D. J. Hirschberg
    • 2
  • C. Hunt
    • 3
  1. 1.Graduate School of OceanographyUniversity of Rhode IslandNarragansett
  2. 2.Marine Sciences Research CenterState University of New YorkStony Brook
  3. 3.Battelle Ocean SciencesDuxbury

Personalised recommendations