, Volume 8, Issue 2, pp 145–157 | Cite as

The annual cycle of kiel bight plankton: A long-term analysis

  • Victor Smetacek


Over the past decade, the annual cycle of the major pelagic processes in relation to environmental factors and species composition of the plankton has been studied intensively at a fixed station in Kiel Bight. A series of sequential phases, differentiated according to characteristic properties, succeed each other in a recurring pattern each year. The following phases have been differentiated: the spring diatom bloom, the late spring copepod maximum, the summer stratification, the fall blooms and the winter dormancy. Each phase represents a particular pattern of biogenous element cycling, both within the pelagic system and between the pelagic and benthic systems. Each phase is also characterized by a spectrum of dominant species, many of which do not recur each year. Greatest variation is found amongst bloom diatoms, whereas large, slow-growing species such as the Ceratia and most metazooplankton are highly recurrent. Variation in species composition is not related to long-term trends since the past century, in spite of the considerable increase in anthropogenic nutrient input to the Bight. Short-term events appear to determine occurrence of fast-growing species, many of which have benthic resting stages in their life histories. It is concluded that more attention should be paid to life history strategies of species if the mechanisms of seasonal succession are to be elucidated. Long-term observations on appearance or absence of the various species in relation to environmental properties can provide clues as to the nature of these life history strategies.


Biomass Phytoplankton Annual Cycle Dinoflagellate Bottom Water 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Banenerd, B. 1980. Untersuchungen zur Produktionsbiologie des Planktons in der Kieler Bucht. Ph.D. Thesis, Kiel University.Google Scholar
  2. Balzer, W. 1978. Untersuchungen über Abbau organischer Materie und Nährstoffreisetzung am Boden der Kieler Bucht beim Übergang vom oxischen zum anoxischen Milieu. Ph.D. Thesis, Kiel University.Google Scholar
  3. Balzer, W., K. Grasshoff, P. Dieckmann, H. Haardt, and U. Petersohn. 1983. Redox-turnover at the sediment/water interface studied in a large bell jar system. Oceanol. Acta 6:337–344.Google Scholar
  4. Banse, K. 1955. Über das Verhalten von meroplanktischen Larven in geschichtetem Wasser. Kiel. Meeresforsch. 11:188–200.Google Scholar
  5. Bodungen, B. v. 1975. Der Jahresgang der Nährsalze und der Primäproduktion des Planktons in der Kieler Bucht under Berücksichtigung der Hydrographie. Ph.D. Thesis, Kiel University.Google Scholar
  6. Bodungen, B. v., K. Gocke, V. Smetacek, and B. Zeitschel. 1976. The plankton tower. III. The effect of sediment flushing by density displacement of interstitial water on pelagic primary production and microbial activity. Kiel. Meeresforsch. Sonderheft 3:87–95.Google Scholar
  7. Brandt, K. 1899. Über den Stoffwechsel in Meere. Wiss. Meeresunters. Kiel N.F. 4:213–230.Google Scholar
  8. Brandt, K. 1902. Über den Stoffwechsel im Meere. 2. Abhandlg. Wiss. Meeresunters. Kiel N.F. 6:23–79.Google Scholar
  9. Brandt, K. 1920a. Vorwort zu W. Busch, Über das Plankton der Kieler Föhrde im Jahre 1912/13. Wiss. Meeresunters. Kiel N.F. 18:25–40.Google Scholar
  10. Brandt, K. 1920b. Über den Stoffwechsel im Meere. 3. Abhandl. Wiss. Meeresunters. Kiel N.F. 18:185–429.Google Scholar
  11. Busch, W. 1920. Über das Plankton der Kieler Föhrde im Jahre 1912/13. Wiss. Meeresunters. Kiel N.F. 18: 41–142.Google Scholar
  12. Büse, T. 1915. Quantitative Untersuchungen von Planktonfängen des Feuerschiffes “Fehmarnbelt” vom April 1910 bis März 1911. Wiss. Meeresunters. Kiel N.F. 17:229–279.Google Scholar
  13. Cederwall, H., and R. Elmgren. 1980. Biomass increase in benthic macrofauna demonstrates eutrophication of the Baltic Sea. Ophelia, Suppl. 1:287–304.Google Scholar
  14. Colebrook, J. M. 1982. Continuous plankton records: Seasonal variation in the distribution and abundance of plankton in the North Atlantic Ocean and the North Sea. J. Plankton Res. 4:435–462.CrossRefGoogle Scholar
  15. Davis, C. O. 1982. The importance of understanding phytoplankton life strategies in the design of enclosure experiments, p. 323–332. In G. D. Grice and M. R. Reeve (eds.), Marine Mesocosms. Springer-Verlag, New York.Google Scholar
  16. Davis, C. O., J. T. Hollibaugh, D. L. R. Seibert, W. H. Thomas, and P. J. Harrison. 1980. Formation of resting spores by Leptocylindrus danicus (Bacillariophyceae) in a controlled experimental ecosystem. J. Phycol. 16:296–302.CrossRefGoogle Scholar
  17. Devulder, K. 1968. Produktionsbiologische Untersuchungen an Netzplankton im Jahresgang unter besonderer Berücksichtigung von Nucleinsäuren, Eiweiß und Chlorophyll. Ph.D. Thesis, Kiel University.Google Scholar
  18. Eppley, R. W., E. H. Renger, and P. R. Betzer. 1983. The residence time of particulate organic carbon in the surface layer of the ocean. Deep-Sea Res. 30: 311–323.CrossRefGoogle Scholar
  19. Fahlteich, E. 1981. Zur Frühjahrsentwicklung der Copepoden in der Kieler Bucht. M.S. Thesis, Kiel University.Google Scholar
  20. Fonselius, S. H. 1972. On entrophication in the Baltic Sea. In M. Ruivio (ed.), Marine Pollution and Sea Life. Fishing News Ltd., West Byfleet, England.Google Scholar
  21. Gargas, E., K. I. Dahl-Madsen, H. Schroder, and J. Rasmussen. 1978. Dynamics of Baltic ecosystems and causes of their variability. Kiel. Meeresforsch. Sonderhelf 4:210–232.Google Scholar
  22. Garrison, D. L. 1981. Monterey Bay phytoplankton. II. Resting spore cycles in coastal diatom populations. J. Plankton Res. 3:137–156.CrossRefGoogle Scholar
  23. Gerlach, S. 1983. Stirbt die Ostsee? Kieler Woche Journal, Presseamt der Landeshauptstadt Kiel, 72–79.Google Scholar
  24. Gieskes, W. W. C., and G. W. Kraay. 1977. Continuous plankton records: Changes in the plankton of the North Sea and its eutrophic southern Bight from 1948 to 1975. Neth. J. Sea Res. 11:334–364.CrossRefGoogle Scholar
  25. Graf, C., R. Schulz, R. Peinert, and L.-A. Meyer-Reil. 1983. Benthic response to sedimentation events during autumn to spring at a shallow-water station in the western Kiel Bight. I. Analysis of processes on a community level. Mar. Biol. 77: 235–246.CrossRefGoogle Scholar
  26. Greve, W. 1981. Invertebrate predator control in a coastal marine ecosystem: The significance of Beroë gracilis (Ctenophora). Kiel. Meeresforsch. Sonderheft 5:211–217.Google Scholar
  27. Hargraves, P. E., and F. W. French. 1983. Diatom resting spores: Significance and strategies, p. 49–68. In G. A. Fryxell (ed.), Survival Strategies of the Algae. Cambridge University Press, Cambridge.Google Scholar
  28. Harris, G. P. 1980. Temporal and spatial scales in phytoplankton ecology. Mechanisms, methods, models, and management. Can. J. Fish. Aquat. Sci. 37:877–900.CrossRefGoogle Scholar
  29. Harris, R. P., M. R. Reeve, G. D. Grice, G. T. Evans, V. R. Gibson, J. R. Beers, and B. K. Sullivan. 1982. Trophic interactions and production processes in natural zooplankton communities in enclosed water columns, p. 353–387. In G. D. Grice and M. R. Reeve (eds.), Marine Mesocosms. Springer-Verlag, New York.Google Scholar
  30. Hensen, V. 1887. Über die Bestimmung des Planktons oder des im Meere treibenden Materials an Pflanzen und Tieren. Ber. Komm. Wiss. Unters. dt. Meere 5:1–108.Google Scholar
  31. Hickel, W. 1967. Untersuchungen über die Phytoplanktonblüte in der westlichen Ostsee. Helgol. Wiss. Meeresunters. 16:3–66.CrossRefGoogle Scholar
  32. Hillebrandt, M. 1972. Untersuchungen über die qualitative und quantitative Zusammensetzung des Zooplanktons in der Kieler Bucht während der Jahre 1966–1968. Ph.D. Thesis, Kiel University.Google Scholar
  33. Horstmann, U. 1971. Über den Einfluß von häuslichem Abwasser auf das Plankton der Kieler Bucht. Ph.D. Thesis, Kiel University.Google Scholar
  34. Jansson, B.-O. 1978. The Baltic—a systems analysis of a semi-enclosed sea, p. 131–183. In H. Charnock and G. Deacon (eds.), Advances in Oceanography. Plenum Press, New York.Google Scholar
  35. Jewson, D. H., B. H. Rippey, and W. K. Gilmore. 1981. Loss rates from sedimentation, parasitism and grazing during the growth, nutrient limitation, and dormancy of a diatom crop. Limnol. Oceanogr. 26: 1045–1056.Google Scholar
  36. Kemp, W. M., and W. J. Mitsch. 1979. Turbulence and phytoplankton diversity: A general model of the “paradox of the plankton”. Ecol. Model. 7:201–222.CrossRefGoogle Scholar
  37. Kemp, W. M., R. L. Wetzel, W. R. Boynton, C. F. D’Ella, and J. C. Stevenson. 1982. Nitrogen cycling and estuarine interfaces: Some current concepts and research directions, p. 209–230. In V. S. Kennedy (ed.), Estuarine Comparisons. Academic Press, New York.Google Scholar
  38. Kerr, R. A. 1983. Are the ocean’s deserts blooming? Science 220:397–398.CrossRefGoogle Scholar
  39. Kraneis, W., and P. Martens. 1975. Ecological studies on the plankton in Kiel Bight. II. Zooplankton. Merentutkimuslait. Julk./Havsforskningsinst. Skr. 239:187–194.Google Scholar
  40. Krey, J. 1942. Nährstoff- und Chlorophylluntersuchungen in der Kieler Förde 1939. Kiel. Meeresforsch. 4:1–17.Google Scholar
  41. Krey, J. 1952. Untersuchungen zum Sestongehalt des Meerwassers. I. Der Sestongehalt in der westlichen Ostsee und unter Helgoland. Ber. Dt. Wiss. Komm. Meeresforsch. N.F. 12:431–456.Google Scholar
  42. Krey, J. 1956. Die Trophie küstennaher Meeresgebiete. Kiel. Meeresforsch. 12:46–64.Google Scholar
  43. Krey, J. 1961. Beobachtungen über den Gehalt an Mikrobiomasse und Detritus in der Kieler Bucht 1958–1960. Kiel. Meeresforsch. 17:163–175.Google Scholar
  44. Krey, J., and Zeitzschel, B. 1971. Long-term observations of oxygen and chlorophyll a in Kiel Bight. ICES C.M. 1971/L:11 (Plankton Committee).Google Scholar
  45. Lenz, J. 1963. Zur Ursache der an die Sprungschicht gebundenen Echostreuschichten in der westlichen Ostsee. Ph.D. Thesis, Kiel University.Google Scholar
  46. Lenz, J. 1974. Untersuchung zum Nahrungsgefüge im Pelagial der Kieler Bucht. Der Gehalt an Phytoplankton, Zooplankton und organischem Detritus in Abhängigkeit von Wasserschichtung, Tiefe und Jahreszeit. Habilitation Thesis, Kiel University.Google Scholar
  47. Lenz, J. 1977. On detritus as a food source for pelagic filter-feeders. Mar. Biol. 41:38–48.CrossRefGoogle Scholar
  48. Lohmann, H. 1908. Untersuchungen zur Feststellung des vollständigen Gehaltes des Meeres an Plankton. Wiss. Meeresunters. Kiel N.F. 10:129–370.Google Scholar
  49. Lund, J. W. 1971. An artificial alteration of the seasonal cycle of the plankton diatom Melosira italica subsp. subarctica in an English lake. J. Ecol. 59:521–533.CrossRefGoogle Scholar
  50. Margalef, R. 1978. Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanol. Acta 1:493–509.Google Scholar
  51. Martens, P. 1976. Die planktischen Sekundär- und Tertiärproduzenten im Flachwasserökosystem der westlichen Ostsee. Kiel. Meeresforsch. Sonderheft 3: 60–71.Google Scholar
  52. Melvasalo, T. (ed.). 1981. Assessment of the effects of pollution on the natural resources of the Baltic Sea, 1980. Part A-1: Overall conclusions. Balt. Mar. Environ. Prot. Comm.Google Scholar
  53. Meyer-Reil, L.-A. 1983. Benthic response to sedimentation events during autumn to spring at a shallow water station in the western Kiel Bight. II. Analysis of benthic bacterial populations. Mar. Biol. 77: 247–256.CrossRefGoogle Scholar
  54. Möller, H. 1979. Significance of coelenterates in relation to other plankton organisms. Ber. Dt. wiss. Komm. Meeresforsch. 27:1–18.Google Scholar
  55. Nöthig, E.-M. 1984. Experimentelle Untersuchungen an natürlichen Planktonpopulationen unter besonderer Berücksichtigung heterotropher Organismen. M.S. Thesis, Kiel University.Google Scholar
  56. Omori, M., and W. H. Hamner. 1982. Patchy distribution of zooplankton. Behavior, population assessment and sampling problems. Mar. Biol. 72:193–200.CrossRefGoogle Scholar
  57. Parsons, T. R., M. Takahashi, and B. T. Hargrave. 1977. Biological Oceanographic Processes. Pergamon Press, Oxford.Google Scholar
  58. Peinert, R., A. Saure, P. Stegmann, C. Stienen, H. Haardt, and V. Smetacek. 1982. Dynamics of primary production and sedimentation in a coastal ecosystem. Netherlands J. Sea Res. 16:276–289.CrossRefGoogle Scholar
  59. Pollehne, F. 1980. Die Sedimentation organischer Substanz. Remineralisation und Nährsalzrückführung in einem marinen Flachwasserökosystem. Ph.D. Thesis, Kiel University.Google Scholar
  60. Pomeroy, L. R. 1981. Marine ecology: Status report. Science 213:1368–1369.CrossRefGoogle Scholar
  61. Pomeroy, L. R., E. E. Smith, and C. M. Grant. 1965. The exchange of phosphate between estuarine water and sediment. Limnol. Oceanogr. 10:167–172.CrossRefGoogle Scholar
  62. Provasoli, L. 1979. Recent progress, an overview, p. 1–14. In D. L. Taylor and H. H. Seliger (eds.), Toxic Dinoflagellate Blooms. Elsevier, North Holland.Google Scholar
  63. Reynolds, C. S., and S. W. Wiseman. 1982. Sinking loss of phytoplankton in closed limnetic systems. J. Phytoplankton Res. 4:489–496.CrossRefGoogle Scholar
  64. Sanders, H. L. 1968. Marine benthic diversity: A comparative study. Amer. Nat. 102:243–282.CrossRefGoogle Scholar
  65. Sandgren, C. D. 1983. Survival strategies of chrysophycean flagellates: Reproduction and the formation of resistant resting cysts, p. 23–48. In G. A. Fryxell (ed.), Survival Strategies of the Algae. Cambridge University Press, Cambridge.Google Scholar
  66. Schinkowski, H. 1969. Untersuchung über den Einfluß einiger produktionsbiologischer Parameter auf die Sichttiefe im Meer. Ph.D. Thesis, Kiel University.Google Scholar
  67. Schnack, S. B. 1978. Seasonal change of zooplankton in Kiel Bay. III. Calanoid copepods. Kiel. Meeresforsch. Sonderheft 4:201–209.Google Scholar
  68. Schulz, R. 1983. Die Wirkung von Sedimentationsereignissen auf die benthische Lebensgemeinschaft. Ph.D. Thesis, Kiel University.Google Scholar
  69. Sieburth, J. McN., V. Smetacek, and J. Lenz. 1978. Pelagic ecosystem structure: Heterotrophic compartments of the plankton and their relationship to plankton size fractions. Limnol. Oceanogr. 23:1256–1263.Google Scholar
  70. Smayda, T. J. 1980. Phytoplankton species succession, p. 493–570. In I. Morris (ed.), The Physiological Ecology of Phytoplankton. Blackwell, Oxford.Google Scholar
  71. Smetacek, V. 1975. Die Sukzession des Phytoplanktons in der westlichen Kieler Bucht. Ph.D. Thesis, Kiel University.Google Scholar
  72. Smetacek, V. 1980a. Annual cycle of sedimentation in relation to plankton ecology in western Kiel Bight. Ophelia 1:65–76.Google Scholar
  73. Smetacek, V. 1980b. Zooplankton standing stock, copepod fecal pellets and particulate detritus in Kiel Bight. Estuarine Coastal Mar. Sci. 11:477–490.CrossRefGoogle Scholar
  74. Smetacek, V. 1981. The annual cycle of protozooplankton in the Kiel Bight. Mar. Biol. 63:1–11.CrossRefGoogle Scholar
  75. Smetacek, V. 1984. The supply of food to the benthos, p. 517–548. In M. J. Fasham (ed.), Flows of Energy and Materials in Marine Ecosystems: Theory and Practice. Plenum Press, New York.Google Scholar
  76. Smetacek, V., B. v. Bodungen, B. Knoppers, R. Peinert, F. Pollehne, P. Stegmann, and B. Zeitzschel. 1984. Seasonal stages characterizing the annual cycle of an inshore pelagic system. Rapp. P.-v. Réun Cons. int. Explor. Mer. 183:126–135.Google Scholar
  77. Stegmann, P., and R. Peinert. 1984. Interrelationships between herbivorous zooplankton and phytoplankton and their effect on production and sedimentation of organic matter in Kiel Bight. Limnologica 15:487–496.Google Scholar
  78. Walsh, J. J. 1983. Death in the sea. Progr. Oceanogr. 12:1–86.CrossRefGoogle Scholar
  79. Wattenberg, H., and H. Meyer. 1936. Der jahreszeitliche Gang des Gehaltes des Meerwassers an Planktonnährstoffen in der Kieler Bucht im Jahre 1935. Kiel. Meeresforsch. 1:264–278.Google Scholar
  80. Zeitzschel, B. 1965. Zur Sedimentation von Seston, eine produktionsbiologische Untersuchung von Sinkstoffen und Sedimenten der Westlichen und Mittleren Ostsee. Kiel. Meeresforsch. 21:55–80.Google Scholar

Copyright information

© Estuarine Research Federation 1985

Authors and Affiliations

  • Victor Smetacek
    • 1
  1. 1.Institut für Meereskunde an der Universität KielKiel 1Federal Republic of Germany

Personalised recommendations