, Volume 12, Issue 3, pp 195–204 | Cite as

Live standing crop and metabolism of the marsh grassSpartina patens as related to edaphic factors in a brackish, mixed marsh community in Louisiana

  • David M. Burdick
  • Irving A. Mendelssohn
  • Karen L. McKee


Effects of soil factors on physiological indicators ofSpartina patens and live standing crop of the macrophyte community were investigated in a brackish marsh. Three distinct physiognomic zones were studied along a transect perpendicular to a tidal creek: the marsh edge, which was directly adjacent to the creek; the levee berm, 6 to 8 m from the creek; and the inland zone, which extended through the marsh interior. Soil physicochemical factors (soil moisture, redox potential, interstitial pH, salinity, and ammonium and sulfide concentrations) were compared to physiological indicators ofSpartina patens (leaf adenine nucleotides, root alcohol dehydrogenase (ADH) activity, and levels of ethanol, lactate, alanine and malate in the roots). In correlation matrices of soil and plant factors, increases in soil moisture and decreases in redox potential were associated with depressed leaf adenylate energy charge ratios (AEC, an integrative measure of plant stress) and elevated ADH activities and metabolite levels in the roots. ADH activity was greatest in roots from the inland zone where soil waterlogging was greatest and exhibited seasonal increases that followed seasonal declines in soil redox potential. Leaf AEC was greatest in the berm and generally lowest in the inland plants. End of season live standing crop was also greatest on the berm, but did not closely follow any edaphic trends across the three zones. This suggests that several factors, (i.e., soil aeration, and sulfide and nitrogen levels) may be of greater importance to standing crop than any single factor, as is thought for salt marshes dominated byS. alterniflora.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Armstrong, W. 1979. Aeration in higher plants.Adv. Bot. Res. 7:225–232.CrossRefGoogle Scholar
  2. Atkinson, D. E.. 1971. Regulation of enzyme function.Ann. Rev. Microbiol. 23:47–68.CrossRefGoogle Scholar
  3. Bergmeyer, H. U. 1974. Methods of Enzymatic Analysis, 2nd Ed. Verlag Chemie Weinheim-Academic Press, New York. 2302 p.Google Scholar
  4. Bertani, A., andI. Brambilla. 1982. Effect of decreasing oxygen concentration on some aspects of protein and amino-acid metabolism in rice roots.Z. Pflanzenphysiol. 107:193–200.Google Scholar
  5. Bertani, A., I. Brambilla, andF. Menegus. 1980. Effect of anaerobiosis on rice seedlings: growth, metabolic rate, and fate of fermentation products.J. Exp. Bot. 31:325–331.CrossRefGoogle Scholar
  6. Burdick, D. M., andI. A. Mendelssohn. 1987. Waterlogging responses in dune, swale and marsh populations ofSpartina patens under field conditions.Oecologia 74:321–329.CrossRefGoogle Scholar
  7. Chabreck, R. 1972. Vegetation, water and soil characteristics of the Louisiana coastal region. LA Agric. Exp. Stat. Bull. 664, Baton Rouge, Louisiana. 72 p.Google Scholar
  8. Crawford, R. M. M.. 1982. Physiological responses to flooding, p. 453–477.In O. L. Lange, P. F. Noble, C. B. Osmond, and H. Ziegler (es.), Encyclopedia of Plant Physiology, New Series Vol. 12 B, Physiological Plant Ecology II. Springer-Verlag, New York.Google Scholar
  9. Davies, D. D.. 1980. Anaerobic metabolism and the production of organic acids.Biochem. Plants 2:581–611.Google Scholar
  10. DeLaune, R. D., R. J. Buresh, andW. H. Patrick, Jr. 1979. Relationship of soil properties to standing crop biomass ofSpartina alterniflora in a Louisiana marsh.Estuarine Coastal Shelf Sci. 8:477–487.Google Scholar
  11. DeLaune, R. D., W. H. Patrick, Jr., andJ. M. Brannon. 1976. Nutrient Transformations in Louisiana Salt Marsh Soils. Center for Wetland Resources, Louisiana State University, Baton Rouge, LA. Sea Grant Publication No. LSU-T-76-009. 38 p.Google Scholar
  12. DeLaune, R. D., C. J. Smith, andW. H. Patrick, Jr 1983. Relationship of marsh elevation, redox potential, and sulfide toSpartina alterniflora productivity.Soil Sci. Soc. Am. J. 47:930–935.CrossRefGoogle Scholar
  13. DeLaune, R. D., C. J. Smith, andM. D. Tolley. 1984. The effect of sediment redox potential on nitrogen uptake, an-aerobic root respiration, and growth ofSpartina alterniflora Loisel.Aquat. Bot. 18:223–230.CrossRefGoogle Scholar
  14. Gallagher, J. L., andH. V. Kibby. 1981. The streamside effect in aCarex lyngbyei estuarine marsh: The possible role of recoverable underground reserves.Estuarine Coastal Shelf Sci. 12:451–460.CrossRefGoogle Scholar
  15. Hoffman, N. E., A. F. Bent, andA. D. Hanson. 1986. Induction of lactate dehydrogenase isozymes by oxygen deficit in barley root tissue.Plant Physiol. 82:658–663.Google Scholar
  16. Howes, B. L., J. W. H. Dacey, andD. D. Goehringer. 1986. Factors controlling the growth form ofSpartina alterniflora: Feedbacks between above-ground production, sediment oxidation, nitrogen and salinity.J. Ecol. 74:881–898.CrossRefGoogle Scholar
  17. Howes, B. L., J. W. H. Dacey, andS. G. Wakeham. 1985. Effects of sampling technique on measurements of porewater constituents in salt marsh sediments.Limnol. Oceanogr. 30:221–226.Google Scholar
  18. Howes, B. L., R. W. Howarth, J. M. Teal, andI. Valiela. 1981. Oxidation-reduction potentials in a salt marsh: Spatial pattern and interactions with primary production.Limnol. Oceanogr. 26:350–360.CrossRefGoogle Scholar
  19. Ingold, A., andD. C. Havill. 1984. The influence of sulfide on the distribution of higher plants in salt marshes.J. Ecol. 72:1043–1054.CrossRefGoogle Scholar
  20. Keeley, J. E.. 1979. Population differentiation along a flood frequency gradient: Physiological adaptations to flooding inNyssa sylavatica.Ecol. Monogr. 49:89–108.CrossRefGoogle Scholar
  21. King, G. M., M. J. Klug, R. G. Wiegert, andA. G. Chalmers. 1982. Relation of soil water movement and sulfide concentration toSpartina alterniflora production in a Georgia salt marsh.Science 218:61–63.CrossRefGoogle Scholar
  22. Koch, M. S., and I. A. Mendelssohn. In press. Sulfide as a soil phytotoxin: Differential responses in two marsh species.J. Ecol.Google Scholar
  23. Linthurst, R. A.. 1979. The effect of aeration on the growth ofSpartina alterniflora Loise.Amer. J. Bot. 66:685–691.CrossRefGoogle Scholar
  24. McKee, K. L., andI. A. Mendelssohn. 1984. The influence of season on adenine nucleotide concentrations and energy charge in four marsh plant species.Physiol. Plant. 62:1–7.CrossRefGoogle Scholar
  25. Mendelssohn, I. A.. 1979. Nitrogen metabolism in the height forms ofSpartina alterniflora in North Carolina.Ecology: 60:574–584.CrossRefGoogle Scholar
  26. Mendelssohn, I. A., andK. L. McKee. 1981. Determination of adenine nucleotide levels and adenylate energy charge ratio in twoSpartina species.Aquat. Bot. 11:37–55.CrossRefGoogle Scholar
  27. Mendelssohn, I. A., andK. L. McKee. 1985. The effect of nutrients on adenine nucleotide levels and the adenylate energy charge ratio inSpartina alterniflora andSpartina patens.Plant Cell Environ. 8:213–218.Google Scholar
  28. Mendelssohn, I. A., andK. L. McKee. 1988.Spartina alterniflora die-back in Louisiana: Time course investigation of soil waterlogging effects.J. Ecol. 76:509–521.CrossRefGoogle Scholar
  29. Mendelssohn, I. A., andE. D. Seneca. 1980. The influence of soil drainage on the growth of salt marsh cordgrassSpartina alterniflora in North Carolina.Estuarine Coastal Mar. Sci. 11:27–40.CrossRefGoogle Scholar
  30. Mendelssohn, I. A., K. L. McKee, andW. H. Patrick, Jr. 1981. Oxygen deficiency inSpartina alterniflora roots: Metabolic adaptation to anoxia.Science 214:439–441.CrossRefGoogle Scholar
  31. Mendelssohn, I. A., K. L. McKee, andM. T. Postek. 1982. Sublethal stresses controllingSpartina alterniflora productivity, p. 223–242.In B. Gopal, R. E. Turner, R. G. Wetzel, and D. F. Whigham (eds.), Wetlands: Ecology and Management. National Institute of Ecology, Jaipur, India.Google Scholar
  32. Mirris, J. T.. 1984. Effects of oxygen and salinity on ammonium uptake bySpartina alterniflora Loisel. andSpartina patens (Aiton) Mulh.J. Exp. Mar. Biol. Ecol. 78:87–98.CrossRefGoogle Scholar
  33. Odum, E. P., andM. E. Fanning. 1973. Comparison of the productivity ofSpartina alterniflora andSpartina cynosuroides in Georgia coastal marshes.Bull. Georgia Acad. Sci. 31:1–12.Google Scholar
  34. Rennenberg, H.. 1984. The fate of excess sulfur in higher plants.Ann. Rev. Plant Physiol. 35:121–153.Google Scholar
  35. Roberts, J. K. M., J. Callis, O. Jardetzky, V. Wolbot, andM. Freeling. 1984. Cytoplasmic acidosis as a determinant of flooding intolerance.Proc. Natl. Acad. Sci. USA 81:6029–6033.CrossRefGoogle Scholar
  36. SASInstitute, Inc. 1985. SAS User’s Guide: Statistics, 1985 Edition. SAS Institute, Cary, North Carolina, 584 p.Google Scholar
  37. Smith, A. M., andT. ap Rees. 1979. Pathways of carbohydrate fermentation in the roots of marsh plants.Planta 146:327–334.CrossRefGoogle Scholar
  38. Swenson, E. M. 1986. Marsh Hydrologic Studies: 1982–1983 Data Report. Center for Wetland Resources, Louisiana State University, Baton Rouge, LA. LSU-CEFI-83-18. 264 p.Google Scholar
  39. Teal, J. M., andJ. E. Kanwisher. 1966. Gas transport in the marsh grass,Spartina alterniflora.J. Exp. Bot. 17:355–361.CrossRefGoogle Scholar
  40. Valiela, I., andJ. M. Teal. 1974. Nutrient limitation in salt marsh vegetation, p. 547–564.In R. J. Reimold and W. H. Queen (eds.), Ecology of Halophytes. Academic Press, New York.Google Scholar
  41. van Diggelen, J., J. Rozema, D. M. J. Dickson, andR. Broekman. 1986. β-3-dimethylsulphoionpropionate, proline and quaternary ammonium compounds inSpartina anglica in relation to sodium chloride, nitrogen and sulphur.New Phytol. 103:573–586.CrossRefGoogle Scholar
  42. Wiegert, R. G., A. G. Chalmers, andP. F. Randerson. 1983. Productivity gradients in salt marshes: The response ofSpartina alterniflora to experimentally manipulated soil water movement.Oikos 41:1–6.CrossRefGoogle Scholar

Copyright information

© Estuaries Research Federation 1989

Authors and Affiliations

  • David M. Burdick
    • 1
  • Irving A. Mendelssohn
    • 1
  • Karen L. McKee
    • 1
  1. 1.Laboratory for Wetland Soils and Sediments Center for Wetland ResourcesLouisiana State UniversityBaton Rouge

Personalised recommendations