, Volume 12, Issue 3, pp 127–137 | Cite as

The ejection of drops from the sea and their enrichment with bacteria and other materials: A review

  • Duncan C. Blanchard


This paper is a review of work done on the production of an aerosol by the sea, and on the mechanisms by which bacteria might be enriched on the aerosol. Air bubbles produced in the sea, primarily by breaking waves, burst at the surface to eject both film and jet drops into the atmosphere. These drops are mixed upward by turbulence to produce the well-known marine sea-salt aerosol. In rising through the water, the bubbles may scavenge bacteria which, when the bubble burst, are skimmed off the bubble and ejected upward with the jet drops. Depending on drop size, the distance the bubble moves through the water, and other factors, the concentration of bacteria in jet drops can be several hundred times that in the bulk water film drops can also be enriched with bacteria. The enrichment of jet and film drops with bacteria, viruses, or toxins may at times produce a health hazard for those living along the shore.


Wind Speed Enrichment Factor Bubble Size Breaking Wave Serratia Marcescens 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Art, H. W., F. H. Bormann, G. K. Voigt, andG. M. Woodwell. 1974. Barrier island forest ecosystem: Role of meteorologic inputs.Science 184:60–62.CrossRefGoogle Scholar
  2. Asai, S., J. J. Krazanowski, W. H. Anderson, D. F. Martin, J. B. Polson, R. F. Lockey, S. C. Bukantz, andA. Szentivanyi. 1982. Effects of the toxin of red tide,Ptychodiscus brevis, on canine tracheal smooth muscle: A possible new asthma-triggering mechanisms.J. Allergy Clin. Immunol. 69:418–428.CrossRefGoogle Scholar
  3. Baldy, S., andM. Bourguel. 1987. Bubbles between the wave trough and wave crest levels.J. Geophys. Res. 92:2919–2929.CrossRefGoogle Scholar
  4. Baylor, E. R., M. B. Baylor, D. C. Blanchard, L. D. Syzdek, andC. Appel. 1977. Virus transfer from surf to wind.Science 198:575–580.CrossRefGoogle Scholar
  5. Bezdek, H. F., andA. F. Carlucci. 1972. Surface concentration of marine bacteria.Limnol. Oceanogr. 17:566–569.Google Scholar
  6. Blanchard, D. C. 1963. The electrification of the atmosphere by particles from bubbles in the sea.Prog. Oceanogr. 1:71–202.CrossRefGoogle Scholar
  7. Blanchard, D. C. 1969. The oceanic production rate of cloud nuclei.J. Rech. Atmos. 4:1–6.Google Scholar
  8. Blanchard, D. C. 1983. The production, distribution, and bacterial enrichment of the sea-salt aerosol, p. 407–454.In P. S. Liss and W. G. N. Slinn (eds.), The Air-Sea Exchange of Gases and Particles. D. Reidel Pub. Co., Dordrecht, Holland.Google Scholar
  9. Blanchard, D. C., andL. D. Syzdek. 1970. Mechanism for the water-to-air transfer and concentration of bacteria.Science 170:626–628.CrossRefGoogle Scholar
  10. Blanchard, D. C., andL. D. Syzdek. 1972a. Concentration of bacteria in jet drops from bursting bubbles.J. Geophys. Res. 77:5087–5099.CrossRefGoogle Scholar
  11. Blanchard, D. C., andL. D. Syzdek. 1972b. Variations in Aitken and giant nuclei in marine air.J. Phys. Oceanogr. 2: 255–262.CrossRefGoogle Scholar
  12. Blanchard, D. C., andL. D. Syzdek. 1975. Electrostatic collection of jet and film drops.Limnol. Oceanogr. 20:762–774.Google Scholar
  13. Blanchard, D. C., andL. D. Syzdek. 1978. Seven problems in bubble and jet drop researches.Limnol. Oceanogr. 23:389–400.Google Scholar
  14. Blanchard, D. C., andL. D. Syzdek. 1982. Water-to-air transfer and enrichment of bacteria in drops from bursting bubbles.Appl. Environ. Microbiol. 43:1001–1005.Google Scholar
  15. Blanchard, D. C., andL. D. Syzdek. 1988. Film-drop production as a function of bubble size.J. Geophys. Res. 93:3649–3654.CrossRefGoogle Scholar
  16. Blanchard, D. C., L. D. Syzdek, andM. E. Weber. 1981. Bubble scavenging of bacteria in freshwater quickly produces bacterial enrichment in airborne drops.Limnol. Oceanogr. 26: 961–964.Google Scholar
  17. Blanchard, D. C., andA. H. Woodcock. 1957. Bubble formation and modification in the sea and its meteorological significance.Tellus 9:145–158.Google Scholar
  18. Blanchard, D. C., andA. H. Woodcock. 1980. The production, concentration, and vertical distribution of the seasalt aerosol.Ann. NY Acad. Sci. 338:330–347.CrossRefGoogle Scholar
  19. Blanchard, D. C., A. H. Woodcock, andR. J. Cipriano. 1984. The vertical distribution of the concentration of sea salt in the marine atmosphere near Hawaii.Tellus 36B:118–125.Google Scholar
  20. Burger, S. R., andJ. W. Bennett. 1985. Droplet enrichment factors of pigmented and nonpigmentedSerratia marcescens: Possible selective function for prodigiosin.Appl. Environ. Microbiol. 50:487–490.Google Scholar
  21. Cabelli, V. J., H. Kennedy, andM. A. Levin. 1976.Pseudomonas aeruginosa-fecal coliform relationships in estuarine and fresh recreacional waters.J. Water Pollut. Control Fed. 48:367–376.Google Scholar
  22. Carlucci, A. F., andP. M. Williams. 1965. Concentration of bacteria from sea water by bubble scavenging.J. Cons. Perm. Int. Explor. Mer 30:28–33.Google Scholar
  23. Cheng, R. J., D. C. Blanchard, andR. J. Cipriano. 1988. The formation of hollow sea-salt particles from the evaporation of drops of seawater.Atmos. Res. 22:15–25.CrossRefGoogle Scholar
  24. Cipriano, R. J. 1979. Bubble and aerosol spectra produced by a laboratory simulation of a ‘breaking wave’. Ph.D. Thesis. State Univ. New York, Albany, 265 p.Google Scholar
  25. Cipriano, R. J., andD. C. Blanchard. 1981. Bubble and aerosol spectra produced by a laboratory ‘breaking wave’.J. Geophys. Res. 86:8085–8092.CrossRefGoogle Scholar
  26. Cipriano, R. J., E. C. Monahan, P. A. Bowyer, andD. K. Woolf. 1987. Marine condensation nucleus generation inferred from whitecap simulation tank results.J. Geophys. Res. 92:6569–6576.CrossRefGoogle Scholar
  27. Clift, R., J. R. Grace, andM. E. Weber. 1978. Bubbles, Drops, and Particles. Academic Press, New York, 380 p.Google Scholar
  28. Colbourne, J. S., P. J. Dennis, J. V. Lee, andM. R. Bailey. 1987. Legionnaires’ disease: Reduction in risks associated with foaming in evaporative cooling towers.Lancet 1(#8534): 684.CrossRefGoogle Scholar
  29. Crawford, G. B., andD. M. Farmer. 1987. On the spatial distribution of ocean bubbles.J. Geophys. Res. 92:8231–8243.CrossRefGoogle Scholar
  30. Crow, S. A., D. G. Ahearn, W. L. Cook, andA. W. Bourquin. 1975. Densities of bacteria and fungi in coastal surface films as determined by a membrane-adsorption procedure.Limnol. Oceanogr. 20:644–646.Google Scholar
  31. de Leeuw, G. 1987. Near-surface particle size distribution profiles over the North Sea.J. Geophys. Res. 92:14,631–14,635.CrossRefGoogle Scholar
  32. Dondero, T. J., Jr.,R. C. Rendtorff, G. F. Mallison, R. M. Weeks, J. S. Levy, E. W. Wong, andW. Schaffner. 1980. An outbreak of Legionnaires’ disease associated with a contaminated air-conditioning cooling tower.New Engl. J. Med. 302:365–370.CrossRefGoogle Scholar
  33. Farmer, D. M., andD. D. Lemon. 1984. The influence of bubbles on ambient noise in the ocean at high wind speeds.J. Phys. Oceanogr. 14:1762–1778.CrossRefGoogle Scholar
  34. Ferguson, R. L., andA. V. Palumbo. 1979. Distribution of suspended bacteria in neritic waters south of Long Island during stratified conditions.Limnol. Oceanogr. 24:697–705.CrossRefGoogle Scholar
  35. Fliermans, C. B., W. B. Cherry, L. H. Orrison, andL. Thacker. 1979. Isolation ofLegionella pneumophila from nonepidemic-related aquatic habitats.Appl. Environ. Microbiol. 37: 1239–1242.Google Scholar
  36. Fraizier, A., M. Masson, andJ. C. Guary. 1977. Recherches preliminaires sur le role des aerosols dans le transfert de certains radioelements du milieu marin au milieu terrestre.J. Rech. Atmos. 11:49–60.Google Scholar
  37. Friedman, S., K. Spitalny, J. Barbaree, Y. Faur, andR. McKinney. 1987. Pontiac fever outbreak associated with a cooling tower.Am. J. Public Health 77:568–572.Google Scholar
  38. Gellini, R., F. Pantani, P. Grossoni, F. Bussotti, E. Barbolani, andC. Rinallo. 1985. Further investigation of the causes of disorder of the coastal vegetation in the part of San Rossore (central Italy).Eur. J. For. Path. 15:145–157.CrossRefGoogle Scholar
  39. Gruft, H., J. Katz, andD. C. Blanchard. 1975. Postulated source ofMycobacterium intracellulare (Battey) infection.Am. J. Epidemiol. 102:311–318.Google Scholar
  40. Hardy, J. T., C. W. Apts, E. A. Crecelius, andN. S. Bloom. 1985. Sea-surface microlayer metals enrichments in an urban and rural bay.Estuarine, Coastal Shelf Sci. 20:299–312.CrossRefGoogle Scholar
  41. Hayami, S., andY. Toba. 1958. Drop production by bursting of air bubbles on the sea surface (1) Experiments at still sea water surface.J. Ocean. Soc. Jpn. 14:145–150.Google Scholar
  42. Hejkal, T. W., P. A. LaRock, andJ. W. Winchester. 1980. Water-to-air fractionation of bacteria.Appl. Environ. Microbiol. 39:335–338.Google Scholar
  43. Johnson, B. D., andR. C. Cooke. 1979. Bubble populations and spectra in coastal waters; a photographic approach.J. Geophys. Res. 84:3761–3766.CrossRefGoogle Scholar
  44. Johnson, B. D., andP. J. Wangersky. 1987. Microbubbles: Stabilization by monolayers of adsorbed particles.J. Geophys. Res. 92:14,641–14,647.Google Scholar
  45. Lovett, R. F. 1978. Quantitative measurement of airborne sea-salt in the North Atlantic.Tellus 30:358–363.Google Scholar
  46. MacIntyre, F. 1968. Bubbles: A boundary-layer “microtome” for micron-thick samples of a liquid surfaceJ. Phys. Chem. 72:589–592.CrossRefGoogle Scholar
  47. MacIntyre, F. 1972. Flow patterns in breaking bubbles.J. Geophys. Res. 77:5211–5228.CrossRefGoogle Scholar
  48. MacIntyre, F. 1986. On reconciling optical and acoustical bubble spectra in the mixed layer, p. 75–94.In E. C. Monahan and G. MacNiocaill (eds.), Oceanic Whitecaps and Their Role in Air-Sea Exchange Processes. D. Reidel Pub. Co., Dordrecht, Holland.Google Scholar
  49. McDonald, R. L., C. K. Unni, andR. A. Duce. 1982. Estimation of atmospheric sea salt dry deposition: Wind speed and particle size dependence.J. Geophys. Res. 87:1246–1250.CrossRefGoogle Scholar
  50. Medwin, H. 1977. In situ acoustic measurements of micro-bubbles at sea.J. Geophys. Res. 82:971–976.CrossRefGoogle Scholar
  51. Monahan, E. C. 1982. Comment on ‘Bubble and aerosol spectra produced by a laboratory “breaking wave”’ by R. J. Cipriano and D. C. BlanchardJ. Geophys. Res. 87:5865–5867.CrossRefGoogle Scholar
  52. Monahan, E. C., K. L. Davidson, andD. E. Spiel. 1982. Whitecap aerosol productivity deduced from simulation tank measurements.J. Geophys. Res. 87:8898–8904.CrossRefGoogle Scholar
  53. Monahan, E. C., C. W. Fairall, K. L. Davidson, andP. J. Boyle. 1983. Observed inter-relations between 10 m winds, ocean whitecaps and marine aerosols.Quart. J. Roy. Met. Soc. 109:379–392.CrossRefGoogle Scholar
  54. Monahan, E. C., andI. O’Muircheartaigh. 1980. Optimal power-law description of oceanic whitecap coverage dependence on wind speed.J. Phys. Oceanogr. 10:2094–2099.CrossRefGoogle Scholar
  55. Monahan, E. C., andI. G. O’Muircheartaigh. 1986. Whitecaps and the passive remote sensing of the ocean surface.Int. J. Remote Sensing 7:627–642.CrossRefGoogle Scholar
  56. Monahan, E. C., andC. R. Zietlow. 1969. Laboratory comparisons of freshwater and salt-water whitecaps.J. Geophys. Res. 74:6961–6966.CrossRefGoogle Scholar
  57. Parker, B. C., M. A. Ford, H. Gruft, andJ. O. Falkinham, III. 1983. Epidemiology of infection by nontuberculous mycobacteria.Am. Rev. Respir. Dis. 128:652–656.Google Scholar
  58. Peirson, D. H., R. S. Cambray, P. A. Cawse, J. D. Eakins, andN. J. Pattenden. 1982. Environmental radioactivity in Cumbria.Nature 300:27–31.CrossRefGoogle Scholar
  59. Pellenbarg, R. E., andT. M. Church. 1979. The estuarine surface microlayer and trace metal cycling in a salt marsh.Science 203:1010–1012.CrossRefGoogle Scholar
  60. Pierce, R. H. 1986. Red tide (Ptychodiscus brevis) toxin aerosols: A review.Toxicon 24:955–965.CrossRefGoogle Scholar
  61. Pierce, R. H., R. C. Brown, andJ. R. Kucklick. 1985. Analysis ofPtychodiscus brevis toxins by reverse phase HPLC, p. 309–314.In D. M. Anderson, A. W. White, and O. G. Baden (eds.), Toxic Dinoflagellates. Elsevier Science Pub. Co., Amsterdam, Holland.Google Scholar
  62. Resch, F. J., J. S. Darrozes, andG. M. Afeti. 1986. Marine liquid aerosol production from bursting of air bubbles.J. Geophys. Res. 91:1019–1029.CrossRefGoogle Scholar
  63. Rubin, A. J. 1968. Microflotation: Coagulation and foam separation ofAerobacter aerogenes.Biotechnol. Bioengin. 10:89–98.CrossRefGoogle Scholar
  64. Smith, B. J. 1968. A study of the mechanism by which bioaerosols are generated when liquids containing microorganisms are aerated. Ph.D. Thesis, Georgia Institute Technology, Atlanta.Google Scholar
  65. Struthwolf, M., andD. C. Blanchard. 1984. The residence time of air bubbles <400 μm diameter at the surface of distilled water and seawater.Tellus 36B:294–299.Google Scholar
  66. Stuhlman, O. 1932. The mechanics of effervescence.Physics 2:457–466.CrossRefGoogle Scholar
  67. Syzdek, L. D. 1985. Influence ofSerratia maccescens pigmentation on cell concentrations in aerosols produced by bursting bubbles.Appl. Environ. Microbiol. 49:173–178.Google Scholar
  68. Tedesco, R., andD. C. Blanchard. 1979. Dynamics of small bubble motion and bursting in freshwater.J. Rech. Atmos. 13: 215–226.Google Scholar
  69. Thorpe, S. A. 1986. Measurements with an automatically recording inverted echo sounder: ARIES and the bubble clouds.J. Phys. Oceanogr. 16:1462–1478.CrossRefGoogle Scholar
  70. Twomey, S. 1953. The identification of individual hygroscopic particles in the atmosphere by a phase-transition method.J. Appl. Phys. 24:1099–1102.CrossRefGoogle Scholar
  71. Walsh, A. L., andP. J. Mulhearn. 1987. Photographic measurements of bubble populations from breaking wind waves at sea.J. Geophys. Res. 92:14,553–14,565.CrossRefGoogle Scholar
  72. Weber, M. E. 1981. Collision efficiencies for small particles with a spherical collector at intermediate Reynolds numbers.J. Separation Process Technol. 2:29–33.Google Scholar
  73. Weber, M. E., D. C. Blanchard, andL. D. Syzdek. 1983. The mechanism of scavenging of water-borne bacteria by a rising bubble.Limnol. Oceanogr. 28:101–105.Google Scholar
  74. Weisel, C. P., R. A. Duce, J. L. Fasching, andR. W. Heaton. 1984. Estimates of the transport of trace metals from the ocean to the atmosphere.J. Geophys. Res. 89:11,607–11,618.CrossRefGoogle Scholar
  75. Williams, R. P. 1973. Biosynthesis of prodigiosin, a secondary metaboltie ofSerratia marcescens.Appl. Microbiol. 25:396–402.Google Scholar
  76. Woodcock, A. H. 1948. Note concerning human respiratory irritation associated with high concentrations of plankton and mass mortality of marine organisms.J. Mar. Res. 7:56–62.Google Scholar
  77. Woodcock, A. H. 1953. Salt nuclei in marine air as a function of altitude and wind force.J. Meteor. 10:362–371.Google Scholar
  78. Woodcock, A. H. 1955. Bursting bubbles and air pollution.Sewage and Industrial Wastes 27:1189–1192.Google Scholar
  79. Wooccock, A. H. 1972. Smaller salt particles in oceanic air and bubble behavior in the sea.J. Geophys. Res. 77:5316–5321.CrossRefGoogle Scholar
  80. Woodcock, A. H., D. C. Blanchard, andC. G. H. Rooth. 1963. Salt-induced convection and clouds.J. Atmos. Sci. 20: 159–169.CrossRefGoogle Scholar
  81. Woolf, D. K., P. A. Bowyer, andE. C. Monahan. 1987. Discriminating between the film drops and jet drops produced by a simulated whitecap.J. Geophys. Res. 92:5142–5150.CrossRefGoogle Scholar
  82. Wu, J. 1981. Bubble populations and spectra in near-surface ocean: Summary and review of field measurements.J. Geophys. Res. 86:457–463.CrossRefGoogle Scholar

Copyright information

© Estuaries Research Federation 1989

Authors and Affiliations

  • Duncan C. Blanchard
    • 1
  1. 1.Atmospheric Sciences Research CenterState University of New York at AlbanyAlbany

Personalised recommendations