, Volume 14, Issue 2, pp 130–138 | Cite as

The influence of mussel beds on nutrients in the Western Wadden Sea and Eastern Scheldt estuaries

  • Richard Dame
  • Norbert Dankers
  • Theo Prins
  • Henk Jongsma
  • Aad Smaal


The uptake and release of materials by intertidal mussel beds were directly measured in two cultivated Dutch estuaries. Generally, chlorophylla, seston, and particulate organic carbon were taken up, while ammonium, orthophosphate, and silicate were released. The observed rates were higher than values computed from organismic observations and similar to those observed for intertidal oyster reefs in South Carolina. Specific estuarine material turnover rates varied from 1 week to 38 weeks when calculated with mussel bed fluxes. The fastest turnover rates were for chlorophylla and ammonium. These results support the idea that dense assemblages of bivalves are major components in the recycling of nutrients in estuaries.


Phytoplankton Particulate Organic Carbon Turnover Time Marine Ecology Progress Series Oyster Reef 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Asmus, H. 1987. Secondary production of an intertidal mussel bed community related to its storage and turnover compartments.Marine Ecology Progress Series 39:251–266.CrossRefGoogle Scholar
  2. Bayne, B. L. (ed.) 1976. Marine Mussels: Their Ecology and Physiology. Cambridge University Press, New York. 506 p.Google Scholar
  3. Boucher, G. andR. Boucher-Rodoni. 1988.In situ measurements of respiratory metabolism and nitrogen fluxes at the interface of oyster beds.Marine Ecology Progress Series 44: 229–238.CrossRefGoogle Scholar
  4. Cadee, G. C. andJ. Hegeman. 1974. Primary production of phytoplankton in the Dutch Wadden Sea.Netherlands Journal of Sea Research 8:240–259.CrossRefGoogle Scholar
  5. Cloern, J. E. 1982. Does the benthos control phytoplankton biomass in South San Francisco Bay?Marine Ecology Progress Series 9:191–202.CrossRefGoogle Scholar
  6. Craeymeersch, J. A., P. M. J. Herman, andP. M. Meire. 1986. Secondary production of an intertidal mussel (Mytilus edulis L.) population in the Eastern Scheldt (S.W. Netherlands).Hydrobiologia 133:107–115.CrossRefGoogle Scholar
  7. Dahlback, B. andL. H. Gunnarsson. 1981. Sedimentation and sulfate reduction under a mussel culture.Marine Biology 63:269–275.CrossRefGoogle Scholar
  8. Dame, R. F. 1987. The net flux of inorganic sediments by an intertidal oyster reef.Continental Shelf Research 7:1421–1424.CrossRefGoogle Scholar
  9. Dame, R. F. andN. Dankers. 1988. Uptake and release of materials by a Wadden Sea mussel bed.Journal of Experimental Marine Biology and Ecology 118:207–216.CrossRefGoogle Scholar
  10. Dame, R. F., T. G. Wolaver, andS. M. Libes. 1985. The summer uptake and release of nitrogen by an intertidal oyster reef.Netherlands Journal of Sea Research 19:265–268.CrossRefGoogle Scholar
  11. Dame, R. F., R. G. Zingmark, andE. Haskin. 1984. Oyster reefs as processors of estuarine materials.Journal of Experimental Marine Biology and Ecology 83:239–247.CrossRefGoogle Scholar
  12. Dame, R. F., R. G. Zingmark, L. H. Stevenson, andD. Nelson. 1980. Filter feeder coupling between the estuarine water column and benthic subsystems, p. 521–526.In V. C. Kenedy (ed.), Estuarine Perspectives. Academic Press, New York.Google Scholar
  13. Dankers, N., K. Koelemay, and J. Zegers. 1989. De mossel en mossel cultuur in de Wadden Sea. RIN report 89/09, Texel, The Netherlands.Google Scholar
  14. Dekker, R. 1989. The macrobenthos of the subtidal western Dutch Wadden Sea. I. Biomass and species richness.Netherlands Journal of Sea Research 23:57–68.CrossRefGoogle Scholar
  15. de Vries, I. andC. F. Hopstaken. 1984. Nutrient cycling and ecosystem behavior in a salt-marsh lake.Netherlands Journal of Sea Research 18:221–245.CrossRefGoogle Scholar
  16. Doering, P. H. andC. A. Oviatt. 1986. Application of filtration rate models to field populations of bivalves: An assessment using experimental mesocosms.Marine Ecology Progress Series 31:265–275.CrossRefGoogle Scholar
  17. Doering, P. H., C. A. Oviatt, andJ. R. Kelly. 1986. The effect of the filter feeding clemMercenaria mercenaria on carbon cycling in experimental mesocosms.Journal of Marine Research 44:839–861.Google Scholar
  18. Frechette, M. andE. Bourget. 1985a. Energy flow between the pelagic and benthic zones: Factors controlling particulate organic matter available to an intertidal mussel bed.Canadian Journal of Fisheries and Aquatic Sciences 42:1158–1165.Google Scholar
  19. Frechette, M. andE. Bourget. 1985b. Food-limited growth ofMytilus edulis in relation to the benthic boundary layer.Canadian Journal of Fisheries and Aquatic Sciences 42:1166–1170.CrossRefGoogle Scholar
  20. Gieskes, W. W. C. andG. W. Kraay. 1975. The phytoplankton spring bloom in Dutch coastal waters of the North Sea.Netherlands Journal of Sea Research 9:166–196.CrossRefGoogle Scholar
  21. Hildreth, D. J. 1980. Bioseston production byMytilus edulis and its effect in experimental systems.Marine Biology 55:309–315.CrossRefGoogle Scholar
  22. Jordan, J. E. andI. Valiela. 1982. A nitrogen budget of the ribbed mussel,Geukensia demissa, and its significance to nitrogen flow in a New England salt marsh.Limnology and Oceanography 27:75–90.Google Scholar
  23. Kamps, L. F. 1962. Mud distribution and land reclamation in the eastern Wadden shallows. Rykswaterstaat Comm. 4. The Hague, The Netherlands.Google Scholar
  24. Kaspar, H. F., P. A. Gillespie, I. C. Boyer, andA. L. Mackenzie. 1985. Effects of mussel aquaculture on the nitrogen cycle and benthic communities in Kenepuru Sound, Marlborough Sounds, New Zealand.Marine Biology 85:127–136.CrossRefGoogle Scholar
  25. Kautsky, N. andS. Evans. 1987. Role of biodeposition byMytilus edulis in the circulation of matter and nutrients in a Baltic coastal ecosystem.Marine Ecology Progress Series 38:201–212.CrossRefGoogle Scholar
  26. Kautsky, N. andI. Wallentinus. 1980. Nutrient release from a BalticMytilus red algal community and its role in benthic and pelagic productivity.Ophelia Sup. 1:17–30.Google Scholar
  27. Kuenzler, E. 1961. Phosphorous budget of a mussel population.Limnology and Oceanography 6:400–415.CrossRefGoogle Scholar
  28. Laane, R. W. P. M. 1980. Conservative behavior of dissolved organic carbon in the Elms-Dollard estuary and the Western Wadden Sea.Netherlands Journal of Sea Research 14:192–199.CrossRefGoogle Scholar
  29. Lassig, J., J.-M. Leppanen, A. Niemi, andG. Tamelander. 1978. Phytoplankton primary production in the Gulf of Bothnia in 1972–1975 as compared with other parts of the Baltic Sea.Finnish Marine Research 24:101–115.Google Scholar
  30. Nichols, F. 1985. Increased benthic grazing: An alternative explanation for low phytoplankton biomass in Northern San Francisco Bay during the 1976–1977 drought.Estuarine, Coastal and Shelf Science 21:379–388.CrossRefGoogle Scholar
  31. Nixon, S. W., C. A. Oviatt, J. Garger, andV. Lee. 1976. Diel metabolism and nutrient dynamics of a salt marsh embayment.Ecology 57:740–750.CrossRefGoogle Scholar
  32. Odum, E. P. 1983. Basic Ecology. Saunders, Philadelphia. 613 p.Google Scholar
  33. Officer, C. B., T. J. Smayda, andR. Mann. 1982. Benthic filter feeding: A natural eutrophication control.Marine Ecology Progress Series 9:203–210.CrossRefGoogle Scholar
  34. Paasche, E. 1980. Silicon, p. 259–284.In I. Morris (ed.), The Physiological Ecology of Phytoplankton. University of California Press, Berkeley.Google Scholar
  35. Riemann, B., T. G. Nielsen, S. J. Horsted, P. K. Bjornsen, andJ. Pock-Steen. 1988. Regulation of phytoplankton biomass in estuarine enclosures.Marine Ecology Progress Series 48: 205–215.CrossRefGoogle Scholar
  36. Rodhouse, P. G. andC. M. Roden. 1987. Carobon budget for a coastal inlet in relation to intensive cultivation of suspension-feeding bivalve molluscs.Marine Ecology Progress Series 36:225–236.CrossRefGoogle Scholar
  37. Smaal, A. C. andM. R. van Stralen. 1990. Average annual growth and condition of mussels as a function of food source.Hydrobiologia 195:179–188.CrossRefGoogle Scholar
  38. Smaal, A. C., J. H. G. Verhagen, J. Coosen, andH. A. Haas. 1986. Interaction between seston quantity and quality and benthic suspension feeders in the Oosterschelde, The Nethelands.Ophelia 26:285–399.Google Scholar
  39. Sornin, J.-M., M. Feuillet, M. Heral, andJ.-C. Fardeau. 1986. Influence des cultures d’huitresCrassostrea gigas sur le cycle du phosphore en zone intertidale: Role de la biodeposition.Oceanologica Acta 9:313–322.Google Scholar
  40. Sterner, R. W. 1986. Herbivores’ direct and indirect effects on algal populations.Science 231:605–607.CrossRefGoogle Scholar
  41. Strickland, J. D. H. andT. R. Parsons. 1968. Apractical handbook of seawater analysis.Fisheries Research Board of Canada, Bulletin 167:1–311.Google Scholar
  42. Stuart, V., R. C. Newell, andM. I. Lucus. 1982. Conversion of kelp debris and faecal material from the musselAulacomya ater by marine microorganisms.Marine Ecology Progress Series 7:47–57.CrossRefGoogle Scholar
  43. Tenore, K., L. Boyer, R. M. Cal, J. Corall, C. Garcia-Fernandez, N. Gonzalez, E. Gonzalez-Gurriaran, R. Hanson, J. Ingesia, M. Krom, E. Lopen-Jamar, J. McClain, M. Pamatmat, A. Perez, D. Rhoads, G. De Santiago, J. Tietjen, J. Westrich, andH. Windon. 1982. Coastal upwelling in the Rias Bajas, NW Spain: Contrasting the Rias de Arosa and the Muros.Journal of Marine Research 40:701–772.Google Scholar
  44. Tiedje, J. M., A. J. Sexstone, D. D. Myrold, andJ. A. Robinson. 1982. Denitrification: Ecological niches, competition and survival.Antonie van Leeuwenhoek Journal of Microbiology and Serology 48:569–583.CrossRefGoogle Scholar
  45. Valiela, I. 1984. Marine Ecological Processes. Springer-Verlag, New York. 546 p.Google Scholar
  46. Verwey, J. 1952. On the ecology and distribution of cockle and mussel in the Dutch Wadden Sea, their role in sedimentation and the source of their food supply.Archives Needer landaises Zoologie 10:172–239.Google Scholar
  47. Wetsteyn, L. P. M. Y. andL. Peperzak. 1990. Abiotische variabelen, primaire productie en kwalitative fytoplankton samenstelling en-successie in de Oosterschelde in 1987.Hydrobiologia 195:163–177.CrossRefGoogle Scholar
  48. Wildish, J. andD. D. Kristmanson. 1984. Importance to mussels of the benthic boundary layer.Canadian Journal of Fisheries and Aquatic Sciences 41:1618–1625.CrossRefGoogle Scholar
  49. Wright, R. T., R. B. Coffin, C. P. Ersing, andD. Pearson. 1982. Field and laboratory measurements of bivalve filtration of natural marine bacterioplankton.Limnology and Oceanography 27:91–98.Google Scholar

Copyright information

© Estuarine Research Federation 1991

Authors and Affiliations

  • Richard Dame
    • 1
  • Norbert Dankers
    • 2
  • Theo Prins
    • 3
  • Henk Jongsma
    • 2
  • Aad Smaal
    • 4
  1. 1.Coastal Carolina CollegeUniversity of South CarolinaConway
  2. 2.Research Institute for Nature ManagementDen Burg TexelThe Netherlands
  3. 3.Delta Institute for Hydrobiological ResearchYersekeThe Netherlands
  4. 4.Rijkswaterstaat Tidal Waters DivisionMinistry of Transportation and Public WorksMiddelburgThe Netherlands

Personalised recommendations