, Volume 4, Issue 2, pp 85–96 | Cite as

Seasonal changes in the amphipod fauna ofMicrociona prolifera (Ellis and Solander) (Porifera: Demospongia) and associated sponges in a shallow salt-marsh creek

  • Charles K. Biernbaum


Between September 1976 and August 1978, samples of four species of sponge,Microciona prolifera (Ellis and Solander),Haliclona loosanoffi Hartman,Lissodendoryx isodictyalis (Carter) andHalichondria bowerbanki Burton, were collected from subtidal shell debris in a North Edisto River, South Carolina saltmarsh creek and associated amphipods identified. Dominant spongicolous amphipods wereColomastix halichondriae Bousfield,Leucothoe spinicarpa (Abildgaard),Corophium simile Shoemaker,Corophium acherusicum Costa,Lembos cf.L. websteri Bate andMelita appendiculata (Say). Densities of amphipods inMicroclona prolifera andHalichondria bowerbanki usually exceeded those inLissodendoryx isodictyalis andHaliclona loosanoffi. Seasonal changes in amphipod dominance were however approximately the same in all sponge species. Winter dominance byCorophium spp., and on occasionLembos spp., is followed by spring dominance byMelita appendiculata and summer dominance byColomastix halichondriae. Harsher winter conditions in 1976–77 apparently resulted in more reduced populations of various sponge species as well asColomastix halichondriae andLeucothoe spinicarpa when compared with the following winter. With some exceptions during the winter, amphipod density inMicrociona prolifera generally decreased as sponge size increased. The range of gammarid amphipod densities inMicrociona prolifera was 128–724 individuals per 5 g (40.3 cm3) of sponge.


Sponge Sponge Species Amphipod Species Harsh Winter Amphipod Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Anonymous. 1978. Winter may have hit new low in East.Mariners Weather Log 22:186.Google Scholar
  2. Arndt, W. 1933. Die biologischen Beziehungen zwischen Schwämmen und Krebsen.Mitt. zool. Mus. Berl. 19:221–325.Google Scholar
  3. Bacescu, M. 1971. Les spongiaries; un des plus intéressants biotopes benthiques marins.Rapp. Comm. int. mer Medit. 20:239–241.Google Scholar
  4. Bacescu, M., andR. Mayer. 1960. Nouveoux cas de commensalisme (Colomastix etTritaeta) et cas parasitisme (Rhizorhina) pour la mer Noire et quelques observations sur l’Ampelisca des eaux prébosphoriques.Trav. Mus. Hist. nat. ‘Gr. Antipa’ 2:87–96.Google Scholar
  5. Biernbaum, C. K. 1979. Influence of sedimentary factors on the distribution of benthic amphipods of Fishers Island Sound, Connecticut.J. exp. mar. Biol. Ecol. 38:201–223.CrossRefGoogle Scholar
  6. Bousfield, E. L. 1973. Shallow-water gammaridean Amphipoda of New England. Cornell Univ. Press, Ithaca, 312 p.Google Scholar
  7. Calder, D. R., B. B. Boothe, Jr., and M. S. Maclin. 1977. A preliminary report on estuarine macrobenthos of the Edisto and Santee River systems, South Carolina, S. C. Mar. Res. Cen. Tech. Rep. No. 7, 30 p.Google Scholar
  8. Connes, R. 1967. Réactions de défense de l’épongeTethya lyncurium, Lamarck, vis-à-vis des micro-organismes et de l’amphipodeLeucothoe spinicarpa Abildg.Vie et Milieu 18:281–288.Google Scholar
  9. De Laubenfelds, M. W. 1947. Ecology of the sponges of a brackish water environment at Beaufort, N.C.Ecol. Monogr. 17:31–46.CrossRefGoogle Scholar
  10. Farmer, C. H., III, and J. D. Whitaker. 1978. Overwintering white shrimp: a report to the fisherman. S.C. Wildl. Mar. Res. Dept. Crust. Man. Publ., 22 p.Google Scholar
  11. Fox, R. S. 1978. Order Amphipoda, p. 161–166.In R. G. Zingmark (ed.), An Annotated Checklist of the Biota of the Coastal Zone of South Carolina. Univ. of South Carolina Press, Columbia.Google Scholar
  12. Frith, D. W. 1976. Animals associated with sponges at North Hayling, Hampshire.Zool. J. Linn. Soc. 58:353–362.CrossRefGoogle Scholar
  13. Frith, D. W. 1977. A preliminary analysis of the association of amphipodsMicrodeutopus damnoniensis (Bate),M. anomalus (Rathke) andCorophium sextoni (Pallas) andHymeniacidon perleve (Montagu).Crustaceana 32:113–118.CrossRefGoogle Scholar
  14. Hargrave, B. T. 1970. Distribution, growth, and seasonal abundance ofHyalella azteca (Amphipoda) in relation to sediment microflora.J. Fish. Res. Board Canada 27:685–699.Google Scholar
  15. Hartman, W. D. 1958. Natural history of the marine sponges of southern New England.Bull. Peabody Mus. Nat. Hist. 12:1–155.Google Scholar
  16. Meadows, P. S. 1964. Substrate selection byCorophium species—the particle size of substrates.J. Anim. Ecol. 33:387–394.CrossRefGoogle Scholar
  17. Moyer, W. J. 1977. Chesapeake Bay ice conditions, 1976–77.Mariners Weather Log 21:137–142.Google Scholar
  18. Ortiz, M. 1975. Some ecological notes onLeucothoe spinicarpa (Amphipoda: Gammaridea) in Cuban waters.Cienc. Ser. Ocho Invest. Mar. (Havana) 16:1–12.Google Scholar
  19. Pearse, A. S. 1932. Inhabitants of certain sponges at Dry Tortugas.Publs. Carnegie Instn. 28:117–124.Google Scholar
  20. Pearse, A. S. 1950. Notes on the inhabitants of certain sponges at Bimini.Ecology 31:149–151.CrossRefGoogle Scholar
  21. Wells, H. W., M. J. Wells, andI. E. Gray. 1964. Ecology of sponges in Hatteras harbor, North Carolina.Ecology 45:752–767.CrossRefGoogle Scholar

Copyright information

© Estuarine Research Federation 1981

Authors and Affiliations

  • Charles K. Biernbaum
    • 1
  1. 1.Grice Marine Biological LaboratoryCollege of CharlestonCharleston

Personalised recommendations