, Volume 7, Issue 4, pp 460–468 | Cite as

Dependence of fishery species on salt marshes: The role of food and refuge

  • Donald F. Boesch
  • R. Eugene Turner


Salt marshes are widely believed to serve as nurseries for many fishes and crustaceans of fishery value as a result of the high production of vascular plant detritus and the protection from predation offered by shallow, spatially complex habitats. Comparisons of the yields of species which reside in salt marsh habitats during critical life history stages (such as penaeid shrimp) with the area of such habitats and their greater densities in flooded marshes and associated tidal creeks support the premise that marshes enhance the yield of such species. A range of evidence, including the amount of detrital export from marshes, the poor nutritive value of vascular plant detritus, and natural diets, casts doubt on the notion that production of fishery species is based on the direct consumption of marsh grass detritus or predominantly on food chains based on this detritus. Vascular plants and associated algae may, however, contribute to the production of prey species. The limited observations available support the hypothesis that salt marshes offer significant escape from mortality due to predation, but there have been yet few experimental tests of this hypothesis.

Knowledge of relative importance of the food and refuge functions in support of living resources is of practical value in marsh and fisheries management. Better understanding of these roles is important to the effective evaluation of the effects of coastal habitat modifications on fisheries resources and design of alterations to minimize the losses of these values.


Salt Marsh Detritus Tidal Creek Brown Shrimp Penaeid Shrimp 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Adkins, G., and P. Bowman. 1976. A study of the fauna in dredged canals of coastal Louisiana. Louisiana Wild Life and Fisheries Commission Tech. Bull. 18. 72 p.Google Scholar
  2. Barrett, B. B. 1975. Environmental conditions relative to shrimp production in coastal Louisiana. La. Dep. Wildlife Fish. Tech. Bull. 15. 22 p.Google Scholar
  3. Bell, S. S., andB. C. Coull. 1978. Field evidence that shrimp predation regulates meiofauna.Oecologia 35:141–148.CrossRefGoogle Scholar
  4. Borey, R. B., P. A. Harcombe, andF. M. Fisher. 1983. Water and organic carbon fluxes from an irregularly flooded brackish marsh on the upper Texas coast, U.S.A..Estuarine Coastal Shelf Sci. 16:379–402.CrossRefGoogle Scholar
  5. Darnell, R.. 1958. Food habits of fishes and larger invertebrates of Lake Pontchartrain, Louisiana, an estuarine community.Publ. Inst. Mar. Sci. Univ. Tex. 5:353–416.Google Scholar
  6. Darnell, R.. 1961. Trophic spectrum of an estuarine community, based on studies of Lake Pontchartrain, Louisiana.Ecology 42:553–568.CrossRefGoogle Scholar
  7. Doi, T., K. Okada, andK. Isibashi. 1973. Environmental assessment on survival of Kuruma prawn,Penaeus japonicus, in tideland. I. Environmental conditions in Saizyo tideland and selection of essential characteristics. Bull. Tokai Reg. Fish. Res. Lab. 76:37–52Google Scholar
  8. Feller, R. J., G. L. Taghon, E. D. Gallagher, G. E. Kenny, andP. A. Jumars. 1979. Immunological methods for food web analysis in a soft-bottom benthic community.Mar. Biol. 54:61–74.CrossRefGoogle Scholar
  9. Fry, B., 1981. Natural stable carbon isotope tag traces Texas shrimp migrations.Fish. Bull. 79:337–345.Google Scholar
  10. Hackney, C. T., andE. B. Haines. 1980. Stable carbon isotope composition of fauna and organic matter collected in a Mississippi estuary.Estuarine Coastal Mar. Sci. 10:703–708.CrossRefGoogle Scholar
  11. Hatton, R. S., R. D. DeLaune, andW. H. Patrick, Jr. 1983. Sedimentation, accretion, and subsidence in marshes of Barataria Basin, Louisiana.Limnol. Oceanogr. 28:494–502.CrossRefGoogle Scholar
  12. Haines, E. B.. 1977. The origins of detritus in Georgia salt marsh estuaries.Oikos 29:254–260.CrossRefGoogle Scholar
  13. Haines, E. B.. 1979. Interactions between Georgia salt marshes and coastal waters: a changing paradigm, p. 35–46.In R. J. Livingston (ed.), Ecological Processes in Coastal and Marine Systems. Plenum, New York.Google Scholar
  14. Haines, E. B., andC. L. Montague. 1979. Food sources of estuarine invertebrates analyzed using13C/12C ratios.Ecology 60:48–56.CrossRefGoogle Scholar
  15. Heck, K. L., Jr., andT. Thoman. 1981. Experiments on predator-prey interactions in vegetated aquatic habitats.J. Exp. Mar. Biol. Ecol. 53:125–134.CrossRefGoogle Scholar
  16. Herke, W. H.. 1971. Use of natural and semi-impounded, Louisiana tidal marshes as nurseries for fishes and crustaceans. Ph.D. Dissertation, Louisiana State Univ., Baton Rouge. 242 p.Google Scholar
  17. Howarth, R. W.. 1984. The ecological significance of sulfur in the energy dynamics of salt marsh and marine sediments.Biogeochemistry 1:5–27.CrossRefGoogle Scholar
  18. Johnson, R. G. 1974. Particulate matter at the sediment-water interface in coastal environments.J. Mar. Res. 273–282.Google Scholar
  19. Knudsen, E. E., W. H. Herke, andJ. M. Mackler. 1977. The growth rate of marked juvenile brown shrimp,Penaeus aztecus in a semi-impounded Louisiana coastal marsh.Proc. Gulf Caribb. Fish. Inst. 29:144–159.Google Scholar
  20. Marinucci, A. C.. 1982. Trophic importance ofSpartina alterniflora production and decomposition to the marsh-estuarine ecosystem.Biol. Conserv. 22: 35–58.CrossRefGoogle Scholar
  21. Mock, C. R.. 1967. Natural and altered estuarine habitats of penaeid shrimp.Proc. Gulf. Caribb. Inst. 19: 86–98.Google Scholar
  22. Moriarty, D. J. W., andM. C. Barclay. 1981. Carbon and nitrogen content of food and the assimilation efficiencies of penaeid prawns in the Gulf of Carpentaria.Aust. J. Mar. Freshw. Res. 32:245–251.CrossRefGoogle Scholar
  23. Naiman, R. J., andJ. R. Sibert. 1979. Detritus and juvenile salmon production in the Nanaimo Estuary. III. Importance of detrital carbon to the estuarine ecosystem.J. Fish. Res. Board Can. 36:504–520.Google Scholar
  24. Nixon, S. W.. 1980. Between coastal marshes and coastal waters—a review of twenty years of speculation and research on the role of salt marshes in estuarine productivity and water chemistry, p. 437–525.In P. Hamilton and K. B. MacDonald (eds.), Estuarine and Wetland Processes. Plenum, New York.Google Scholar
  25. Odum, W. E., andE. J. Heald. 1975. The detritusbased food web of an estuarine mangrove community, p. 265–286.In L. E. Cronin (ed.), Estuarine Research, Vol. 1. Academic Press, New York.Google Scholar
  26. Orth, R. J., K. L. Heck, Jr., and J. van Montfrans. 1984. Seagrass faunal communities: the influence of plant structure and prey life style on the outcome of predator-prey interactions.Estuaries [this issue].Google Scholar
  27. Paul, R. K. G.. 1981. Natural diet, feeding and predatory activity of the crabsCallinectes arcuatus andC. toxotes (Decapoda, Brachyura, Portunidae).Mar. Ecol. Prog. Ser. 6:91–99.CrossRefGoogle Scholar
  28. Peters, D. S., andW. E. Schaaf. 1981. Food requirements and sources for juvenile Atlantic menhaden.Trans. Am. Fish. Soc. 110:317–324.CrossRefGoogle Scholar
  29. Peterson, B. J., R. W. Howarth, F. Lipschultz, andD. Ashendorf. 1980. Salt marsh detritus: an alternative interpretation of stable carbon isotope ratios and the fate ofSpartina alterniflora.Oikos 34: 173–177.CrossRefGoogle Scholar
  30. Pomeroy, L. R.. 1979. Secondary production mechanisms of continental shelf communities, p. 163–186.In R. J. Livingston (ed.), Ecological Processes in Coastal and Marine Systems. Plenum, New York.Google Scholar
  31. Ribelin, B. W., andA. W. Collier. 1979. Ecological consideration of detrital aggregates in the salt marsh, p. 47–68.In R. J. Livingston (ed.), Ecological Processes in Coastal and Marine Systems. Plenum, New York.Google Scholar
  32. Rau, G. H., A. J. Mearns, D. R. Young, R. J. Olson, H. A. Schafer, andI. R. Kaplan. 1983. Animal13C/12C correlates with trophic level in pelagic food webs.Ecology 64:1314–1318.CrossRefGoogle Scholar
  33. Scaife, W., R. E. Turner, andR. Costanza. 1983. Indirect impact of canals on recent coastal land loss rates in Louisiana.Environ. Manag. 7:433–442.CrossRefGoogle Scholar
  34. Tenore, K. R., L. Cammen, S. E. G. Findlay, andN. Phillips. 1982. Perspectives of research on detritus: do factors controlling the availability of detritus to macroconsumers depend on its source?J. Mar. Res. 40:473–490.Google Scholar
  35. Thayer, G. W., P. L. Parker, M. W. LaCroix, andB. Fry. 1978. The stable carbon isotope ratio of some components of an eelgrass,Zostera marina, bed.Oecologia 35:1–12.CrossRefGoogle Scholar
  36. Turner, R. E.. 1977. Intertidal vegetation and commercial yields of penaeid shrimp.Trans. Am. Fish. Soc. 106:411–416.CrossRefGoogle Scholar
  37. Turner, R. E.. 1979. Louisiana’s fisheries and changing environmental conditions, p. 363–370.In J. W. Day, D. D. Culley, R. E. Turner, and A. J. Mumphrey (eds.), Proceedings of the Third Coastal Marsh and Estuarine Management Symposium. Div. of Continuing Education, Louisiana State University, Baton Rouge.Google Scholar
  38. Turner, R. E. 1982. Wetland losses and coastal fisheries: an enigmatic and economically significant dependency, p. 112–120.In D. F. Boesch (ed.), Proceedings of the Conference on Coastal Erosion and Wetland Modification in Louisiana: Causes, Consequences, and Options. U.S. Fish and Wildlife Service FWS/OBS-82/59.Google Scholar
  39. Van Valkenburg, J. K. Jones, andD. R. Heinle 1978. A comparison by size class and volume of detritus versus phytoplankton in Chesapeake Bay.Estuarine Coastal Mar. Sci. 6:569–582.CrossRefGoogle Scholar
  40. Vince, S., I. Valiela, andN. Backus. 1976. Predation by salt marsh killifishFundulus heteroclitus (L.) in relation to prey size and habitat structure: consequences for prey distribution and abundance.J. Exp. Mar. Biol. Ecol. 23:255–266.CrossRefGoogle Scholar
  41. Virnstein, R. W.. 1977. The importance of predation by crabs and fishes on benthic fauna in Chesapeake Bay.Ecology 58:1199–1217.CrossRefGoogle Scholar
  42. Walsh, J. J.. 1983. Death in the sea: enigmatic phytoplankton losses.Prog. Oceanogr. 12:1–86.CrossRefGoogle Scholar
  43. Weinstein, M. P.. 1979. Shallow marsh habitats as primary nurseries for fishes and shellfish, Cape Fear River, North Carolina.Fish. Bull. 77:339–357.Google Scholar
  44. Weinstein, M. P., andH. A. Brooks. 1983. Comparative ecology of nekton residing in a tidal creek and adjacent seagrass meadow: community composition and structure.Mar. Ecol. Prog. Ser. 12:15–27.CrossRefGoogle Scholar
  45. Werner, E. E., J. F. Gilliam, D. J. Hall, andG. G. Mittelbach. 1983. An experimental test of the effects of predation risk on habitat use in fish.Ecology 64:1540–1548.CrossRefGoogle Scholar
  46. Wicker, K. M. 1980. Mississippi Deltaic Plain Region Ecological Characterization: A Habitat Mapping Study. A User’s Guide to the Habitat Maps. U.S. Fish and Wildlife Service FWS/OBS-79/07.Google Scholar
  47. Yakupzack, P. M., W. H. Herke, andW. G. Perry. 1977. Emigration of juvenile Atlantic croaker,Micropogon undulatus, from a semi-impounded marsh in southwestern Louisiana.Trans Am. Fish. Soc. 106:538–544.CrossRefGoogle Scholar
  48. Zimmerman, R. J., and T. J. Minello. 1984. Habitat-related densities of macrofauna associated withPenaeus aztecus andPenaeus setiferus in a Texas salt marsh.Estuaries [this issue].Google Scholar

Copyright information

© Estuarine Research Federation 1984

Authors and Affiliations

  • Donald F. Boesch
    • 1
  • R. Eugene Turner
    • 2
  1. 1.Louisiana Universities Marine ConsortiumChauvin
  2. 2.Center for Wetland ResourcesLouisiana State UniversityBaton Rouge

Personalised recommendations