, Volume 7, Issue 4, pp 413–420

Salt-marsh benthic invertebrates: Small-scale patterns of distribution and abundance

  • D. N. Rader


Monitoring of small-scale distribution patterns of benthic invertebrates has demonstrated distinct trends in faunal abundances with position relative to individual culms of saltmarsh cordgrass,Spartina alterniflora, at Tar Landing Bay Marsh, near Morehead City, North Carolina. Samples containing culms ofSpartina yielded significantly higher abundances (at least three times) than did samples without them. Among common species, onlyNereis succinea did not show this effect. Matrix-arranged and randomly placed sets of samples have confirmed a positive relationship between cross-sectional area of culms in a sample (at the sediment-water interface) and contained numbers of macrofauna, juvenile macrofauna and meiofauna. These patterns occurred despite a decreased volume of sediment in samples containing culms. Heightened abundances of benthic invertebrates associated with structural elements at the sediment-water interface may result from either nonrandom recruitment (either active via recruit selectivity or passive through hydrogeographic effects of culms) or differential post-recruitment mortality (resulting from inhibition of epibenthic predators or from variable habitat quality).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Bailey-Brock, J. H. 1979. Sediment trapping by chaetopterid polychaetes on a Hawaiian fringing reef.J. Mar. Res. 37:643–656.Google Scholar
  2. Bell, S. S. 1980. Meiofauna-macrofauna interactions in a high salt marsh habitat.Ecol. Monogr 50:487–505.CrossRefGoogle Scholar
  3. Bell, S. S., andB. C. Coull. 1978. Field evidence that shrimp predation regulates meiofauna.Oecologia 35:141–148.CrossRefGoogle Scholar
  4. Bell, S. S., andB. C. Coull. 1978. Experimental evidence for a model of juvenile macrofauna-meiofauna interactions, p. 179–192.In K. R. Tenore and B. C. Coull (eds.), Marine Benthic Dynamics. University of South Carolina Press, Columbia.Google Scholar
  5. Bell, S. S., M. C. Watzin, andB. C. Coull. 1978. Biogenic structure and its effects on the spatial heterogeneity of meiofauna in a salt marsh.J. Exp. Mar. Biol. Ecol. 35:99–107.CrossRefGoogle Scholar
  6. Boesch, D. F. 1977. A new look at the zonation of benthos along the estuarine gradient, p. 245–266.In B. C. Coull (ed.), Ecology of Marine Benthos. University of South Carolina Press, Columbia.Google Scholar
  7. Brook, I. M. 1978. Comparative macrofauna abundance in turtlegrass (Thalassia testudinum) communities in south Florida characterized by high blade density.Bull. Mar. Sci. 28:212–217.Google Scholar
  8. Carlson, P. R. 1980. Oxygen diffusion from the roots ofSpartina alterniflora and the role ofSpartina in the sulfur cycle of salt marsh sediments. Ph.D. Dissertation, University of North Carolina, Chapel Hill. 188 p.Google Scholar
  9. De Jonge, A. M., andL. A. Bouwman. 1977. A simple density separation technique for quantiative isolation of meiobenthos using the colloidal silica Ludox-TM.Mar. Biol. 42:143–148.CrossRefGoogle Scholar
  10. Eckman, J. E. 1979. Small-scale patterns and processes in a soft-substratum intertidal community.J. Mar. Res. 37:437–457.Google Scholar
  11. Fager, E. W. 1964. Marine sediments: effects of a tube-building polychaete.Science 143:356–359.CrossRefGoogle Scholar
  12. Fleeger, J. W., S. A. Whipple, andL. L. Cook. 1982. Field manipulations of tidal flushing, light exposure and natant macrofauna in a Louisiana salt marsh: effects on the meiofauna.J. Exp. Mar. Biol. Ecol. 56:87–100.CrossRefGoogle Scholar
  13. Hannan, C. A. 1981. Polychaete larval settlement: correspondence of patterns in suspended jar collectors and in the adjacent natural habitat in Monterey Bay, California.Limnol. Oceanogr. 26:159–171.Google Scholar
  14. Heck, K. L., andG. S. Wetstone. 1977. Habitat complexity and invertebrate species richness and abundance in tropical seagrass meadows.J. Biogeogr. 4:135–143.CrossRefGoogle Scholar
  15. Highsmith, R. C. 1982. Induced settlement and metamorphosis of sand dollar (Dendraster excentricus) larvae in predator-free sites: adult sand dollar beds.Ecology 63:329–327.CrossRefGoogle Scholar
  16. Hogue, E. W., andC. B. Miller. 1981. Effects of sediment microtopography on small-scale spatial distributions of meiobenthic nematodes.J. Exp. Mar. Biol. Ecol. 53:181–191.CrossRefGoogle Scholar
  17. Howes, B. L., R. W. Howarth, J. M. Teal, andI. Valiela. 1981. Oxidation-reduction potentials in a salt marsh: spatial patterns and interactions with primary production.Limnol. Oceanogr. 26:350–360.CrossRefGoogle Scholar
  18. Kirchman, D., S. Graham, D. Reish, andR. Mitchell. 1982. Bacteria induce settlment and metamorphosis ofJanua (Dexiospira) brasiliensis Grube (Polychaeta: Spirorbidae).J. Exp. Mar. Biol. Ecol. 56:153–163.CrossRefGoogle Scholar
  19. Kneib, R. T. 1984. Patterns of invertebrate distribution and abundance in the intertidal salt marsh: causes and questions.Estuaries (in press).Google Scholar
  20. Kneib, R. T., andA. E. Stiven. 1982. Benthic invertebrate responses to size and density manipulations of the common mummichog,Fundulus heteroclitus (L.) in an intertidal salt marsh.Ecology 63: 1518–1532.CrossRefGoogle Scholar
  21. Levin, L. A. 1981. Dispersion, feeding behavior and competition in two spionoid polychaetes.J. Mar. Res. 39:99–177.Google Scholar
  22. McCall, P. L., andJ. B. Fisher. 1980. Effects of tubificid oligochaetes on physical and chemical properties of Lake Erie sediments, p. 253–317.In R. O. Brinkhurst (ed.), Aquatic Oligochaete Biology. Plenum Press, New York.Google Scholar
  23. McIntyre, A. D. 1964. Meiobenthos of sublittoral muds.J. Mar. Biol. Assoc. U.K. 44:665–674.Google Scholar
  24. Mills, E. L. 1967. The biology of an ampeliscid crustacean sibling species pair.J. Res. Board Can. 24: 305–355.Google Scholar
  25. Oliver, J. S. 1979. Physical and biological processes affecting the organization of marine soft-bottom communities in Monterey Bay, California and McMurdo Sound, Antarctica. Ph.D. Dissertation, Scripps Institute of Oceanography.Google Scholar
  26. Orth, R. J. 1977. The importance of sediment stability in seagrass communities, p. 281–300.In B. C. Coull (ed.), Ecology of Marine Benthos. University of South Carolina Press, Columbia.Google Scholar
  27. Osenga, G. A., andB. C. Coull. 1983.Spartina alterniflora Loisel root structure and meiofaunal abundance.J. Exp. Mar. Biol. Ecol. 67:221–225.CrossRefGoogle Scholar
  28. Peterson, C. H. 1979. Predation, competitive exclusion, and diversity in the soft-sediment benthic communities of estuaries and lagoons, p. 233–264.In R. J. Livingston (ed.), Ecological Processes in Coastal marine Systems. Plenum Press, New York.Google Scholar
  29. Peterson, C. H. 1980. Approaches to the study of competition in benthic communities in soft sediments, p. 291–302.In V. S. Kennedy (ed.), Estuarine Perspectives. Academic Press, New York.Google Scholar
  30. Pomeroy, W. M., andC. D. Levings. 1980. Associations and feeding relationships betweenEogammarus confervicolous (Amphipoda, Gammaridea) and benthic algae on Sturgeon and Roberts Banks, Frasier River Estuary.Can. J. Fish. Aquat. Sci. 37:1–10.CrossRefGoogle Scholar
  31. Rader, D. N. 1980. Habitat modification by an intertidal phoronid: effects on the benthic community. M.S. Thesis, University of Washington, 68 p.Google Scholar
  32. Ronan, T. E. 1975. Structural and paleoecological aspects of a modern marine soft-sediment community: an experimental field study. Ph.D. Dissertation, University of California, Davis. 220 p.Google Scholar
  33. Standing, J. D. 1976. Fouling community structure: effects of the hydroids,Obelia dichotoma, on larval recruitment, p. 155–164.In J. D. Mackie (ed.), Coelenterate Ecology and Behavior. Plenum Press, New York.Google Scholar
  34. Stoner, A. W. 1980. The role of seagrass biomass in the organization of benthic macrofaunal assemblages.Bull. Mar. Sci. 30:537–551.Google Scholar
  35. Virnstein, R. W. 1980. Measuring effects on predation on benthic communities in soft sediments, p. 281–290.In V. S. Kennedy (ed.), Estuarine Perspectives. Academic Press, New York.Google Scholar
  36. Watzin, M. C. 1983. The effects of meiofauna on settling macrofauna: meiofauna may structure macrofaunal communities.Oecologia 59:163–166.CrossRefGoogle Scholar
  37. Williams, J. G. 1980. The influence of adults on the settlement of spat of the Clam,Tapes japonica.J. Mar. Res. 38:729–741.Google Scholar
  38. Wilson, W. H. 1979. Community structure and species diversity of the sedimentary reefs constructed byPetaloproctus socialis (Polychaeta, Maldanidae).J. Mar. Res. 37:623–641.Google Scholar
  39. Wilson, W. H. 1980. A laboratory investigation of the effect of a terebellid polychaete on the survivorship of nereid polychaete larvae.J. Exp. Mar. Biol. Ecol. 46:73–80.CrossRefGoogle Scholar
  40. Woodin, S. A. 1974. Polychaete abundance patterns in a marine soft-sediment environment: the importance of biological interactions.Ecol. Monogr. 44: 171–187.CrossRefGoogle Scholar
  41. Woodin, S. A. 1976. Adult-larval interactions in dense infaunal assemblages: patterns of abundance.J. Mar. Res. 34:25–41.Google Scholar
  42. Woodin, S. A. 1978. Refuges, disturbance and community structure: a marine soft-bottom example.Ecology 59:274–284.CrossRefGoogle Scholar
  43. Woodin, S. A. 1981. Disturbance and community structure in a shallow water sand flat.Ecology 62: 1052–1066.CrossRefGoogle Scholar

Copyright information

© Estuarine Research Federation 1984

Authors and Affiliations

  • D. N. Rader
    • 1
  1. 1.University of North CarolinaChapel Hill

Personalised recommendations