, Volume 12, Issue 2, pp 66–81 | Cite as

Abundance of larval rainbow smelt (Osmerus mordax) in relation to the maximum turbidity zone and associated macroplanktonic fauna of the middle St. Lawrence estuary

  • Julian J. Dodson
  • Jean-Claude Dauvin
  • R. Grant Ingram
  • B. d’Anglejan


We tested the hypothesis that the distribution and retention of larval smelt (Osmerus mordax) in the middle estuary of the St. Lawrence River is related to the maintenance of other planktonic organisms in the maximum turbidity zone (MTZ). We documented the horizontal and vertical distribution of larval smelt, macrozooplankton, and suspended particulate matter over four tidal cycles at each of three stations located along the major axis of the turbid upstream portion of the middle estuary. During summer, the turbid, warm, and low salinity waters of the two upstream stations were characterized byNeomysis americana, Gammarus sp. (principallyG. tigrinus), larval smelt,Mysis stenolepsis, andCrangon septemspinosus. The more stratified and less turbid waters of the downstream station were characterized by a coastal marine macrozooplanktonic community and the almost total absence of smelt larvae. Within the MTZ, the distribution ofN. americana coincided with the zone of longest average advective replacement times (null zone). Smelt larvae were distributed further upstream within the MTZ thanN. americana. Overall, larger larvae were distributed further upstream than smaller larvae. The relationship between turbidity and larval density at a specific time was weak (due to resuspension of sediments but not larvae), but the mechanism responsible for producing higher residence times for both sediment and larvae on a longer term basis appears the same. The daily movement and skewed nature of the null zone (due to the general cyclonic circulation of the middle estuary) defines a geographic zone over which the larval smelt population oscillates and remains despite the mean downstream velocities over the water column.


Suspended Particulate Matter Larval Density Length Class Small Larva Maximum Turbidity Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Able, K. W. 1978. Ichthyoplankton of the St. Lawrence estuary: Composition, distribution, and abundance.J. Fish. Res. Board Can. 35:1518–1531.Google Scholar
  2. Amaratunga, T., andS. Corey. 1975. Life history ofMysis stenolepis (Smith) (Crustacea, Mysidacea).Can. J. Zool. 53:942–952.CrossRefGoogle Scholar
  3. Barclay, W. R., andA. W. Knight. 1981. The nutritional significance of the distribution of suspended particulate material in the upper San Francisco Bay estuary, pp. 55–70.In R. D. Cross, and D. L. Williams (eds.), Proceedings of the National Symposium on Freshwater Inflow to Estuaries, Vol. 1. U.S. Department of the Interior, Washington, FWS/OBS-81/04.Google Scholar
  4. Bousfield, E. L. 1973. Shallow-water gammaridean Amphipoda of New England. Cornell Univ. Press, Ithaca. 312 p.Google Scholar
  5. Bousfield, E. L., G. Filteau, M. O’Neill, andP. Gentes. 1975. Population dynamics of zooplankton in the middle St. Lawrence Estuary, p. 325–351.In L. E. Cronin (ed.), Estuarine Research, Vol. 1. Academic Press, New York.Google Scholar
  6. Cardinal, A., andL. Berard-Therriault. 1976. Le phytoplancton de l’estuaire moyen du Saint-Laurent en amont de I’lle-aux-Coudres (Québec).Int. Revue Ges. Hydrobiol. 61:639–648.CrossRefGoogle Scholar
  7. Courtois, R., M. Simoneau, andJ. J. Dodson. 1982. Interactions multispecifiques: Répartition spatio-temporelle des larves de capelan (Mallotus villosus), d’éperlan (Osmerus mordax) et de hareng de l’Atlantique (Clupea harengus harengus) au sein de la communauté planctonique de l’estuaire moyen du Saint-Laurent.Can. J. Fish. Aquat. Sci. 39:1164–1174.CrossRefGoogle Scholar
  8. d’Anglejan, B. F. 1981. On the advection of turbidity in the Saint-Lawrence Middle Estuary.Estuaries 4:2–15.CrossRefGoogle Scholar
  9. d’Anglejan, B. F., and R. G. Ingram. 1984. Near bottom variations of turbidity in the Saint-Lawrence Estuary.Estuarine Coastal Shelf Sci. 19:665–672.Google Scholar
  10. d’Anglejan, B. F., and E. C. Smith. 1973. Distribution, transport, and composition of suspended matter in the St. Lawrence estuary.Can. J. Earth Sci. 10:1380–1396.Google Scholar
  11. Fortier, L., andW. C. Leggett. 1983. Vertical migration and transport of larval fish in a partially mixed estuary.Can. J. Fish. Aquat. Sci. 40:1543–1555.Google Scholar
  12. Gobeil, C., B. Sundby, andN. Silverberg. 1981. Factors influencing particulate matter geochemistry in the St. Lawrence estuary turbidity maximum.Mar. Chem. 10:123–140.CrossRefGoogle Scholar
  13. Hansen, D. V., andM. Rattray. 1966. New dimensions in estuarine classification.Limnol. Oceanogr. 11:319–326.CrossRefGoogle Scholar
  14. Kranck, K. 1979. Dynamics and distribution of suspended particulate matter in the Saint-Lawrence Estuary.Le Natur. Can. 106:163–173.Google Scholar
  15. Lange, G. N., andW. T. Williams. 1967. A general theory of classificatory sorting strategies. I. Hierarchical systems.Computer J. 9:373–380.Google Scholar
  16. Legendre, L., andP. Legendre. 1984. Ecologie numérique, Tome 2. La structure des données écologiques. Masson, Paris et les Presses de l’Université du Québec, 2e édition, VIII + 335 p.Google Scholar
  17. Leggett, W. C. 1985. The role of migrations in the life history evolution of fish, p. 277–295.In M. A. Rankin (ed.), Migration: Mechanisms and Adaptive Significance.Contr. Mar. Sci. 27:353–366.Google Scholar
  18. Leggett, W. C. 1984. Fish migrations in coastal and estuarine environments: A call for new approaches to the study of an old problem. p. 159–178.In J. D. McCleave, G. P. Arnold, J. J. Dodson, and W. H. Neill (eds.), Mechanisms of Migration in Fishes. Plenum Press, New York.Google Scholar
  19. Lucotte, M., and B. d’Anglejan. 1986. Seasonal control of the Saint-Lawrence maximum turbidity zone by tidal flat sedimentation.Estuaries 9:84–94.CrossRefGoogle Scholar
  20. Mauchline, J. 1980. The biology of mysids.Adv. Mar. Biol. 18:1–97.Google Scholar
  21. Miller, J. M., L. B. Crowder, and M. L. Moser. 1985. Migration and utilization of estuarine nurseries by juvenile fishes: An evolutionary perspective.In M. A. Rankin (ed.), Migration: Mechanisms and Adaptive Significance.Contr. Mar. Sci. 27:338–352.Google Scholar
  22. Nixon, S. W. 1981. Freshwater inputs and estuarine productivity, p. 31–57.In R. D. Cross, and D. L. Williams (eds.), Proceedings of the National Symposium on Freshwater Inflow to Estuaries, Vol. 1, U.S. Department of the Interior, Washington, FWS/OBS-81/04.Google Scholar
  23. Orsi, J. J. 1986. Interaction between diel vertical migration of a mysidacean shrimp and two-layered estuarine flow.Hydrobiologia 137:79–87.CrossRefGoogle Scholar
  24. Ouellet, P., andJ. J. Dodson. 1985. Dispersion and retention of anadromous rainbow smelt (Osmerus mordax) larvae in the middle estuary of the St. Lawrence River.Can. J. Fish. Aquat. Sci. 42:322–341.CrossRefGoogle Scholar
  25. Ouellet, Y., and J. Cerceau. 1976. Mélange des eaux douce et salées du Saint-Laurent: Circulation et salinité.Les Cahiers de Centreau 1, 57 p.Google Scholar
  26. Peterson, D. H., J. J. Conomos, W. W. Broenkow, andP. C. Doherty. 1975. Location of the non-tidal current null zone in northern San Francisco Bay.Estuarine Coastal Mar. Sci. 3: 1–11.CrossRefGoogle Scholar
  27. Pezzack, D. S., andS. Corey. 1979. The life history and distribution ofNeomysis americana (Smith) (Crustacea, Mysidacea) in Passamaquoddy Bay.Can. J. Zool. 57:785–795.CrossRefGoogle Scholar
  28. Postma, H. 1967. Sediment transport and sedimentation in the estuarine environment, p. 158–179.In G. H. Lauff (ed.), Estuaries. American Association for the Advancement of Science, Publication 83. Washington, D.C.Google Scholar
  29. Richards, S. W., andG. A. Riley. 1967. The benthic epifauna of Long Island Sound.Bull. Bingham Oceanogr. Collection 19: 89–129.Google Scholar
  30. Siegfried, C. A., M. E. Kopache, andA. W. Knight. 1979. The distribution and abundance ofNeomysis mercedis in relation to the entrapment zone in the western Sacramento-San Joaquin delta.Trans. Am. Fish. Soc. 108:262–268.CrossRefGoogle Scholar
  31. Wigley, R. L., andB. R. Burns. 1971. Distribution and biology of mysids (Crustacea, Mysidacea) from the Atlantic Coast of the United States in the NMFS Woods Hole collection.Fish. Bull. 72:835–842.Google Scholar
  32. Zagursky, G. andR. J. Feller. 1985. Macrophyte detritus in the winter diet of the estuarine mysid,Neomysis americana.Estuaries 8:355–362.CrossRefGoogle Scholar

Copyright information

© Estuarine Research Federation 1989

Authors and Affiliations

  • Julian J. Dodson
    • 1
  • Jean-Claude Dauvin
    • 1
  • R. Grant Ingram
    • 2
  • B. d’Anglejan
    • 2
  1. 1.Département de biologie Faculté des Sciences et de GénieUniversité LavalSainte-Foy
  2. 2.Institute of OceanographyMcGill UniversityMontreal

Personalised recommendations