Skip to main content
Log in

Treatment of Allergic Rhinitis in Infants and Children

Efficacy and Safety of Second-Generation Antihistamines and the Leukotriene Receptor Antagonist Montelukast

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Allergic rhinitis (AR) affects a large percentage of paediatric patients. With the wide array of available agents, it has become a challenge to choose the most appropriate treatment for patients. Second-generation anti-histamines have become increasingly popular because of their comparable efficacy and lower incidence of adverse effects relative to their first-generation counterparts, and the safety and efficacy of this drug class are established in the adult population. Data on the use of the second-generation anti-histamines oral cetirizine, levocetirizine, loratadine, desloratadine and fexofenadine, and the leukotriene receptor antagonist montelukast as well as azelastine nasal spray in infants and children are evaluated in this review.

These agents have been found to be relatively safe and effective in reducing symptoms associated with AR in children. Alternative dosage forms such as liquids or oral disintegrating tablets are available for most agents, allowing ease of administration to most young children and infants; however, limited data are available regarding use in infants for most agents, except desloratadine, cetirizine and montelukast. Unlike their predecessors, such as astemizole and terfenadine, the newer second-generation antihistamines and montelukast appear to be well tolerated, with absence of cardiotoxicities. Comparative studies are limited to cetirizine versus ketotifen, oxatomide and/or montelukast. Although second-generation antihistamines and montelukast are deemed relatively safe for use in paediatric patients, there are some noteworthy drug interactions to consider when selecting an agent. Given the wide variety of available agents for treatment of AR in paediatric patients, the safety and efficacy data available for specific age groups, type of AR, dosage form availability and cost should be considered when selecting treatment for AR in infants and children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II
Table III

Similar content being viewed by others

References

  1. Skoner DP. Allergic rhinitis: definition, epidemiology, pathophysiology, detection, and diagnosis. J Allergy Clin Imunol 2001; 108: 2–8

    Article  Google Scholar 

  2. Mahr TA, Sheth K. Update on allergic rhinitis. Pediatr Rev 2005; 26: 284–9

    Article  PubMed  Google Scholar 

  3. Seth D, Secord E, Kamat D. Allergic rhinitis. Clin Pediatr 2007; 46: 401–7

    Article  Google Scholar 

  4. Wright AL, Holberg CJ, Halonen M, et al. Epidemiology of physician-diagnosed allergic rhinitis in childhood. Pediatrics 1994; 94: 895–901

    PubMed  CAS  Google Scholar 

  5. Schoenwetter WF, Dupclay Jr L, Appajosyula S, et al. Economic impact and quality-of-life burden of allergic rhinitis. Curr Med Res Opin 2004; 20: 305–17

    Article  PubMed  Google Scholar 

  6. Ray NF, Baraniu JN, Thamer M, et al. Direct expenditures for the treatment of allergic rhinoconjunctivitis in 1996, including the contributions of related airway illnesses. J Allergy Clin Immunol 1999; 103: 401–7

    Article  PubMed  CAS  Google Scholar 

  7. Richards W. Preventing behavior problems in asthma and allergies. Clin Pediatr 1994; 33: 617–24

    Article  CAS  Google Scholar 

  8. Lack G. Pediatric allergic rhinitis and comorbid disorders. J Allergy Clin Immunol 2001; 108: 9–15

    Article  Google Scholar 

  9. Linna O, Kokkonen, Lukin M. A 10-year prognosis for childhood allergic rhinitis. Chest 1999; 155: 928–36

    Google Scholar 

  10. Leynaert B, Neukirch F, Demoly P, et al. Epidemiologic evidence for asthma and rhinitis comorbidity. J Allergy Clin Immunol 2000; 106: 201–5

    Article  Google Scholar 

  11. Wright AL, Holberg CJ, Martinez FD, et al. Epidemiology of physician-diagnosed allergic rhinitis in childhood. Pediatrics 1994; 94: 895–901

    PubMed  CAS  Google Scholar 

  12. Lehman JM, Blaiss MS. Selecting the optimal oral anti-histamine for patients with allergic rhinitis. Drugs 2006; 66: 2309–19

    Article  PubMed  CAS  Google Scholar 

  13. Simons FER. Non-cardiac adverse effects of antihistamines (H1-receptor antagonists). Clin Exp Allergy 1999; 29: 125–32

    Article  PubMed  CAS  Google Scholar 

  14. Simons FE. H1-antagonists: adverse effects. Drug Saf 1994; 10: 350–80

    Article  PubMed  CAS  Google Scholar 

  15. Vuurman E, van Veggel L, Uiterwijk M, et al. Seasonal allergic rhinitis and antihistamine effects on children’s learning. Ann Allergy 1993; 71: 121–7

    PubMed  CAS  Google Scholar 

  16. Krenzelok E, Anderson GM, Mirick M. Massive diphenhydramine overdose resulting in death. Ann Emerg Med 1982; 11: 212–3

    Article  PubMed  CAS  Google Scholar 

  17. Wiley II JF, Gelber ML, Henretig FM, et al. Cardiotoxic effects of astemizole overdose in children. J Pediatr 1992; 120: 799–802

    Article  PubMed  Google Scholar 

  18. Hoppu K, Tikanoja T. Accidental astemizole overdose in young children. Lancet 1991; 338: 538–40

    Article  PubMed  CAS  Google Scholar 

  19. Craft T. Torsade de pointes after astemizole overdose. BMJ 1986; 292: 660

    Article  PubMed  CAS  Google Scholar 

  20. Tobin JR, Doyle TP, Ackerman AD, et al. Astemizole-induced cardiac conduction disturbances in a child. JAMA 1991; 266: 2737–40

    Article  PubMed  CAS  Google Scholar 

  21. Davies AJ, Varindra V, McEwan A, et al. Cardiotoxic effect with convulsions in terfenadine overdose. BMJ 1989; 298: 325

    Article  PubMed  CAS  Google Scholar 

  22. Yap YG, Camm AJ. The current cardiac safety situation with antihistamines. Clin Exp Allergy 1999; 29: 15–24

    Article  PubMed  CAS  Google Scholar 

  23. Chapelle R. FDA approves Zyrtec for nonprescription use in adults and children. Food and Drug Administration (FDA) news release [online]. Available from URL: http://www.fda.gov/bbs/topics/NEWS/2007/NEW01750.html [Accessed 2008 Jan 30]

  24. Zyrtec® (cetirizine hydrochloride) tablets, chewable tablets, and syrup [package insert]. New York: Pfizer Inc., 2006

  25. Xyzal® oral tablets, levocetirizine dihydrochloride oral tablets [package insert]. Bridgewater (NJ): UCB Pharma Inc., 2009

  26. Allegra® (fexofenadine hydrochloride) capsules and tablets [package insert]. Bridgewater (NJ): Aventis Pharmaceuticals, 2007

  27. Claritin® (loratadine) tablets, orally disintegrating tablets, and syrups [package insert]. Kenilworth (NJ): Schering Corporation, 2000

  28. Clarinex® (desloratadine) tablets and syrup [package insert]. Kenilworth (NJ): Schering Corporation, 2007

  29. Astelin® (azelastine hydrochloride) nasal spray [package insert]. Somerset (NJ): MedPointe Pharmaceuticals, 2006

  30. Singulair® (montelukast sodium) tablets, chewable tablets, and oral granules [package insert]. Whitehouse Station (NJ): Merck & Co. Inc., 2009

  31. Red book: pharmacy’s fundamental reference. Montvale (NJ): Thomson PDR, 2006

  32. Watson WTA, Simons KJ, Chen XY, et al. Cetirizine: a pharmacokinetic and pharmacodynamic evaluation in children with seasonal allergic rhinitis. J Allergy Clin Immunol 1989; 84: 457–64

    Article  PubMed  CAS  Google Scholar 

  33. Desager JP, Dab I, Horsman Y, et al. A pharmacokinetic evaluation of the second-generation H1-receptor antagonist cetirizine in very young children. Clin Pharmacol Ther 1993; 53: 431–5

    Article  PubMed  CAS  Google Scholar 

  34. Spicak V, Dab I, Hulhoven R, et al. Pharmacokinetics and pharmacodynamics of cetirizine in infants and toddlers. Clin Pharmacol Ther 1997; 61: 325–30

    Article  PubMed  CAS  Google Scholar 

  35. Hussein Z, Pitsiu M, Majid O, et al. Retrospective population pharmacokinetics of levocetirizine in atopic children receiving cetirizine: the ETAC study. ETAC Study Group. Br J Clin Pharmacol 2005; 59: 28–37

    Article  CAS  Google Scholar 

  36. Simmons FER. Population pharmacokinetics of levocetirizine in very young children: the pediatricians’ perspective. ETAC Study Group. Pediatr Allergy Immunol 2005; 16: 97–103

    Article  Google Scholar 

  37. Cranswick N, Turzikova J, Fuchs M, et al. Levocetirizine in 1–2 year old children: pharmacokinetic and pharmacodynamic profile. Int J Clin Pharmacol Ther 2005; 43: 172–7

    PubMed  CAS  Google Scholar 

  38. Simmons FER, Simmons KJ. Levocetirizine: pharmacokinetics and pharmacodynamics in children age 6 to 11 years. J Allergy Clin Immunol 2005; 166: 355–61

    Article  Google Scholar 

  39. Simons FER, Bergman JN, Watson WTA, et al. The clinical pharmacology of fexofenadine in children. J Allergy Clin Immunol 1996; 98: 1062–4

    Article  PubMed  CAS  Google Scholar 

  40. Salmun LM, Herron JM, Banfield C, et al. The pharmacokinetics, electrocardiographic effects, and tolerability of loratadine syrup in children aged 2 to 5 years. Clin Ther 2000; 22: 613–21

    Article  PubMed  CAS  Google Scholar 

  41. Lin C-C, Radwanski E, Affrime M, et al. Pharmacokinetics of loratadine in pediatric subjects. Am J Ther 1995; 2: 504–8

    Article  PubMed  Google Scholar 

  42. Gupta S, Khalilieh S, Kantesaria B, et al. Pharmacokinetics of desloratadine in children between 2 to 11 years of age. Br J Clin Pharmacol 2006; 63: 534–40

    Article  Google Scholar 

  43. Gupta SK, Kantesaria B, Banfield C, et al. Desloratadine dose selection in children aged 6 months to 2 years: comparison of population pharmacokinetics between children and adults. Br J Clin Pharmacol 2007; 64: 174–84

    Article  PubMed  CAS  Google Scholar 

  44. Knorr B, Larson P, Nguyen HH, et al. Montelukast dose selection in 6- to 14-year-olds: comparison of single-dose pharmacokinetics in children and adults. J Clin Pharmacol 1999; 39: 786–93

    Article  PubMed  CAS  Google Scholar 

  45. Knorr B, Nguyen HH, Kearns GL, et al. Montelukast dose selection in children ages 2 to 5 years: comparison of population pharmacokinetics between children and adults. J Clin Immunol 2001; 41: 612–9

    CAS  Google Scholar 

  46. Chiba M, Xu X, Nishime JA, et al. Hepatic microsomal metabolism of montelukast, a potent leukotriene D4 receptor antagonist, in humans. Drug Metab Dispos 1997; 25: 1022–31

    PubMed  CAS  Google Scholar 

  47. Allegra L, Paupe J, Wieseman HG, et al. Cetirizine for seasonal allergic rhinitis in children aged 2–6 years. Pediatr Allergy Immunol 1993; 4: 157–61

    Article  PubMed  CAS  Google Scholar 

  48. Masi M, Candiani R, van de Venne H. A placebo-controlled trial of cetirizine in seasonal allergic rhino-conjunctivitis in children aged 6 to 12 years. Pediatr Allergy Immunol 1993; 4: 47–52

    Article  PubMed  CAS  Google Scholar 

  49. Pearlman DS, Lumry WR, Winder JA, et al. Once-daily cetirizine effective in the treatment of seasonal allergic rhinitis in children aged 6 to 11 years: a randomized, double-blind, placebo-controlled study. Clin Pediatr 1997; 36: 209–15

    Article  CAS  Google Scholar 

  50. Simons FE, on behalf of the ETAC Study Group. Prospective, long-term safety evaluation of the H1-receptor antagonist cetirizine in very young children with atopic dermatitis. J Allergy Clin Immunol 1999; 104: 434–40

    Google Scholar 

  51. Gillman SA, Blatter M, Condemi JJ, et al. The health related quality of life effects of once-daily cetirizine HCl syrup in children with seasonal allergic rhinitis. Clin Pediatr 2002; 41: 687–96

    Article  Google Scholar 

  52. Simons FE, Silas P, Portnoy JM, et al. Safety of cetirizine in infants 6 to 11 months of age: a randomized, double-blind, placebo-controlled study. J Allergy Clin Immunol 2003; 111: 1244–8

    Article  PubMed  CAS  Google Scholar 

  53. de Blic J, Billard E, Alt R, et al. Levocetirizine in children: evidenced efficacy and safety in a 6-week randomized seasonal allergic rhinitis trial. Pediatr Allergy Immunol 2005; 16: 267–75

    Article  PubMed  Google Scholar 

  54. Potter PC, for the Paediatric Levocetirizine Study Group. Efficacy and safety of levocetirizine on symptoms and health-related quality of life of children with perennial allergic rhinitis: a double-blind, placebo-controlled randomized clinical trial. Ann Allergy Asthma Immunol 2005; 95: 175–80

    Article  PubMed  CAS  Google Scholar 

  55. Simons FE, on behalf of Early Prevention of Asthma in Atopic Children (EPAAC) Study Group. Safety of levocetirizine treatment in young atopic children: an 18-month study. Pediatr Allergy Immunol 2007 Sep; 18(6): 535–42

    Article  PubMed  Google Scholar 

  56. Graft DF, Bernstein DI, Goldsobel A, et al. Safety of fexofenadine in children treated for seasonal allergic rhinitis. Ann Allergy Asthma Immunol 2001; 87: 22–6

    Article  PubMed  CAS  Google Scholar 

  57. Wahn U, Meltzer EO, Finn AF, et al. Fexofenadine is efficacious and safe in children (aged 6–11 years) with seasonal allergic rhinitis. J Allergy Clin Immunol 2003; 111: 763–9

    Article  PubMed  CAS  Google Scholar 

  58. Ngamphaiboon J, Direkwattanachai C, Visitsunthorn N, et al. The efficacy and safety of 30 mg fexofenadine HCl bid in pediatric patients with allergic rhinitis. Asian Pac J Allergy Immunol 2005; 23: 169–74

    PubMed  CAS  Google Scholar 

  59. Boner AL, Miglioranzi P, Richelli C, et al. Efficacy and safety of loratadine suspension in the treatment of children with allergic rhinitis. Allergy 1989; 44: 437–41

    Article  PubMed  CAS  Google Scholar 

  60. Boner AL, Richelli C, Castellani C, et al. Comparison of the effects of loratadine and astemizole in the treatment of children with seasonal allergic rhinoconjunctivitis. Allergy 1992; 47: 98–102

    Article  PubMed  CAS  Google Scholar 

  61. Lutsky BN, Klose P, Melon J, et al. A comparative study of the efficacy and safety of loratadine syrup and terfenadine suspension in the treatment of 3- to 6-year-old children with seasonal allergic rhinitis. Clin Ther 1993; 15: 855–65

    PubMed  CAS  Google Scholar 

  62. Yang YH, Lin YT, Lu MY, et al. A double-blind, placebo-controlled, and randomized study of loratadine (Clarityne) syrup for the treatment of allergic rhinitis in children aged 3 to 12 years. Asian Pac J Allergy Immunol 2001; 19: 171–5

    PubMed  CAS  Google Scholar 

  63. Rossi GA, Tosa MA, Passalacqua G, et al. Evidence of desloratadine syrup efficacy and tolerability in children with pollen-induced allergic rhinitis. Allergy 2005; 60: 416–7

    Article  PubMed  CAS  Google Scholar 

  64. Bloom M, Staudinger H, Herron J. Safety of desloratadine syrup in children. Curr Med Res Opin 2004; 24: 1959–65

    Article  Google Scholar 

  65. Prenner B, Ballona R, Bueso A, et al. Safety of desloratadine syrup in children six months to younger than 2 years of age: a randomized, double-blinded, placebo-controlled study. Pediatr Asthma Allergy Immunol 2006; 19: 91–9

    Article  Google Scholar 

  66. Wober W, Crespo CD, Bahre M. Evaluation of the drug monitoring programme of azelastine hydrochloride nasal spray in the treatment of allergic rhinitis in children under 13 years of age. Arzneim-Forsch/Drug Res 1997; 47: 841–4

    CAS  Google Scholar 

  67. Herman D, Garay R, Le Gal M. A randomized double-blind placebo controlled study of azelastine nasal spray in children with perennial rhinitis. Int J Pediatr Otorhinolaryngol 1997; 37: 1–8

    Article  CAS  Google Scholar 

  68. Knorr B, Matz J, Bernstein JA, et al. Montelukast for chronic asthma in 6- to 14-year-old children: a randomized, double-blind trial. JAMA 1998; 279: 1181–6

    Article  PubMed  CAS  Google Scholar 

  69. Knorr B, Franchi LM, Bisgaard H, et al. Montelukast, a leukotriene receptor antagonist, for the treatment of persistent asthma in children aged 2 to 5 years. Pediatrics 2001; 108: 1–10

    Article  Google Scholar 

  70. Van Adelsberg J, Moy J, Wei LX, et al. Safety, tolerability, and exploratory efficacy of montelukast in 6- to 24-month-old patients with asthma. Curr Med Res Opin 2005; 21: 971–9

    Article  PubMed  Google Scholar 

  71. Keskin O, Alyamac E, Tuncer A, et al. Do the leukotriene receptor antagonists work in children with grass pollen-induced allergic rhinitis? Pediatr Allergy Immunol 2006; 17: 259–68

    Article  PubMed  Google Scholar 

  72. Razi C, Bakirtas A, Harmanci K, et al. Effect of montelukast on symptoms and exhaled nitric oxide levels in 7- to 14-year-old children with seasonal allergic rhinitis. Ann Allergy Asthma Immunol 2006; 97: 767–74

    Article  PubMed  CAS  Google Scholar 

  73. Lai D-S, Lue K-H, Hsieh J-C, et al. The comparison of the efficacy and safety of cetirizine, oxatomide, ketotifen, and a placebo for the treatment of childhood perennial allergic rhinitis. Ann Allergy Asthma Immunol 2002; 89: 589–98

    Article  PubMed  CAS  Google Scholar 

  74. Hsieh J-C, Lue K-H, Lai D-S, et al. A comparison of cetirizine and montelukast for treating childhood perennial allergic rhinitis. Pediatr Asthma Allergy Immunol 2004; 17: 59–68

    Article  Google Scholar 

  75. Chen S-T, Lu K-H, Sun H-L, et al. Randomized placebo-controlled trial comparing montelukast and cetirizine for treating perennial allergic rhinitis in children aged 2–6 yr. Pediatr Allergy Immunol 2005; 17: 49–54

    Article  Google Scholar 

  76. Lee CF, Sun HL, Lu KH, et al. The comparison of cetirizine, levocetirizine and placebo for the treatment of childhood perennial allergic rhinitis. Pediatr Allergy Immunol 2009 Aug; 20(5): 493–9

    Article  PubMed  CAS  Google Scholar 

  77. Ng KH, Chong D, Wong CK, et al. Central nervous system side effects of first-and second-generation antihistamines in school children with perennial allergic rhinitis: a randomized, double-blind, placebo-controlled comparative study. Pediatrics 2004; 133: 116–21

    Article  Google Scholar 

  78. Delgado LF, Pferferman A, Sole D, et al. Evaluation of the potential cardiotoxicity of the antihistamines terfenadine, astemizole, loratadine, and cetirizine in atopic children. Ann Allergy Asthma Immunol 1998; 80: 333–7

    Article  PubMed  CAS  Google Scholar 

  79. Ridout SM, Tariq SM. Cetirizine overdose in a young child. J Allergy Clin Immunol 1997; 99: 860–1

    Article  PubMed  CAS  Google Scholar 

  80. U.S. Food and Drug Administration. Pediatric labeling changes through September 3, 2009 [online]. Available from URL: http://www.fda.gov/downloads/ScienceResearch/SpecialTopics/PediatricTherapeuticsResearch/UCM163159.pdf [Accessed 2009 Sep 10]

  81. Bender BG, McCormick DR, Milgrom H. Children’s school performance is not impaired by short-term administration of diphenhydramine or loratadine. J Pediatr 2001; 138: 656–60

    Article  PubMed  CAS  Google Scholar 

  82. Banfield C, Gupta S, Marino M, et al. Grapefruit juice reduces the oral bioavailability of fexofenadine but not desloratadine. Clin Pharmacokinet 2002; 41: 311–8

    Article  PubMed  CAS  Google Scholar 

  83. Dresser GK, Bailey DG, Leake BF, et al. Fruit juices inhibit organic anion transporting polypeptide-mediated drug uptake to decrease the oral availability of fexofenadine. Clin Pharmacol Ther 2002; 71: 11–20

    Article  PubMed  CAS  Google Scholar 

  84. Hamman MA, Bruce MA, Haehner-Daniels BD, et al. The effect of rifampin on the disposition of fexofenadine. Clin Pharmacol Ther 2001; 69: 114–21

    Article  PubMed  CAS  Google Scholar 

  85. Tian R, Koyabu N, Takanaga H, et al. Effects of grapefruit juice and orange juice on the intestinal efflux of P-glycoprotein substrates. Pharm Res 2002; 19: 802–9

    Article  PubMed  CAS  Google Scholar 

  86. Abernethy DR, Barbey JT, Franc J, et al. Loratadine and terfenadine interaction with nefazodone: both antihista-mines are associated with QTc prolongation. Clin Pharmacol Ther 2001; 69: 96–103

    Article  PubMed  CAS  Google Scholar 

  87. Kosoglou T, Salfi M, Kim JM, et al. Evaluation of the phar-macokinetics and electrocardiographic pharmacodynamics of loratadine with concomitant administration of ketoconazole or cimetidine. Br J Clin Pharmacol 2000; 50: 581–9

    Article  PubMed  CAS  Google Scholar 

  88. Brannan MD, Reidenberg P, Radwanski E, et al. Loratadine administered concomitantly with erythromycin: pharmaco-kinetic and electrocardiographic evaluations. Clin Pharmacol Ther 1995; 58: 269–78

    Article  PubMed  CAS  Google Scholar 

  89. Banfield C, Herron J, Keung A, et al. Lack of clinically relevant interaction between desloratadine and erythromycin. Clin Pharmacokinet 2002; 41: 29–35

    Article  PubMed  CAS  Google Scholar 

  90. Banfield C, Hunt T, Reyderman L, et al. Desloratadine has no clinically relevant electrocardiographic or pharmaco-dynamic interactions with ketoconazole. Clin Pharmacokinet 2002; 41: 37–44

    Article  PubMed  CAS  Google Scholar 

  91. Walsky RL, Obach RS, Gaman EA, et al. Selective inhibition of human cytochrome P4502C8 by montelukast. Drug Metab Dispos 2005; 33: 413–8

    Article  PubMed  CAS  Google Scholar 

  92. Van Hecken A, Depre M, Verbesselt R, et al. Effect of montelukast on the pharmacokinetics and pharmacodynamics of warfarin in healthy volunteers. J Clin Pharmacol 1999; 399: 495–500

    Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this review. The authors have no conflicts of interest that are directly relevant to the content of this review except stock ownership in Merck by Dr Nahata’s family.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phan, H., Moeller, M.L. & Nahata, M.C. Treatment of Allergic Rhinitis in Infants and Children. Drugs 69, 2541–2576 (2009). https://doi.org/10.2165/9884960-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/9884960-000000000-00000

Keywords

Navigation