Genetic Inheritance Effects on Endurance and Muscle Strength

An Update

Abstract

Top-level sport seems to play a natural Darwinian stage. The most outstanding athletes appear to emerge as a result of exogenous influences of nature and/or coincidence, namely, the contingency of practicing certain sport for which their talents best fit. This coincidence arises because certain individuals possess anatomical, metabolic, functional and behavioural characteristics that are precisely those required to excel in a given sport. Apart from the effects of training, there is strong evidence of genetic influence upon athletic performance. This article reviews the current state of knowledge regarding heritable genetic effects upon endurance and muscle strength, as reported by several twin and family studies. Due, probably, to the inaccuracy of the measurement procedures and sampling error, heritability estimates differ widely between studies. Even so, the genetic inheritence effects seem incontrovertible in most physical traits: ~40–70% for peak oxygen uptake and cardiac mass and structure, and ~30–90% for anaerobic power and capacity, ranging according to the metabolic category. Studies in development by several researchers at this present time seem to guarantee that future reviews will include twins and family studies concerning genes associated with the adaptive processes against hormetic agents, such as exercise, heat and oxidative stress.

This is a preview of subscription content, log in to check access.

Table I
Table II

References

  1. 1.

    Yang Y, Jemiolo B, Trappe S. Proteolytic mRNA expression in response to acute resistance exercise in human single skeletal muscle fibers. J Appl Physiol 2006; 101 (5): 1442–50

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Freedson P, Evenson S. Familial aggregation in physical activity. Res Q Exerc Sport 1991; 62: 384–9

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Kristjansdottir G, Vilhjalmsson R. Sociodemographic differences in patterns of sedentary and physically active behavior in older children and adolescents. Acta Paediatr 2001; 90 (4): 429–35

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Maia JA, Thomis M, Beunen G. Genetic factors in physical activity levels: a twin study. Am J Prev Med 2002; 23 (2 Suppl.): 87–91

    PubMed  Article  Google Scholar 

  5. 5.

    Simonen RL, Pérusse L, Rankinen T, et al. Familial aggregation of physical activity levels in the Québec family study. Med Sci Sports Exerc 2002; 4: 1137–42

    Google Scholar 

  6. 6.

    Bouchard C, Malina R, Perusse L. Genetics of Fitness and Physical Performance. Champaign (IL): Human Kinetics, 1997

    Google Scholar 

  7. 7.

    Brutsaert TD, Parra EJ. Nature versus nurture in determining athletic ability. Med Sport Sci 2009; 54: 11–27

    PubMed  Article  Google Scholar 

  8. 8.

    Lucia A, Moran M, Zihong H, et al. Elite athletes: are the genes the champions? Int J Sports Physiol Perform 2010; 5 (1): 98–102

    PubMed  Google Scholar 

  9. 9.

    Rankinen T, Roth SM, Bray MS, et al. Advances in exercise, fitness, and performance genomics. Med Sci Sports Exerc 2010; 42 (5): 835–46

    PubMed  Article  Google Scholar 

  10. 10.

    Beunen G, Thomis M. Gene powered? Where to go from heritability (h2) in muscle strength and power? Exerc Sport Sci Rev 2004; 32 (4): 148–54

    PubMed  Article  Google Scholar 

  11. 11.

    Calvo M, Rodas G, Vallejo M, et al. Heritability of explosive power and anaerobic capacity in humans. Eur J Appl Physiol 2002; 86 (3): 218–25

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Tiainen K, Sipila S, Alen M, et al. Heritability of maximal isometric muscle strength in older female twins. J Appl Physiol 2004; 96 (1): 173–80

    PubMed  Article  Google Scholar 

  13. 13.

    Maes HH, Beunen GP, Vlietinck RF, et al. Inheritance of physical fitness in 10-yr-old twins and their parents. Med Sci Sports Exerc 1996; 28 (12): 1479–91

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Thomis MA, Beunen GP, Van Leemputte M, et al. Inheritance of static and dynamic arm strength and some of its determinants. Acta Physiol Scand 1998; 163 (1): 59–71

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Buxens A, Ruiz JR, Arteta D, et al. Can we predict top-level sports performance in power vs endurance events? A genetic approach. Scand J Med Sci Sports 2011; 21 (4): 570–9

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Eynon N, Ruiz JR, Oliveira J, et al. Genes and elite athletes: a roadmap for future research. J Physiol 2011; 589 (Pt 13): 3063–7016

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Ruiz JR, Arteta D, Buxens A, et al. Can we identify a power-oriented polygenic profile? J Appl Physiol 2010; 108 (3): 561–6

    PubMed  Article  Google Scholar 

  18. 18.

    Gonzalez-Freire M, Santiago C, Verde Z, et al. Unique among unique. Is it genetically determined? Br J Sports Med 2009; 43 (4): 307–9

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Bouchard C. Overcoming barriers to progress in exercise genomics. Exerc Sports Rev 2011; 39 (4): 212–7

    Google Scholar 

  20. 20.

    Klissouras V. Heritability of adaptive variation. J Appl Physiol 1971; 31 (3): 338–44

    PubMed  CAS  Google Scholar 

  21. 21.

    Klissouras V. Prediction of potential performance with special reference to heredity. J Sports Med Phys Fitness 1973; 13 (2): 100–7

    PubMed  CAS  Google Scholar 

  22. 22.

    Bouchard C, Lesage R, Lortie G, et al. Aerobic performance in brothers, dizygotic and monozygotic twins. Med Sci Sports Exerc 1986; 18 (6): 639–46

    PubMed  CAS  Google Scholar 

  23. 23.

    Fagard R, Bielen E, Amery A. Heritability of aerobic power and anaerobic energy generation during exercise. J Appl Physiol 1991; 70 (1): 357–62

    PubMed  CAS  Google Scholar 

  24. 24.

    Bouchard C, Daw EW, Rice T, et al. Familial resemblance for VO2max in the sedentary state: the HERITAGE Family Study. Med Sci Sports Exerc 1998; 30 (2): 252–8

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Bouchard C, An P, Rice T, et al. Familial aggregation of VO(2max) response to exercise training: results from the HERITAGE Family Study. J Appl Physiol 1999; 87 (3): 1003–8

    PubMed  CAS  Google Scholar 

  26. 26.

    Perusse L, Gagnon J, Province MA, et al. Familial aggregation of submaximal aerobic performance in the HERITAGE Family study. Med Sci Sports Exerc 2001; 33 (4): 597–604

    PubMed  CAS  Google Scholar 

  27. 27.

    Gaskill SE, Rice T, Bouchard C, et al. Familial resemblance in ventilatory threshold: the HERITAGE Family Study. Med Sci Sports Exerc 2001; 33 (11): 1832–40

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Mustelin L, Latvala A, Pietilainen KH, et al. Associations between sports participation, cardiorespiratory fitness, and adiposity in young adult twins. J Appl Physiol 2001; 110 (3): 681–6

    Article  Google Scholar 

  29. 29.

    Prud’homme D, Bouchard C, Leblanc C, et al. Sensitivity of maximal aerobic power to training is genotype-dependent. Med Sci Sports Exerc 1984; 16 (5): 489–93

    PubMed  Article  Google Scholar 

  30. 30.

    Sundet JM, Magnus P, Tambs K. The heritability of maximal aerobic power: a study of Norwegian twins. Scand J Med Sci Sports 1994; 4: 181–5

    Article  Google Scholar 

  31. 31.

    Lortie G, Bouchard C, Leblanc C, et al. Familial similarity in aerobic power. Hum Biol 1982; 54 (4): 801–12

    PubMed  CAS  Google Scholar 

  32. 32.

    Montoye HJ, Gayle R. Familial relationships in maximal oxygen uptake. Hum Biol 1978; 50 (3): 241–9

    PubMed  CAS  Google Scholar 

  33. 33.

    Roth SM. Genetics Primer for Exercise Science and Health. 2nd rev. ed. Champaign (IL): Human Kinetics, 2007

    Google Scholar 

  34. 34.

    Garner C, Lecomte E, Visvikis S, et al. Genetic and environmental influences on left ventricular mass. A family study. Hypertension 2000; 36 (5): 740–6

    Article  CAS  Google Scholar 

  35. 35.

    Mayosi BM, Keavney B, Kardos A, et al. Electrocardio-graphic measures of left ventricular hypertrophy show greater heritability than echocardiographic left ventricular mass. Eur Heart J 2002; 23: 1963–71

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    Swan L, Birnie DH, Padmanabhan S, et al. The genetic determination of left ventricular mass in healthy adults. Eur Heart J 2003; 24: 577–82

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    Bella JN, MacCluer JW, Roman MJ, et al. Heritability of left ventricular dimensions and mass in American Indians: The Strong Heart Study. J Hypertens 2004; 22 (2): 281–6

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Juo S, Tullio M, Lin H, et al. Heritability of left ventricular mass and other morphologic variables in Caribbean Hispanic subjects: the Northern Manhattan family study. J Am Coll Cardiol 2005; 46: 735–7

    PubMed  Article  Google Scholar 

  39. 39.

    Sharma P, Middelberg RP, Andrew T, et al. Heritability of left ventricular mass in a large cohort of twins. J Hypertens 2006; 24 (2): 321–4

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Busjahn CA, Schulz-Menger J, Abdel-Aty H, et al. Heritability of left ventricular and papillary muscle heart size: a twin study with cardiac magnetic resonance imaging. Eur Heart J 2009; 30 (13): 1643–7

    PubMed  Article  Google Scholar 

  41. 41.

    Bielen E, Fagard R, Amery A. Inheritance of heart structure and physical exercise capacity: a study of left ventricular structure and exercise capacity in 7-year-old twins. Eur Heart J 1990; 11 (1): 7–16

    PubMed  CAS  Google Scholar 

  42. 42.

    Hannukainen JC, Kujala UM, Toikka J, et al. Cardiac structure and function in monozygotic twin pairs discordant for physical fitness. J Appl Physiol 2005; 99 (2): 535–41

    PubMed  Article  Google Scholar 

  43. 43.

    Fagard R, Van Den Broeke C, Bielen E, et al. Maximum oxygen uptake and cardiac size and function in twins. Am J Cardiol 1987 1; 60 (16): 1362–7

    PubMed  Article  CAS  Google Scholar 

  44. 44.

    Chen Y. Genetics and pulmonary medicine. 10: Genetic epidemiology of pulmonary function. Thorax 1999; 54 (9): 818–24

    CAS  Google Scholar 

  45. 45.

    Wells JC. The thrifty phenotype as an adaptive maternal effect. Biol Rev Camb Philos Soc 2007; 82 (1): 143–72

    PubMed  Article  Google Scholar 

  46. 46.

    Astemborski JA, Beaty TH, Cohen BH. Variance components analysis of forced expiration in families. Am J Med Genet 1985; 21:741–53

    PubMed  Article  CAS  Google Scholar 

  47. 47.

    Lewitter FI, Tager IB, McGue M, et al. Genetic and environmental determinants of level of pulmonary function. Am J Epidemiol 1984; 120: 518–30

    PubMed  CAS  Google Scholar 

  48. 48.

    Hubert H, Fabsitz R, Feinleib M, et al. Genetic and environmental influences on pulmonary function in adult twins. Am Rev Respir Dis 1982; 125: 409–15

    PubMed  CAS  Google Scholar 

  49. 49.

    Redline S, Tishler PV, Lewitter FI, et al. Assessment of genetic and non-genetic influences on pulmonary function: a twin study. Am Rev Respir Dis 1987; 135: 217–22

    PubMed  CAS  Google Scholar 

  50. 50.

    Ghio AJ, Crapo RO, Elliott CG, et al. Heritability estimates of pulmonary function. Chest 1989; 96 (4): 743–6

    PubMed  Article  CAS  Google Scholar 

  51. 51.

    Takabatake N, Toriyama S, Takeishi Y, et al. A non-functioning single nucleotide polymorphism in olfactory receptor gene family is associated with the forced expiratory volume in the first second/the forced vital capacity values of pulmonary function test in a Japanese population. Biochem Biophys Res Commun 2007; 364 (3): 662–7

    PubMed  Article  CAS  Google Scholar 

  52. 52.

    Wilk JB, Chen TH, Gottlieb DJ, et al. A genome-wide association study of pulmonary function measures in the Framingham Heart Study. PLoS Genet 2009; 5 (3): e1000429

    PubMed  Article  Google Scholar 

  53. 53.

    Wilk JB, Walter RE, Laramie JM, et al. Framingham Heart Study genome-wide association: results for pulmonary function measures. BMC Med Genet 2007; 8 Suppl. 1: S8

    PubMed  Article  Google Scholar 

  54. 54.

    Hancock DB, Eijgelsheim M, Wilk JB, et al. Meta-analyses of genome-wide association studies identify multiple loci associated with pulmonary function. Nat Genet 2010; 42 (1): 45–52

    PubMed  Article  CAS  Google Scholar 

  55. 55.

    Mounier R, Pialoux V, Schmitt L, et al. Effects of acute hypoxia tests on blood markers in high-level endurance athletes. Eur J Appl Physiol 2009; 106 (5): 713–20

    PubMed  Article  Google Scholar 

  56. 56.

    Flueck M. Myocellular limitations of human performance and their modification through genome-dependent responses at altitude. Exp Physiol 2010; 95 (3): 451–62

    PubMed  Article  CAS  Google Scholar 

  57. 57.

    Anderson HR, Anderson JR, King HO, et al. Variations in the lung size of children in Papua New Guinea: genetic and environmental factors. Ann Hum Biol 1978; 5: 209–18

    PubMed  Article  CAS  Google Scholar 

  58. 58.

    Mueller WH, Chakraborty R, Barton SA, et al. Genes and epidemiology in anthropological adaptation studies: familial correlations in lung function in population residing at different altitudes in Chile. Med Anthrop 1980; 4: 367–84

    Article  Google Scholar 

  59. 59.

    Lahiri S, Delaney RG, Brody JS, et al. Relative role of environmental and genetic factors in respiratory adaptation to high altitude. Nature 1976; 261: 133–5

    PubMed  Article  CAS  Google Scholar 

  60. 60.

    Praagh EV. Pediatric anaerobic performance. Champaign (IL): Human Kinetics, 1998

    Google Scholar 

  61. 61.

    Serresse O, Ama PF, Simoneau JA, et al. Anaerobic performance of sedentary and trained subjects. Can J Appl Sport Sci 1989; 14: 146–52

    Google Scholar 

  62. 62.

    Pette D. Training effects on the contractile apparatus. Acta Physiol Scand 1998; 162 (3): 367–76

    PubMed  Article  CAS  Google Scholar 

  63. 63.

    Bottinelli R, Reggiani C. Human skeletal muscle fibres: molecular and functional diversity. Prog Biophys Mol Biol 2000; 73 (2–4): 195–262

    PubMed  Article  CAS  Google Scholar 

  64. 64.

    Canepari M, Pellegrino MA, D’Antona G, et al. Skeletal muscle fibre diversity and the underlying mechanisms. Acta Physiol (Oxf) 2010; 199 (4): 465–76

    Article  CAS  Google Scholar 

  65. 65.

    Beunen G, Thomis M. Gene driven power athletes? Genetic variation in muscular strength and power. Br J Sports Med 2006; 40 (10): 822–3

    Article  CAS  Google Scholar 

  66. 66.

    Ahmetov II, Rogozkin VA. Genes, athlete status and training: an overview. Med Sport Sci 2009; 54: 43–71

    PubMed  Article  CAS  Google Scholar 

  67. 67.

    Thomis MA, Beunen GP, Maes HH, et al. Strength training: importance of genetic factors. Med Sci Sports Exerc 1998; 30 (5): 724–31

    PubMed  Article  CAS  Google Scholar 

  68. 68.

    Arden NK, Spector TD. Genetic influences on muscle strength, lean body mass, and bone mineral density: a twin study. J Bone Miner Res 1997; 12 (12): 2076–81

    PubMed  Article  CAS  Google Scholar 

  69. 69.

    Zhai G, Stankovich J, Ding C, et al. The genetic contribution to muscle strength, knee pain, cartilage volume, bone size, and radiographic osteoarthritis: a sibpair study. Arthritis Rheum 2004; 50 (3): 805–10

    PubMed  Article  Google Scholar 

  70. 70.

    Thomis MA, Beunen GP, Van LM, et al. M. Inheritance of static and dynamic arm strength and some of its determinants. Acta Physiol Scand 1998; 163 (1): 59–71

    Article  CAS  Google Scholar 

  71. 71.

    Jones B, Klissouras V. Genetic variation in the force-velocity relation of human muscle. Champain (IL): Human Kinetics, 1985

    Google Scholar 

  72. 72.

    Komi P, Karlsson J. Physical performance, skeletal muscle enzyme activities, and fibers types in monozygous and dizigous twins of both sexes. Acta Physiol Scand 1979; 462: 1–28

    CAS  Google Scholar 

  73. 73.

    Tiainen K, Sipila S, Kauppinen M, et al. Genetic and environmental effects on isometric muscle strength and leg extensor power followed up for three years among older female twins. J Appl Physiol 2009 May; 106 (5): 1604–10

    PubMed  Article  Google Scholar 

  74. 74.

    Carmelli D, Reed T. Stability and change in genetic and environmental influences on hand-grip strength in older male twins. J Appl Physiol 2000; 89: 1879–83

    PubMed  CAS  Google Scholar 

  75. 75.

    Komi P, Klissouras V, Karvinen E. Genetic variation in neuromuscular. Eur J Appl Physiol Occup Physiol 1973; 31:289–330

    Article  CAS  Google Scholar 

  76. 76.

    Simoneau JA, Lortie G, Leblanc C, et al. Anaerobic alactacid work capacity in adopted and biological siblings. In: Malina R, Bouchard C, editors. Champaign (IL): Human Kinetics, 1986

    Google Scholar 

  77. 77.

    Wolanski N, Tomonori K, Siniaraka A. Genetics and the motor development of man. J Hum Ecol 1980; 46: 169–91

    Article  Google Scholar 

  78. 78.

    Missitzi J, Geladas N, Klissouras V. Heritability in neuromuscular coordination: implications for motor control strategies. Med Sci Sports Exerc 2004; 36 (2): 233–40

    PubMed  Article  Google Scholar 

  79. 79.

    Maridaki M. Heritability of neuromuscular performance and anaerobic power in preadolescent and adolescent girls. J Sports Med Phys Fitness 2006; 46: 540–7

    PubMed  CAS  Google Scholar 

  80. 80.

    Loos R, Thomis M, Maes HH, et al. Gender-specific regional changes in genetic structure of muscularity in early adolescence. J Appl Physiol 1997; 82 (6): 1802–10

    PubMed  CAS  Google Scholar 

  81. 81.

    Sanchez-Andres A, Mesa MS. Heritabilities of morphological and body composition characteristics in a Spanish population. Anthropol Anz 1994; 52 (4): 341–9

    PubMed  CAS  Google Scholar 

  82. 82.

    Komi P, Viitasalo JT, Havu M, et al. Skeletal muscle fibers and muscle enzyme activities in monozygous and dizygous twins of both sexes. Acta Physiol Scand 1977; 100: 385–92

    PubMed  CAS  Google Scholar 

  83. 83.

    Simoneau JA, Bouchard C. Skeletal muscle metabolism and body fat content in men and women. Obes Res 1995; 3 (1): 23–9

    PubMed  Article  CAS  Google Scholar 

  84. 84.

    Thibault MC, Simoneau JA, Cote C, et al. Inheritance of human muscle enzyme adaptation to isokinetic strength training. Hum Hered 1986; 36 (6): 341–7

    PubMed  Article  CAS  Google Scholar 

  85. 85.

    Gibbons LE, Videman T, Battie MC. Determinants of isokinetic and psychophysical lifting strength and static back muscle endurance: a study of male monozygotic twins. Spine (Phila Pa 1976) 1997; 22 (24): 2983–90

    Article  CAS  Google Scholar 

  86. 86.

    Peeters MW, Thomis MA, Maes HH, et al. Genetic and environmental causes of tracking in explosive strength during adolescence. Behav Genet 2005; 35 (5): 551–63

    PubMed  Article  Google Scholar 

  87. 87.

    Prior SJ, Roth SM, Wang X, et al. Genetic and environmental influences on skeletal muscle phenotypes as a function of age and sex in large, multigenerational families of African heritage. J Appl Physiol 2007; 103 (4): 1121–7

    PubMed  Article  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this review. The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dr Mikel Izquierdo.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Costa, A.M., Breitenfeld, L., Silva, A.J. et al. Genetic Inheritance Effects on Endurance and Muscle Strength. Sports Med 42, 449–458 (2012). https://doi.org/10.2165/11650560-000000000-00000

Download citation

Keywords

  • Handgrip Strength
  • Ventilatory Threshold
  • Dizygotic Twin
  • Muscle Fibre Type
  • Sport Performance