Skip to main content
Log in

Corticosteroid Resistance and Novel Anti-Inflammatory Therapies in Chronic Obstructive Pulmonary Disease

Current Evidence and Future Direction

  • Leading Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Corticosteroids are widely used in the treatment of chronic obstructive pulmonary disease (COPD). However, in contrast to their use in mild-to-moderate asthma, they are much less effective in enhancing lung function and have little or no effect on controlling the underlying chronic inflammation. In most clinical trials in COPD patients, corticosteroids have shown little benefit as monotherapy, but have shown a greater clinical effect in combination with long-acting bronchodilators. Several mechanisms of corticosteroid resistance have been postulated, including a reduction in histone deacetylase (HDAC)-2 activity and expression, impaired corticosteroid activation of the glucocorticoid receptor (GR) and increased pro-inflammatory signalling pathways. Reversal of corticosteroid resistance in COPD patients by restoring HDAC2 levels has proved effective in a small study, and long-term studies are needed to determine whether novel HDAC2 activators or theophylline improve disease progression, exacerbations or mortality. Advances in the understanding of the cellular and molecular mechanisms of corticosteroid resistance in COPD pathophysiology have supported the development of new emerging classes of anti-inflammatory drugs in COPD treatment. These include treatments such as inhibitors of phosphoinositide-3-kinase-delta (PI3Kδ), phosphodiesterase-4 (PDE4), p38 mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB), and therapeutic agents such as chemokine receptor antagonists. Of these, PI3Kδ, PDE4, p38 MAPK inhibitors and chemokine receptor antagonists are in clinical patient trials. Of importance, patient adverse effects associated with oral administration of these novel agents needs to be addressed in order to optimize therapy and patient compliance. Combinations of these drugs with corticosteroids may have additional benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Fig. 1
Table II
Table III

Similar content being viewed by others

References

  1. Lopez AD, Mathers CD, Ezzati M, et al. Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. Lancet 2006 May 27; 367 (9524): 1747–57

    Article  PubMed  Google Scholar 

  2. Barnes PJ. Chronic obstructive pulmonary disease: a growing but neglected global epidemic. PLoS Med 2007 May; 4 (5): e1-12

    Google Scholar 

  3. Rabe KF, Hurd S, Anzueto A, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med 2007 Sep 15; 176 (6): 532–55

    Article  PubMed  Google Scholar 

  4. Global Initiative for Chronic Obstructive Lung Disease (GOLD). Global strategy for the diagnosis, management and prevention of COPD. 2011 [online]. Available from URL: http://www.goldcopd.org/ [Accessed 2012 Jun 7]

  5. Mannino DM, Buist AS. Global burden of COPD: risk factors, prevalence, and future trends. Lancet 2007 Sep 1; 370 (9589): 765–73

    Article  PubMed  Google Scholar 

  6. Barnes PJ. Inhaled corticosteroids are not beneficial in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2000 Feb; 161 (2 Pt 1): 342–4

    PubMed  CAS  Google Scholar 

  7. Suissa S, Barnes PJ. Inhaled corticosteroids in COPD: the case against. Eur Respir J 2009 Jul; 34 (1): 13–6

    Article  PubMed  CAS  Google Scholar 

  8. Rahman I, MacNee W. Role of oxidants/antioxidants in smoking-induced lung diseases. Free Radic Biol Med 1996; 21 (5): 669–81

    Article  PubMed  CAS  Google Scholar 

  9. Saetta M, Di Stefano A, Maestrelli P, et al. Activated T-lymphocytes and macrophages in bronchial mucosa of subjects with chronic bronchitis. Am Rev Respir Dis 1993 Feb; 147 (2): 301–6

    Article  PubMed  CAS  Google Scholar 

  10. Roche N, Marthan R, Berger P, et al. Beyond corticosteroids: future prospects in the management of inflammation in COPD. Eur Respir Rev 2011 Sep 1; 20 (121): 175–82

    Article  PubMed  CAS  Google Scholar 

  11. Usmani OS, Barnes PJ. Assessing and treating small airways disease in asthma and chronic obstructive pulmonary disease. Ann Med 2012 Mar; 44 (2): 146–56

    Article  PubMed  CAS  Google Scholar 

  12. Barnes PJ, Shapiro SD, Pauwels RA. Chronic obstructive pulmonary disease: molecular and cellular mechanisms. Eur Respir J 2003 Oct; 22 (4): 672–88

    Article  PubMed  CAS  Google Scholar 

  13. St-Laurent J, Bergeron C, Page N, et al. Influence of smoking on airway inflammation and remodelling in asthma. Clin Exp Allergy 2008 Oct; 38 (10): 1582–9

    Article  PubMed  CAS  Google Scholar 

  14. Barnes PJ. Immunology of asthma and chronic obstructive pulmonary disease. Nat Rev Immunol 2008 Mar; 8 (3): 183–92

    Article  PubMed  CAS  Google Scholar 

  15. Saetta M, Turato G, Maestrelli P, et al. Cellular and structural bases of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2001 May; 163 (6): 1304–9

    Article  PubMed  CAS  Google Scholar 

  16. Bergeron C, Boulet LP, Page N, et al. Influence of cigarette smoke on the arginine pathway in asthmatic airways: increased expression of arginase I. J Allergy Clin Immunol 2007 Feb; 119 (2): 391–7

    Article  PubMed  CAS  Google Scholar 

  17. Renkema TE, Schouten JP, Koeter GH, et al. Effects of long-term treatment with corticosteroids in COPD. Chest 1996 May; 109 (5): 1156–62

    Article  PubMed  CAS  Google Scholar 

  18. Pauwels RA, Lofdahl CG, Laitinen LA, et al. Long-term treatment with inhaled budesonide in persons with mild chronic obstructive pulmonary disease who continue smoking. European Respiratory Society Study on Chronic Obstructive Pulmonary Disease. N Engl J Med 1999 Jun 24; 340 (25): 1948–53

    CAS  Google Scholar 

  19. Burge PS, Calverley PM, Jones PW, et al. Randomised, double blind, placebo controlled study of fluticasone propionate in patients with moderate to severe chronic obstructive pulmonary disease: the ISOLDE trial. BMJ 2000 May 13; 320 (7245): 1297–303

    Article  PubMed  CAS  Google Scholar 

  20. Vestbo J, Sorensen T, Lange P, et al. Long-term effect of inhaled budesonide in mild and moderate chronic obstructive pulmonary disease: a randomised controlled trial. Lancet 1999 May 29; 353 (9167): 1819–23

    Article  PubMed  CAS  Google Scholar 

  21. Paggiaro PL, Dahle R, Bakran I, et al. Multicentre randomised placebo-controlled trial of inhaled fluticasone propionate in patients with chronic obstructive pulmonary disease. International COPD Study Group. Lancet 1998 Mar 14; 351 (9105): 773–80

    CAS  Google Scholar 

  22. Highland KB, Strange C, Heffner JE. Long-term effects of inhaled corticosteroids on FEV1 in patients with chronic obstructive pulmonary disease: a meta-analysis. Ann Intern Med 2003 Jun 17; 138 (12): 969–73

    Article  PubMed  CAS  Google Scholar 

  23. Celli BR, Thomas NE, Anderson JA, et al. Effect of pharmacotherapy on rate of decline of lung function in chronic obstructive pulmonary disease: results from the TORCH study. Am J Respir Crit Care Med 2008 Aug 15; 178 (4): 332–8

    Article  PubMed  Google Scholar 

  24. Yang IA, Fong KM, Sim EH, et al. Inhaled corticosteroids for stable chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2007; (2): CD002991

  25. van der Valk P, Monninkhof E, van der Palen J, et al. Effect of discontinuation of inhaled corticosteroids in patients with chronic obstructive pulmonary disease: the COPE study. Am J Respir Crit Care Med 2002 Nov 15; 166 (10): 1358–63

    Article  PubMed  Google Scholar 

  26. Wouters EF, Postma DS, Fokkens B, et al. Withdrawal of fluticasone propionate from combined salmeterol/fluticasone treatment in patients with COPD causes immediate and sustained disease deterioration: a randomised controlled trial. Thorax 2005 Jun; 60 (6): 480–7

    Article  PubMed  CAS  Google Scholar 

  27. Barnes PJ. Inhaled corticosteroids in COPD: a controversy. Respiration 2010; 80 (2): 89–95

    Article  PubMed  CAS  Google Scholar 

  28. Malerba M, Bossoni S, Radaeli A, et al. Growth hormone response to growth hormone-releasing hormone is reduced in adult asthmatic patients receiving long-term inhaled corticosteroid treatment. Chest 2005 Feb; 127 (2): 515–21

    Article  PubMed  CAS  Google Scholar 

  29. Malerba M, Bossoni S, Radaeli A, et al. Bone ultrasonometric features and growth hormone secretion in asthmatic patients during chronic inhaled corticosteroid therapy. Bone 2006 Jan; 38 (1): 119–24

    Article  PubMed  CAS  Google Scholar 

  30. Lipworth BJ. Systemic adverse effects of inhaled corticosteroid therapy: a systematic review and meta-analysis. Arch Intern Med 1999 May 10; 159 (9): 941–55

    Article  PubMed  CAS  Google Scholar 

  31. Haldar P, Pavord ID, Shaw DE, et al. Cluster analysis and clinical asthma phenotypes. Am J Respir Crit Care Med 2008 Aug 1; 178 (3): 218–24

    Article  PubMed  Google Scholar 

  32. Brightling CE, McKenna S, Hargadon B, et al. Sputum eosinophilia and the short term response to inhaled mometasone in chronic obstructive pulmonary disease. Thorax 2005 Mar; 60 (3): 193–8

    Article  PubMed  CAS  Google Scholar 

  33. Agusti A, Vestbo J. Current controversies and future perspectives in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2011 Sep 1; 184 (5): 507–13

    Article  PubMed  Google Scholar 

  34. Greening AP, Ind PW, Northfield M, et al. Added salmeterol versus higher-dose corticosteroid in asthma patients with symptoms on existing inhaled corticosteroid. Allen & Hanburys Limited UK Study Group. Lancet 1994 Jul 23; 344 (8917): 219–24

    CAS  Google Scholar 

  35. Pauwels RA, Lofdahl CG, Postma DS, et al. Effect of inhaled formoterol and budesonide on exacerbations of asthma. Formoterol and Corticosteroids Establishing Therapy (FACET) International Study Group. N Engl J Med 1997 Nov 13; 337 (20): 1405–11

    CAS  Google Scholar 

  36. Juniper EF, Svensson K, O’Byrne PM, et al. Asthma quality of life during 1 year of treatment with budesonide with or without formoterol. Eur Respir J 1999 Nov; 14 (5): 1038–43

    Article  PubMed  CAS  Google Scholar 

  37. Usmani OS, Ito K, Maneechotesuwan K, et al. Glucocorticoid receptor nuclear translocation in airway cells after inhaled combination therapy. Am J Respir Crit Care Med 2005 Sep 15; 172 (6): 704–12

    Article  PubMed  Google Scholar 

  38. Roth M, Johnson PR, Rudiger JJ, et al. Interaction between glucocorticoids and beta2 agonists on bronchial airway smooth muscle cells through synchronised cellular signalling. Lancet 2002 Oct 26; 360 (9342): 1293–9

    Article  PubMed  CAS  Google Scholar 

  39. Calverley PM, Anderson JA, Celli B, et al. Salmeterol and fluticasone propionate and survival in chronic obstructive pulmonary disease. N Engl J Med 2007 Feb 22; 356 (8): 775–89

    Article  PubMed  CAS  Google Scholar 

  40. Mahler DA, Wire P, Horstman D, et al. Effectiveness of fluticasone propionate and salmeterol combination delivered via the Diskus device in the treatment of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2002 Oct 15; 166 (8): 1084–91

    Article  PubMed  Google Scholar 

  41. Calverley PM, Boonsawat W, Cseke Z, et al. Maintenance therapy with budesonide and formoterol in chronic obstructive pulmonary disease. Eur Respir J 2003 Dec; 22 (6): 912–9

    Article  PubMed  CAS  Google Scholar 

  42. Kardos P, Wencker M, Glaab T, et al. Impact of salmeterol/fluticasone propionate versus salmeterol on exacerbations in severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2007 Jan 15; 175 (2): 144–9

    Article  PubMed  CAS  Google Scholar 

  43. Suissa S, Ernst P, Vandemheen KL, et al. Methodological issues in therapeutic trials of COPD. Eur Respir J 2008 May; 31 (5): 927–33

    Article  PubMed  CAS  Google Scholar 

  44. La Vecchia C, Fabbri LM. Prevention of death in COPD. N Engl J Med 2007 May 24; 356 (21): 2211–4

    Article  PubMed  Google Scholar 

  45. Nannini L, Cates CJ, Lasserson TJ, Poole P. Combined corticosteroid and long-acting beta-agonist in one inhaler versus placebo for chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2007; (4): CD003794

  46. Crim C, Calverley PM, Anderson JA, et al. Pneumonia risk in COPD patients receiving inhaled corticosteroids alone or in combination: TORCH study results. Eur Respir J 2009 Sep; 34 (3): 641–7

    Article  PubMed  CAS  Google Scholar 

  47. Thomson NC, Spears M. The influence of smoking on the treatment response in patients with asthma. Curr Opin Allergy Clin Immunol 2005 Feb; 5 (1): 57–63

    Article  PubMed  CAS  Google Scholar 

  48. Gamble E, Grootendorst DC, Hattotuwa K, et al. Airway mucosal inflammation in COPD is similar in smokers and ex-smokers: a pooled analysis. Eur Respir J 2007 Sep; 30 (3): 467–71

    Article  PubMed  CAS  Google Scholar 

  49. Anthonisen NR, Connett JE, Murray RP. Smoking and lung function of Lung Health Study participants after 11 years. Am J Respir Crit Care Med 2002 Sep 1; 166 (5): 675–9

    Article  PubMed  Google Scholar 

  50. Keatings VM, Jatakanon A, Worsdell YM, et al. Effects of inhaled and oral glucocorticoids on inflammatory indices in asthma and COPD. Am J Respir Crit Care Med 1997 Feb; 155 (2): 542–8

    Article  PubMed  CAS  Google Scholar 

  51. Culpitt SV, Maziak W, Loukidis S, et al. Effect of high dose inhaled steroid on cells, cytokines, and proteases in induced sputum in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 1999 Nov; 160 (5 Pt 1): 1635-9

    Google Scholar 

  52. Hattotuwa KL, Gizycki MJ, Ansari TW, et al. The effects of inhaled fluticasone on airway inflammation in chronic obstructive pulmonary disease: a double-blind, placebocontrolled biopsy study. Am J Respir Crit Care Med 2002 Jun 15; 165 (12): 1592–6

    Article  PubMed  Google Scholar 

  53. Barnes PJ. Corticosteroids: the drugs to beat. Eur J Pharmacol 2006 Mar 8; 533 (1-3): 2-14

  54. Barnes PJ. Glucocorticosteroids: current and future directions. Br J Pharmacol 2011 May; 163 (1): 29–43

    Article  PubMed  CAS  Google Scholar 

  55. Barnes PJ. New therapies for chronic obstructive pulmonary disease. Med Princ Pract 2010; 19 (5): 330–8

    Article  PubMed  Google Scholar 

  56. De Backer W, Devolder A, Poli G, et al. Lung deposition of BDP/formoterol HFA pMDI in healthy volunteers, asthmatic, and COPD patients. J Aerosol Med Pulm Drug Deliv 2010 Jun; 23 (3): 137–48

    Article  PubMed  Google Scholar 

  57. Usmani OS, Biddiscombe MF, Barnes PJ. Regional lung deposition and bronchodilator response as a function of beta2-agonist particle size. Am J Respir Crit Care Med 2005 Dec 15; 172 (12): 1497–504

    Article  PubMed  Google Scholar 

  58. Ito K, Ito M, Elliott WM, et al. Decreased histone deacetylase activity in chronic obstructive pulmonary disease. N Engl J Med 2005 May 12; 352 (19): 1967–76

    Article  PubMed  CAS  Google Scholar 

  59. Nowak D, Kasielski M, Antczak A, et al. Increased content of thiobarbituric acid-reactive substances and hydrogen peroxide in the expired breath condensate of patients with stable chronic obstructive pulmonary disease: no significant effect of cigarette smoking. Respir Med 1999 Jun; 93 (6): 389–96

    Article  PubMed  CAS  Google Scholar 

  60. Ito K, Hanazawa T, Tomita K, et al. Oxidative stress reduces histone deacetylase 2 activity and enhances IL-8 gene expression: role of tyrosine nitration. Biochem Biophys Res Commun 2004 Feb 27; 315 (1): 240–5

    Article  PubMed  CAS  Google Scholar 

  61. Marwick JA, Caramori G, Stevenson CS, et al. Inhibition of PI3Kδelta restores glucocorticoid function in smokinginduced airway inflammation in mice. Am J Respir Crit Care Med 2009 Apr 1; 179 (7): 542–8

    Article  PubMed  CAS  Google Scholar 

  62. To Y, Ito K, Kizawa Y, et al. Targeting phosphoinositide-3-kinase-delta with theophylline reverses corticosteroid insensitivity in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2010 Oct 1; 182 (7): 897–904

    Article  PubMed  CAS  Google Scholar 

  63. Ito K, Yamamura S, Essilfie-Quaye S, et al. Histone deacetylase 2-mediated deacetylation of the glucocorticoid receptor enables NF-kappaB suppression. J Exp Med 2006 Jan 23; 203 (1): 7–13

    Article  PubMed  CAS  Google Scholar 

  64. Matthews JG, Ito K, Barnes PJ, et al. Defective glucocorticoid receptor nuclear translocation and altered histone acetylation patterns in glucocorticoid-resistant patients. J Allergy Clin Immunol 2004 Jun; 113 (6): 1100–8

    Article  PubMed  CAS  Google Scholar 

  65. Irusen E, Matthews JG, Takahashi A, et al. p38 Mitogenactivated protein kinase-induced glucocorticoid receptor phosphorylation reduces its activity: role in steroid-insensitive asthma. J Allergy Clin Immunol 2002 Apr; 109 (4): 649–57

    Article  PubMed  CAS  Google Scholar 

  66. Galliher-Beckley AJ, Williams JG, Cidlowski JA. Ligandindependent phosphorylation of the glucocorticoid receptor integrates cellular stress pathways with nuclear receptor signaling. Mol Cell Biol 2011 Dec; 31 (23): 4663–75

    Article  PubMed  CAS  Google Scholar 

  67. Weigel NL, Moore NL. Steroid receptor phosphorylation: a key modulator of multiple receptor functions. Mol Endocrinol 2007 Oct; 21 (10): 2311–9

    Article  PubMed  CAS  Google Scholar 

  68. Tao T, Lan J, Lukacs GL, et al. Importin 13 regulates nuclear import of the glucocorticoid receptor in airway epithelial cells. Am J Respir Cell Mol Biol 2006 Dec; 35 (6): 668–80

    Article  PubMed  CAS  Google Scholar 

  69. Freedman ND, Yamamoto KR. Importin 7 and importin alpha/importin beta are nuclear import receptors for the glucocorticoid receptor. Mol Biol Cell 2004 May; 15 (5): 2276–86

    Article  PubMed  CAS  Google Scholar 

  70. Rajendrasozhan S, Yang SR, Kinnula VL, et al. SIRT1, an antiinflammatory and antiaging protein, is decreased in lungs of patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2008 Apr 15; 177 (8): 861–70

    Article  PubMed  CAS  Google Scholar 

  71. Loke TK, Mallett KH, Ratoff J, et al. Systemic glucocorticoid reduces bronchial mucosal activation of activator protein 1 components in glucocorticoid-sensitive but not glucocorticoid-resistant asthmatic patients. J Allergy Clin Immunol 2006 Aug; 118 (2): 368–75

    Article  PubMed  CAS  Google Scholar 

  72. Adcock IM, Lane SJ, Brown CR, et al. Abnormal glucocorticoid receptor-activator protein 1 interaction in steroidresistant asthma. J Exp Med 1995 Dec 1; 182 (6): 1951–8

    Article  PubMed  CAS  Google Scholar 

  73. Cosio BG, Tsaprouni L, Ito K, et al. Theophylline restores histone deacetylase activity and steroid responses in COPD macrophages. J Exp Med 2004 Sep 6; 200 (5): 689–95

    Article  PubMed  CAS  Google Scholar 

  74. Spears M, Donnelly I, Jolly L, et al. Effect of low-dose theophylline plus beclometasone on lung function in smokers with asthma: a pilot study. Eur Respir J 2009 May; 33 (5): 1010–7

    Article  PubMed  CAS  Google Scholar 

  75. Barnes PJ. Emerging pharmacotherapies for COPD. Chest 2008 Dec; 134 (6): 1278–86

    Article  PubMed  CAS  Google Scholar 

  76. Kirkham P, Rahman I. Oxidative stress in asthma and COPD: antioxidants as a therapeutic strategy. Pharmacol Ther 2006 Aug; 111 (2): 476–94

    Article  PubMed  CAS  Google Scholar 

  77. Sussan TE, Rangasamy T, Blake DJ, et al. Targeting Nrf2 with the triterpenoid CDDO-imidazolide attenuates cigarette smoke-induced emphysema and cardiac dysfunction in mice. Proc Natl Acad Sci U S A 2009 Jan 6; 106 (1): 250–5

    Article  PubMed  CAS  Google Scholar 

  78. Zuo Z, Urban G, Scammell JG, et al. Ser/Thr protein phosphatase type 5 (PP5) is a negative regulator of glucocorticoid receptor-mediated growth arrest. Biochemistry 1999 Jul 13; 38 (28): 8849–57

    Article  PubMed  CAS  Google Scholar 

  79. Medina-Tato DA, Ward SG, Watson ML. Phosphoinositide 3-kinase signalling in lung disease: leucocytes and beyond. Immunology 2007 Aug; 121 (4): 448–61

    Article  PubMed  CAS  Google Scholar 

  80. Doukas J, Eide L, Stebbins K, et al. Aerosolized phosphoinositide 3-kinase gamma/delta inhibitor TG100-115 [3-[2,4-diamino-6-(3-hydroxyphenyl)pteridin-7-yl]phenol] as a therapeutic candidate for asthma and chronic obstructive pulmonary disease. J Pharmacol Exp Ther 2009 Mar; 328 (3): 758–65

    Article  PubMed  CAS  Google Scholar 

  81. Reutershan J, Saprito MS, Wu D, et al. Phosphoinositide 3-kinase gamma required for lipopolysaccharide-induced transepithelial neutrophil trafficking in the lung. Eur Respir J 2010 May; 35 (5): 1137–47

    Article  PubMed  CAS  Google Scholar 

  82. Ward S, Sotsios Y, Dowden J, et al. Therapeutic potential of phosphoinositide 3-kinase inhibitors. Chem Biol 2003 Mar; 10 (3): 207–13

    Article  PubMed  CAS  Google Scholar 

  83. Giembycz MA. Can the anti-inflammatory potential of PDE4 inhibitors be realized: guarded optimism or wishful thinking?. Br J Pharmacol 2008 Oct; 155 (3): 288–90

    Article  PubMed  CAS  Google Scholar 

  84. Grootendorst DC, Gauw SA, Verhoosel RM, et al. Reduction in sputum neutrophil and eosinophil numbers by the PDE4 inhibitor roflumilast in patients with COPD. Thorax 2007 Dec; 62 (12): 1081–7

    Article  PubMed  Google Scholar 

  85. Calverley PM, Sanchez-Toril F, McIvor A, et al. Effect of 1-year treatment with roflumilast in severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2007 Jul 15; 176 (2): 154–61

    Article  PubMed  CAS  Google Scholar 

  86. Fabbri LM, Calverley PM, Izquierdo-Alonso JL, et al. Roflumilast in moderate-to-severe chronic obstructive pulmonary disease treated with longacting bronchodilators: two randomised clinical trials. Lancet 2009 Aug 29; 374 (9691): 695–703

    Article  PubMed  CAS  Google Scholar 

  87. GlaxoSmithKline. Study to evaluate safety and tolerability of GSK256066 in chronic obstructive pulmonary disease (COPD) patients [ClinicalTrials.gov identifier NCT00549679]. US National Institutes of Health, ClinicalTrials.gov [online]. Available from URL: http://clinicaltrials.gov [Accessed 2012 May 3]

  88. Giembycz MA. Phosphodiesterase-4: selective and dualspecificity inhibitors for the therapy of chronic obstructive pulmonary disease. Proc Am Thorac Soc 2005; 2 (4): 326–33; discussion 40-1

    Article  PubMed  CAS  Google Scholar 

  89. Banner KH, Press NJ. Dual PDE3/4 inhibitors as therapeutic agents for chronic obstructive pulmonary disease. Br J Pharmacol 2009 Jul; 157 (6): 892–906

    Article  PubMed  CAS  Google Scholar 

  90. Boswell-Smith V, Spina D, Oxford AW, et al. The pharmacology of two novel long-acting phosphodiesterase 3/4 inhibitors, RPL554 [9,10-dimethoxy-2(2,4,6-trimethylphenylimino)-3-(n-carbamoyl-2-aminoethyl)-3,4,6, 7-tet-rahydro-2H-pyrimido[6,1-a]isoquinolin-4-one] and RPL565 [6,7-dihydro-2-(2,6-diisopropylphenoxy)-9,10-dimethoxy-4H-pyrimido[6,1-a]isoquino lin-4-one]. J Pharmacol Exp Ther 2006 Aug; 318 (2): 840–8

    Article  PubMed  CAS  Google Scholar 

  91. Cazzola M, Page CP, Calzetta L, et al. Emerging antiinflammatory strategies for chronic obstructive pulmonary disease. Eur Respir J. Epub 2012 Apr 10

  92. Renda T, Baraldo S, Pelaia G, et al. Increased activation of p38 MAPK in COPD. Eur Respir J 2008 Jan; 31 (1): 62–9

    Article  PubMed  CAS  Google Scholar 

  93. Medicherla S, Fitzgerald MF, Spicer D, et al. p38alphaselective mitogen-activated protein kinase inhibitor SD-282 reduces inflammation in a subchronic model of tobacco smoke-induced airway inflammation. J Pharmacol Exp Ther 2008 Mar; 324 (3): 921–9

    Article  PubMed  CAS  Google Scholar 

  94. Lomas DA, Lipson DA, Miller BE, et al. An oral inhibitor of p38 MAP kinase reduces plasma fibrinogen in patients with chronic obstructive pulmonary disease. J Clin Pharmacol 2012 Mar; 52 (3): 416–24

    Article  PubMed  CAS  Google Scholar 

  95. Chung KF. p38 mitogen-activated protein kinase pathways in asthma and COPD. Chest 2011 Jun; 139 (6): 1470–9

    Article  PubMed  CAS  Google Scholar 

  96. Birrell MA, Wong S, Hardaker EL, et al. IkappaB kinase 2-independent and -dependent inflammation in airway disease models: relevance of IKK-2 inhibition to the clinic. Mol Pharmacol 2006 Jun; 69 (6): 1791–800

    Article  PubMed  CAS  Google Scholar 

  97. Keslacy S, Tliba O, Baidouri H, et al. Inhibition of tumor necrosis factor-alpha-inducible inflammatory genes by interferon-gamma is associated with altered nuclear factor-kappaB transactivation and enhanced histone deacetylase activity. Mol Pharmacol 2007 Feb; 71 (2): 609–18

    Article  PubMed  CAS  Google Scholar 

  98. Catley MC, Sukkar MB, Chung KF, et al. Validation of the anti-inflammatory properties of small-molecule IkappaB Kinase (IKK)-2 inhibitors by comparison with adenoviralmediated delivery of dominant-negative IKK1 and IKK2 in human airways smooth muscle. Mol Pharmacol 2006 Aug; 70 (2): 697–705

    Article  PubMed  CAS  Google Scholar 

  99. Donnelly LE, Barnes PJ. Chemokine receptors as therapeutic targets in chronic obstructive pulmonary disease. Trends Pharmacol Sci 2006 Oct; 27 (10): 546–53

    Article  PubMed  CAS  Google Scholar 

  100. Costa C, Rufino R, Traves SL, et al. CXCR3 and CCR5 chemokines in induced sputum from patients with COPD. Chest 2008 Jan; 133 (1): 26–33

    Article  PubMed  CAS  Google Scholar 

  101. Rennard SI, Fogarty C, Kelsen S, et al. The safety and efficacy of infliximab in moderate to severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2007 May 1; 175 (9): 926–34

    Article  PubMed  CAS  Google Scholar 

  102. Paul-Pletzer K. Tocilizumab: blockade of interleukin-6 signaling pathway as a therapeutic strategy for inflammatory disorders. Drugs Today (Barc) 2006 Sep; 42 (9): 559–76

    Article  CAS  Google Scholar 

  103. De Sanctis JB, Garmendia JV, Moreno D, et al. Pharmacological modulation of Th17. Recent Pat Inflamm Allergy Drug Discov 2009 Jun; 3 (2): 149–56

    Article  PubMed  Google Scholar 

  104. Abboud RT, Vimalanathan S. Pathogenesis of COPD: part I. The role of protease-antiprotease imbalance in emphysema. Int J Tuberc Lung Dis 2008 Apr; 12 (4): 361–7

    CAS  Google Scholar 

  105. Churg A, Wang R, Wang X, et al. Effect of an MMP-9/MMP-12 inhibitor on smoke-induced emphysema and airway remodelling in guinea pigs. Thorax 2007 Aug; 62 (8): 706–13

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Dr O.S. Usmani is a recipient of a National Institute of Health Research (NIHR) Career Development Fellowship. This article was supported by the NIHR Respiratory Disease Biomedical Research Unit at the Royal Brompton and Harefield NHS Foundation Trust and Imperial College London.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar S. Usmani MBBS, PhD, FHEA, FRCP.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hakim, A., Adcock, I.M. & Usmani, O.S. Corticosteroid Resistance and Novel Anti-Inflammatory Therapies in Chronic Obstructive Pulmonary Disease. Drugs 72, 1299–1312 (2012). https://doi.org/10.2165/11634350-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11634350-000000000-00000

Keywords

Navigation