Skip to main content

Antioxidants as Antidepressants

Fact or Fiction?

Abstract

Depression is a medical condition with a complex biological pattern of aetiology, involving genetic and epigenetic factors, along with different environmental stressors. Recent evidence suggests that oxidative stress pro-cesses might play a relevant role in the pathogenic mechanism(s) underlying many major psychiatric disorders, including depression.

Reactive oxygen and nitrogen species have been shown to modulate levels and activity of noradrenaline (norepinephrine), serotonin, dopamine and glutamate, the principal neurotransmitters involved in the neurobiology of depression. Major depression has been associated with lowered concentrations of several endogenous antioxidant compounds, such as vitamin E, zinc and coenzyme Q10, or enzymes, such as glutathione peroxidase, and with an impairment of the total antioxidant status. These observations introduce new potential targets for the development of therapeutic interventions based on antioxidant compounds.

The present review focuses on the possible role of oxidative stress processes in the pathogenesis of depression. The therapeutic potential of antioxidant compounds as a co-adjuvant treatment to conventional antidepressants is discussed. For instance, N-acetyl-cysteine has been shown to have a signif-icant benefit on depressive symptoms in a randomized placebo-controlled trial. Additionally, curcumin, the yellow pigment of curry, has been shown to strongly interfere with neuronal redox homeostasis in the CNS and to possess antidepressant activity in various animal models of depression, also thanks to its ability to inhibit monoamine oxidases. There is an urgent need to develop better tolerated and more effective treatments for depressive disorders and several antioxidant treatments appear promising and deserve further study.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. 1.

    Murray C, Lopez A. Alternative projections of mortality and disability by cause 1990–2020: Global Burden of Disease Study. Lancet 1997; 349(9064): 1498–504

    PubMed  CAS  Article  Google Scholar 

  2. 2.

    Maes M, Leonard B, Fernandez A, et al. (Neuro)in-flammation and neuroprogression as new pathways and drug targets in depression: from antioxidants to kinase inhibitors. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35(3): 659–63

    PubMed  CAS  Article  Google Scholar 

  3. 3.

    Kulkarni S, Dhir A, Akula KK. Potentials of curcumin as an antidepressant. Scientific World J 2009; 9: 1233–41

    CAS  Article  Google Scholar 

  4. 4.

    Coppen A. The biochemistry of affective disorders. Br J Psychiatry 1967; 113(504): 1237–64

    PubMed  CAS  Article  Google Scholar 

  5. 5.

    Schildkraut JJ. The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am J Psychiatry 1965; 122(5): 509–22

    PubMed  CAS  Google Scholar 

  6. 6.

    Owens MJ. Selectivity of antidepressants: from the monoamine hypothesis of depression to the SSRI revolution and beyond. J Clin Psychiatry 2004; 65 Suppl. 4: 5–10

    PubMed  CAS  Google Scholar 

  7. 7.

    Maes M, Bosmans E, Suy E, et al. Immune disturbances during major depression: upregulated expression of interleukin-2 receptors. Neuropsychobiology 1990–1991; 24(3): 115–20

    PubMed  Article  Google Scholar 

  8. 8.

    Stefansson H, Ophoff RA, Steinberg S, et al. Common variants conferring risk of schizophrenia. Nature 2009; 460(7256): 744–7

    PubMed  CAS  Google Scholar 

  9. 9.

    Maes M, Smith R, Scharpe S. The monocyte-T-lymphocyte hypothesis of major depression. Psychoneuroendocrinology 1995; 20(2): 111–6

    PubMed  CAS  Article  Google Scholar 

  10. 10.

    Zorrilla EP, Luborsky L, McKay JR, et al. The relationship of depression and stressors to immunological assays: a meta-analytic review. Brain Behav Immun 2001; 15(3): 199–226

    PubMed  CAS  Article  Google Scholar 

  11. 11.

    Dowlati Y, Herrmann N, Swardfager W, et al. A metaanalysis of cytokines in major depression. Biol Psychiatry 2010; 67(5): 446–57

    PubMed  CAS  Article  Google Scholar 

  12. 12.

    Bower JE, Ganz PA, Aziz N, et al. Fatigue and proinflammatory cytokine activity in breast cancer survivors. Psychosom Med 2002; 64(4): 604–11

    PubMed  Google Scholar 

  13. 13.

    Meyers CA, Albitar M, Estey E. Cognitive impairment, fatigue, and cytokine levels in patients with acute myelogenous leukemia or myelodysplastic syndrome. Cancer 2005; 104(4): 788–93

    PubMed  CAS  Article  Google Scholar 

  14. 14.

    Motivala SJ, Sarfatti A, Olmos L, et al. Inflammatory markers and sleep disturbance in major depression. Psychosom Med 2005; 67(2): 187–94

    PubMed  CAS  Article  Google Scholar 

  15. 15.

    Sprague AH, Khalil RA. Inflammatory cytokines in vascular dysfunction and vascular disease. Biochem Pharmacol 2009; 78(6): 539–52

    PubMed  CAS  Article  Google Scholar 

  16. 16.

    Halliwell B. Biochemistry of oxidative stress. Biochem Soc Trans 2007; 35(Pt 5): 1147–50

    PubMed  CAS  Google Scholar 

  17. 17.

    Edwards R, Peet M, Shay J, et al. Depletion of doco-sahexaenoic acid in red blood cell membranes of depressive patients. Biochem Soc Trans 1998; 26(2): S142

    PubMed  CAS  Google Scholar 

  18. 18.

    Maes M, Christophe A, Delanghe J, et al. Lowered omega3 polyunsaturated fatty acids in serum phospholipids and cholesteryl esters of depressed patients. Psychiatry Res 1999; 85(3): 275–91

    PubMed  CAS  Article  Google Scholar 

  19. 19.

    Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of aging. Nature 2000; 408(6809): 239–47

    PubMed  CAS  Article  Google Scholar 

  20. 20.

    Bortolato M, Chen K, Shih JC. Monoamine oxidase in-activation: from pathophysiology to therapeutics. Adv Drug Deliv Rev 2008; 60(13–14): 1527–33

    PubMed  CAS  Article  Google Scholar 

  21. 21.

    Gardner A, Pagani M, Wibom R, et al. Alterations of rCBF and mitochondrial dysfunction in major depressive disorder: a case report. Acta Psychiatr Scand 2003; 107(3): 233–9

    PubMed  CAS  Article  Google Scholar 

  22. 22.

    Stockmeier CA, Mahajan GJ, Konick LC, et al. Cellular changes in the postmortem hippocampus in major depression. Biol Psychiatry 2004; 56(9): 640–50

    PubMed  Article  Google Scholar 

  23. 23.

    Campbell S, MacQueen G. An update on regional brain volume differences associated with mood disorders. Curr Opin Psychiatry 2006; 19(1): 25–33

    PubMed  Article  Google Scholar 

  24. 24.

    Zou K, Deng W, Li T, et al. Changes of brain morphometry in first-episode, drug-naïve, non-late-life adult patients with major depression: an optimized voxel-based morphometry study. Biol Psychiatry 2010; 67(2): 186–8

    PubMed  Article  Google Scholar 

  25. 25.

    Baune BT, Miller R, McAfoose J, et al. The role of cognitive impairment in general functioning in major depression. Psychiatry Res 2010; 176(2–3): 183–9

    PubMed  Article  Google Scholar 

  26. 26.

    Aznar S, Knudsen GM. Depression and Alzheimer’s disease: is stress the initiating factor in a common neuro-pathological cascade? J Alzheimers Dis 2011; 23(2): 177–93

    PubMed  Google Scholar 

  27. 27.

    Hibbeln JR, Salem Jr N. Dietary polyunsaturated fatty acids and depression: when cholesterol does not satisfy. Am J Clin Nutr 1995; 62(1): 1–9

    PubMed  CAS  Google Scholar 

  28. 28.

    Wolkowitz OM, Mellon SH, Epel ES, et al. Leukocyte telomere length in major depression: correlations with chronicity, inflammation and oxidative stress-preliminary findings. PLoS One 2011; 6(3): e17837

    PubMed  CAS  Article  Google Scholar 

  29. 29.

    Eren I, Nazroglu M, Demirdas A, et al. Venlafaxine modulates depression-induced oxidative stress in brain and medulla of rat. Neurochem Res 2007; 32(3): 497–505

    PubMed  CAS  Article  Google Scholar 

  30. 30.

    Bilici M, Efe H, Koroglu MA, et al. Antioxidative enzyme activities and lipid peroxidation in major depression: alterations by antidepressant treatments. J Affective Disord 2001; 64(1): 43–51

    CAS  Article  Google Scholar 

  31. 31.

    Sarandol A, Sarandol E, Eker SS, et al. Major depressive disorder is accompanied with oxidative stress: short-term antidepressant treatment does not alter oxidative-antioxidative systems. Hum Psychopharmacol Clin Exp 2007; 22(2): 67–73

    CAS  Article  Google Scholar 

  32. 32.

    Khanzode SD, Dakhale GN, Khanzode SS, et al. Oxidative damage and major depression: the potential antioxidant action of selective serotonin re-uptake inhibitors. Redox Rep 2003; 8(6): 365–70

    PubMed  CAS  Article  Google Scholar 

  33. 33.

    Selley ML. Increased (E)-4-hydroxy-2-nonenal and asymmetric dimethylarginine concentrations and decreased nitric oxide concentrations in the plasma of patients with major depression. J Affect Disord. 2004; 80(2–3): 249–56

    PubMed  CAS  Article  Google Scholar 

  34. 34.

    Britt SG, Chiu VW, Redpath GT, et al. Elimination of ascorbic acid-induced membrane lipid peroxidation and serotonin receptor loss by Trolox-C, a water soluble analogue of vitamin E. J Recept Res 1992; 12(2): 181–200

    PubMed  CAS  Google Scholar 

  35. 35.

    Takuma Baba A, Matsuda T. Astrocyte apoptosis: implications for neuroprotection. Prog Neurobiol 2004; 72(2): 111–27

    Article  CAS  Google Scholar 

  36. 36.

    Mattson MP. Modification of ion homeostasis by lipid peroxidation: roles in neuronal degeneration and adaptive plasticity. Trends Neurosci 1998; 21(2): 53–7

    PubMed  CAS  Article  Google Scholar 

  37. 37.

    Maes M, Mihaylova I, Kubera M, et al. IgM-mediated autoimmune responses directed against multiple neoepitopes in depression: new pathways that underpin the inflammatory and neuroprogressive pathophysiology. J Affect Disord 2011; 135(1–3): 414–8

    PubMed  CAS  Article  Google Scholar 

  38. 38.

    Maes M, Ringel K, Kubera M, et al. Increased autoimmune activity against 5-HT: a key component of depression that is associated with inflammation and activation of cell-mediated immunity, and with severity and staging of depression. J Affect Disord. Epub 2011 Dec 12

  39. 39.

    Szuster-Ciesielska A, Slotwińska M, Stachura A, et al. Accelerated apoptosis of blood leukocytes and oxidative stress in blood of patients with major depression. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32(3): 686–94

    PubMed  CAS  Article  Google Scholar 

  40. 40.

    Herken H, Gurel A, Selek S, et al. Adenosine deaminase, nitric oxide, superoxide dismutase, and xanthine oxidase in patients with major depression: impact of antidepressant treatment. Arch Med Res 2007; 38(2): 247–52

    PubMed  CAS  Article  Google Scholar 

  41. 41.

    Cumurcu BE, Ozyurt H, Etikan I, et al. Total antioxidant capacity and total oxidant status in patients with major depression: impact of antidepressant treatment. Psychiatry Clin Neurosci 2009; 63(5): 639–45

    PubMed  CAS  Article  Google Scholar 

  42. 42.

    Clay HB, Sillivan S, Konradi C. Mitochondrial dysfunction and pathology in bipolar disorder and schizophrenia. Int J Dev Neurosci 2011; 29(3): 311–24

    PubMed  CAS  Article  Google Scholar 

  43. 43.

    Fattal O, Budur K, Vaughan AJ, et al. Review of the literature on major mental disorders in adult patients with mitochondrial diseases. Psychosomatics 2006; 47(1): 1–7

    PubMed  Article  Google Scholar 

  44. 44.

    Shao L, Martin MV, Watson SJ, et al. Mitochondrial involvement in psychiatric disorders. Ann Med 2008; 40(4): 281–95

    PubMed  CAS  Article  Google Scholar 

  45. 45.

    Ben-Shachar D, Karry R. Neuroanatomical pattern of mitochondrial complex I pathology varies between schizophrenia, bipolar disorder and major depression. PLoS One 2008; 3(11):e3676

    PubMed  Article  CAS  Google Scholar 

  46. 46.

    Andreazza AC, Kauer-Sant’anna M, Frey BN, et al. Oxidative stress markers in bipolar disorder: a meta-analysis. J Affect Disord 2008; 111(2–3): 135–44

    PubMed  CAS  Article  Google Scholar 

  47. 47.

    Abdalla DS, Monteiro HP, Oliveira JA, et al. Activities of superoxide dismutase and glutathione peroxidase in schizophrenic and manic-depressive patients. Clin Chem 1986; 32(5): 805–7

    PubMed  CAS  Google Scholar 

  48. 48.

    Kuloglu M, Ustundag B, Atmaca M, et al. Lipid peroxidation and antioxidant enzyme levels in patients with schizophrenia and bipolar disorder. Cell Biochem Funct 2002; 20(2): 171–5

    PubMed  CAS  Article  Google Scholar 

  49. 49.

    Andreazza AC, Frey BN, Erdtmann B, et al. DNA damage in bipolar disorder. Psychiatry Res 2007; 153(1): 27–32

    PubMed  CAS  Article  Google Scholar 

  50. 50.

    Wang JF, Shao L, Sun X, et al. Increased oxidative stress in the anterior cingulate cortex of subjects with bipolar disorder and schizophrenia. Bipolar Disord 2009; 11(5): 523–9

    PubMed  CAS  Article  Google Scholar 

  51. 51.

    Kato T, Kato N. Mitochondrial dysfunction in bipolar disorder. Bipolar Disord 2000; 2(3 Pt 1): 180–90

    PubMed  CAS  Article  Google Scholar 

  52. 52.

    Andreazza AC, Kapczinski F, Kauer-Sant’Anna M, et al. 3-Nitrotyrosine and glutathione antioxidant system in patients in the early and late stages of bipolar disorder. J Psychiatry Neurosci 2009; 34(4): 263–71

    PubMed  Google Scholar 

  53. 53.

    Iwamoto K, Bundo M, Kato T. Altered expression of mitochondria-related genes in postmortem brains of patients with bipolar disorder or schizophrenia, as revealed by large-scale DNA microarray analysis. Hum Mol Genet 2005; 14(2): 241–53

    PubMed  CAS  Article  Google Scholar 

  54. 54.

    Huang J, Perlis RH, Lee PH, et al. Cross-disorder genome-wide analysis of schizophrenia, bipolar disorder, and depression. Am J Psychiatry 2010; 167(10): 1254–63

    PubMed  Article  Google Scholar 

  55. 55.

    Gawryluk JW, Wang JF, Andreazza AC, et al. Decreased levels of glutathione, the major brain antioxidant, in postmortem prefrontal cortex from patients with psychiatric disorders. Int J Neuropsychopharmacol 2011; 14(1): 123–30

    PubMed  CAS  Article  Google Scholar 

  56. 56.

    Gawryluk JW, Wang JF, Andreazza AC, et al. Prefrontal cortex glutathione S-transferase levels in patients with bipolar disorder, major depression and schizophrenia. Int J Neuropsychopharmacol 2011; 14(8): 1069–74

    PubMed  CAS  Article  Google Scholar 

  57. 57.

    Kapczinski F, Frey BN, Andreazza AC, et al. Increased oxidative stress as a mechanism for decreased BDNF levels in acute manic episodes. Rev Bras Psiquiatr 2008; 30(3): 243–5

    PubMed  Article  Google Scholar 

  58. 58.

    Kuloglu M, Atmaca M, Tezcan E, et al. Antioxidant enzyme activities and malondialdehyde levels in patients with obsessive-compulsive disorder. Neuropsychobiology 2002; 46(1): 27–32

    PubMed  CAS  Article  Google Scholar 

  59. 59.

    Chakraborty S, Singh OP, Dasgupta A, et al. Correlation between lipid peroxidation-induced TBARS level and disease severity in obsessive-compulsive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33(2): 363–6

    PubMed  CAS  Article  Google Scholar 

  60. 60.

    Ersan S, Bakir S, Erdal Ersan E, et al. Examination of free radical metabolism and antioxidant defence system elements in patients with obsessive-compulsive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2006; 30(6): 1039–42

    PubMed  CAS  Article  Google Scholar 

  61. 61.

    Ozdemir E, Cetinkaya S, Ersan S, et al. Serum selenium and plasma malondialdehyde levels and antioxidant enzyme activities in patients with obsessive-compulsive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33(1): 62–5

    PubMed  CAS  Article  Google Scholar 

  62. 62.

    Selek S, Herken H, Bulut M, et al. Oxidative imbalance in obsessive compulsive disorder patients: a total evaluation of oxidant-antioxidant status. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32(2): 487–91

    PubMed  CAS  Article  Google Scholar 

  63. 63.

    Halliwell B, Whiteman M. Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol 2004; 142(2): 231–55

    PubMed  CAS  Article  Google Scholar 

  64. 64.

    Litescu SC, Eremia S, Radu GL. Methods for the determination of antioxidant capacity in food and raw materials. Adv Exp Med Biol 2011; 698: 241–9

    Article  Google Scholar 

  65. 65.

    Pun PB, Gruber J, Tang SY, et al. Ageing in nematodes: do antioxidants extend lifespan in Caenorhabditis elegans? Biogerontology 2010; 11(1): 17–30

    PubMed  Article  Google Scholar 

  66. 66.

    McLoughlin IJ, Hodge JS. Zinc in depressive disorder. Acta Psychiatr Scand 1990; 82: 451–3

    PubMed  CAS  Article  Google Scholar 

  67. 67.

    Whittle N, Lubec G, Singewald N. Zinc deficiency induces enhanced depression-like behavior and altered limbic activation reversed by antidepressant treatment in mice. Amino Acids 2009; 36: 147–58

    PubMed  CAS  Article  Google Scholar 

  68. 68.

    Takeda A, Tamano H, Ogawa T, et al. Significance of serum glucocorticoid and chelatable zinc in depression and cognition in zinc deficiency. Behav Brain Res. Epub 2011 Sep 19

  69. 69.

    Rayman MP. The importance of selenium to human health. Lancet 2000; 356(9225): 233–41

    PubMed  CAS  Article  Google Scholar 

  70. 70.

    Lai J, Moxey A, Nowak G, et al. The efficacy of zinc supplementation in depression: systematic review of randomised controlled trials. J Affect Disord Epub 2011 Jul 26

  71. 71.

    Rice ME. Ascorbate regulation and its neuroprotective role in the brain. Trends Neurosci 2000; 23(5): 209–16

    PubMed  CAS  Article  Google Scholar 

  72. 72.

    DeSantis J. Scurvy and psychiatric symptoms. Perspec Psychiatr Care 1993; 29(1): 18–22

    CAS  Article  Google Scholar 

  73. 73.

    Coochi P, Silenzi M, Calabri G, et al. Antidepressant effect of vitamin Pediatrics 1980; 65(4): 862–3

    Google Scholar 

  74. 74.

    Brody S. High-dose ascorbic acid increases intercourse frequency and improves mood: a randomized controlled clinical trial. Biol Psychiatry 2002; 52(4): 371–4

    PubMed  CAS  Article  Google Scholar 

  75. 75.

    Brody S, Preut R, Schommer K, et al. A randomized controlled trial of high dose ascorbic acid for reduction of blood pressure, cortisol, and subjective responses to psychological stress. Psychopharmacology 2002; 159(3): 319–24

    PubMed  CAS  Article  Google Scholar 

  76. 76.

    Binfaré RW, Rosa AO, Lobato KR, et al. Ascorbic acid administration produces an antidepressant-like effect: evidence for the involvement of monoaminergic neurotransmission. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33(3): 530–40

    PubMed  Article  CAS  Google Scholar 

  77. 77.

    Tagliari B, Scherer EB, Machado FR, et al. Antioxidants prevent memory deficits provoked by chronic variable stress in rats. Neurochem Res. Epub 2011 Aug 7

  78. 78.

    Lobato KR, Cardoso CC, Binfaré RW, et al. alpha-Tocopherol administration produces an antidepressantlike effect in predictive animal models of depression. Behav Brain Res 2010; 209(2): 249–59

    PubMed  CAS  Article  Google Scholar 

  79. 79.

    Milaneschi Y, Bandinelli S, Penninx BW, et al. The relationship between plasma carotenoids and depressive symptoms in older persons. World J Biol Psychiatry. Epub 2011 Sep

  80. 80.

    Radloff LS. The CES-D scale: a self-report depression scale for research in the general population. Appl Psychol Measure 1977; 1(3): 385–401

    Article  Google Scholar 

  81. 81.

    Aruoma OI, Halliwell B, Hoey BM, et al. The antioxidant action of N-acetylcysteine: its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid. Free Radic Biol Med 1989; 6(6): 593–7

    PubMed  CAS  Article  Google Scholar 

  82. 82.

    Holdiness MR. Clinical pharmokinetics of N-acetylcysteine. Clin Pharmacokinet 1991; 20(2): 123–34

    PubMed  CAS  Article  Google Scholar 

  83. 83.

    Dean OM, van den Buuse M, Berk M, et al. N-acetyl cysteine restores brain glutathione loss in combined 2-cyclohexene-1-one and D-amphetamine-treated rats: relevance to schizophrenia and bipolar disorder. Neurosci Lett 2011; 499(3): 149–53

    PubMed  CAS  Article  Google Scholar 

  84. 84.

    Fontaine MA, Geddes JW, Banks A, et al. Effect of exogenous and endogenous antioxidants on 3-nitropionic acid-induced in vivo oxidative stress and striatal lesions: insights into Huntington’s disease. J Neurochem 2000; 75(4): 1709–15

    PubMed  CAS  Article  Google Scholar 

  85. 85.

    Robinson RA, Joshi G, Huang Q, et al. Proteomic analysis of brain proteins in APP/PS-1 human double mutant knock-in mice with increasing amyloid β-peptide deposition: insights into the effects of in vivo treatment with N-acetylcysteine as a potential therapeutic intervention in mild cognitive impairment and Alzheimer’s disease. Proteomics. Epub 2011 Aug 30

  86. 86.

    Qian HR, Yang Y. Neuron differentiation and neuritogenesis stimulated by N-acetylcysteine (NAC). Acta Pharmacol Sin 2009; 30(7): 907–12

    PubMed  CAS  Article  Google Scholar 

  87. 87.

    Janaky R, Dohovics R, Saransaari P, et al. Modulation of [3H]dopamine release by glutathione in mouse striatal slices. Neurochem Res 2007; 32(8): 1357–64

    PubMed  CAS  Article  Google Scholar 

  88. 88.

    Khan M, Sekhon B, Jatana M, et al. Administration of N-acetylcysteine after focal cerebral ischemia protects brain and reduces inflammation in a rat model of experimental stroke. J Neurosci Res 2004; 76(4): 519–27

    PubMed  CAS  Article  Google Scholar 

  89. 89.

    Ferreira FR, Biojone C, Joca SR, et al. Antidepressant-like effects of N-acetyl-L-cysteine in rats. Behav Pharmacol 2008; 19(7): 747–50

    PubMed  CAS  Article  Google Scholar 

  90. 90.

    Berk M, Copolov D, Dean O, et al. N-acetyl cysteine as a glutathione precursor for schizophrenia: a double-blind, randomized, placebo-controlled trial. Biol Psychiatry 2008; 64(9): 361–8

    PubMed  CAS  Article  Google Scholar 

  91. 91.

    Lafleur DL, Pittenger C, Kelmendi C, et al. N-acetylcysteine augmentation in serotonin reuptake inhibitor refractory obsessivecompulsive disorder. Psychopharmacology (Berl) 2006; 184(2): 254–6

    CAS  Article  Google Scholar 

  92. 92.

    Odlaug BL, Grant JE. N-acetyl cysteine in the treatment of grooming disorders. J Clin Psychopharmacol 2007; 27(2): 227–9

    PubMed  Article  Google Scholar 

  93. 93.

    Grant JE, Kim SW, Odlaug BL. N-acetyl cysteine, a glutamatemodulating agent, in the treatment of pathological gambling: a pilot study. Biol Psychiatry 2007; 62(6): 652–7

    PubMed  CAS  Article  Google Scholar 

  94. 94.

    Mardikian PN, LaRowe SD, Hedden S, et al. An openlabel trial of N-acetylcysteine for the treatment of cocaine dependence: a pilot study. Prog Neuropsychopharmacol Biol Psychiatry 2007; 31(2): 389–94

    PubMed  CAS  Article  Google Scholar 

  95. 95.

    Berk M, Copolov DL, Dean O, et al. N-acetyl cysteine for depressive symptoms in bipolar disorder: a double-blind randomized placebo-controlled trial. Biol Psychiatry 2008; 64(6): 468–75

    PubMed  CAS  Article  Google Scholar 

  96. 96.

    Magalhães PV, Dean OM, Bush AI, et al. N-acetyl cysteine add-on treatment for bipolar II disorder: a subgroup analysis of a randomized placebo-controlled trial. J Affect Disord 2011; 129(1–3): 317–20

    PubMed  Article  CAS  Google Scholar 

  97. 97.

    Berk M, Dean O, Cotton SM, et al. The efficacy of N-acetylcysteine as an adjunctive treatment in bipolar depression: an open label trial. J Affect Disord. Epub 2011 Jun 28

  98. 98.

    Scapagnini G, Caruso C, Calabrese V. Therapeutic potential of dietary polyphenols against brain ageing and neurodegenerative disorders. Adv Exp Med Biol 2011; 698: 27–35

    Article  Google Scholar 

  99. 99.

    Scapagnini G, Vasto S, Abraham NG, et al. Modulation of Nrf2/ARE pathway by food polyphenols: a nutritional neuroprotective strategy for cognitive and neurodegenerative disorders. Mol Neurobiol 2011; 44(2): 192–201

    PubMed  CAS  Article  Google Scholar 

  100. 100.

    Priyadarsini KI, Guha SN, Rao MN. Physicochemical properties and antioxidant activities of methoxy phenols. Free Radic Biol Med 1998; 24(6): 933–41

    PubMed  CAS  Article  Google Scholar 

  101. 101.

    Sreejayan A, Rao MN. Nitric oxide scavenging by curcuminoids. J Pharm Pharmacol 1997; 49(1): 105–7

    PubMed  CAS  Article  Google Scholar 

  102. 102.

    Masuda T, Hidaka K, Shinohara A, et al. Chemical studies on antioxidant mechanism of curcuminoid: analysis of radical reaction products from curcumin. J Agric Food Chem 1999; 47(1): 71–7

    PubMed  CAS  Article  Google Scholar 

  103. 103.

    Jovanovic SV, Boone CW, Steenken S. How curcumin works preferentially with water soluble antioxidants. J Am Chem Soc 2001; 123(13): 3064–8

    PubMed  CAS  Article  Google Scholar 

  104. 104.

    Huang MT, Newmark HL, Frenkel K. Inhibitory effects of curcumin on tumorigenesis in mice. J Cell Biochem Suppl 1997; 27: 26–34

    PubMed  CAS  Article  Google Scholar 

  105. 105.

    Ramos-Gomez M, Kwak MK, Dolan PM, et al. Sensitivity to carcinogenesis is increased and chemoprotective efficacy of enzyme inducers is lost in nrf2 transcription fac-tor-deficient mice. Proc Natl Acad Sci USA 2001; 98(6): 3410–5

    PubMed  CAS  Article  Google Scholar 

  106. 106.

    Singh S, Aggarwal Activation of transcription factor NF-kappa B is suppressed by curcumin (diferuloylmethane). J Biol Chem 1995; 270(42): 24995–5000

    PubMed  CAS  Article  Google Scholar 

  107. 107.

    Balogun E, Hoque M, Gong P, et al. Curcumin activates the haem oxygenase-1 gene via regulation of Nrf2 and the antioxidant-responsive element. Biochem J 2003; 371(Pt 3): 887–95

    PubMed  CAS  Article  Google Scholar 

  108. 108.

    Kulkarni SK, Bhutani MK, Bishnoi M. Antidepressant activity of curcumin: involvement of serotonin and dopamine system. Psychopharmacology (Berl) 2008; 201(3): 435–42

    CAS  Article  Google Scholar 

  109. 109.

    Gupta A, Vij G, Sharma S, et al. Curcumin, a polyphenolic antioxidant, attenuates chronic fatigue syndrome in murine water immersion stress model. Immunobiology 2009; 214(1): 33–9

    PubMed  CAS  Article  Google Scholar 

  110. 110.

    Xu Y, Ku B, Cui L, et al. Curcumin reverses impaired hippocampal neurogenesis and increases ser otonin receptor 1A mRNA and brain-derived neurotrophic factor expression in chronically stressed rats. Brain Res 2007; 1162:9–18

    PubMed  CAS  Article  Google Scholar 

  111. 111.

    Xu Y, Ku B, Tie L, et al. Curcumin reverses the effects of chronic stress on behavior, the HPA axis, BDNF expression and phosphorylation of CREB. Brain Res 2006; 1122(1): 56–64

    PubMed  CAS  Article  Google Scholar 

  112. 112.

    Bhutani MK, Bishnoi M, Kulkarni SK. Anti-depressant like effect of curcumin and its combination with piperine in unpredictable chronic stress-induced behavioral, biochemical and neurochemical changes. Pharmacol Biochem Behav 2009; 92(1): 39–43

    PubMed  CAS  Article  Google Scholar 

  113. 113.

    Zeni AL, Zomkowski AD, Maraschin M. Ferulic acid exerts antidepressant-like effect in the tail suspension test in mice: evidence for the involvement of the serotonergic system. Eur J Pharmacol. Epub 2012 Jan 12

  114. 114.

    Sachdeva AK, Kuhad A, Chopra K. Epigallocatechin gallate ameliorates behavioral and biochemical deficits in rat model of load-induced chronic fatigue syndrome. Brain Res Bull 2011; 86(3–4): 165–72

    PubMed  CAS  Article  Google Scholar 

  115. 115.

    Zhu WL, Shi HS, Wei YM, et al. Green tea polyphenols produce antidepressant-like effects in adult mice. Pharmacol Res 2012; 65(1): 74–80

    PubMed  CAS  Article  Google Scholar 

  116. 116.

    Rojas P, Serrano-García N, Medina-Campos ON, et al. Antidepressant-like effect of a Ginkgo biloba extract (EGb761) in the mouse forced swimming test: role of oxidative stress. Neurochem Int 2011; 59(5): 628–36

    PubMed  CAS  Article  Google Scholar 

Download references

Acknowledgements

No sources of funding were received for the preparation of this manuscript. The authors have no conflicts of interest that are directly relevant to the content of this article.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Giovanni Scapagnini.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Scapagnini, G., Davinelli, S., Drago, F. et al. Antioxidants as Antidepressants. CNS Drugs 26, 477–490 (2012). https://doi.org/10.2165/11633190-000000000-00000

Download citation

Keywords

  • Depressive Symptom
  • Schizophrenia
  • Carotenoid
  • Curcumin
  • Major Depressive Disorder