High-Intensity Interval Training in Cardiac Rehabilitation

Abstract

High-intensity interval training (HIIT) is frequently used in sports training. The effects on cardiorespiratory and muscle systems have led scientists to consider its application in the field of cardiovascular diseases. The objective of this review is to report the effects and interest of HIIT in patients with coronary artery disease (CAD) and heart failure (HF), as well as in persons with high cardiovascular risk. A non-systematic review of the literature in the MEDLINE database using keywords ‘exercise’, ‘high-intensity interval training’, ‘interval training’, ‘coronary artery disease’, ‘coronary heart disease’, ‘chronic heart failure’ and ‘metabolic syndrome’ was performed. We selected articles concerning basic science research, physiological research, and randomized or non-randomized interventional clinical trials published in English.

To summarize, HIIT appears safe and better tolerated by patients than moderate-intensity continuous exercise (MICE). HIIT gives rise to many short- and long-term central and peripheral adaptations in these populations. In stable and selected patients, it induces substantial clinical improvements, superior to those achieved by MICE, including beneficial effects on several important prognostic factors (peak oxygen uptake, ventricular function, endothelial function), as well as improving quality of life. HIIT appears to be a safe and effective alternative for the rehabilitation of patients with CAD and HF. It may also assist in improving adherence to exercise training. Larger randomized interventional studies are now necessary to improve the indications for this therapy in different populations.

This is a preview of subscription content, log in to check access.

Table I
Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Fox EL, Bartels RL, Billings CE, et al. Intensity and distance of interval training programs and changes in aerobic power. Med Sci Sports 1973 Spring; 5 (1): 18–22

    PubMed  CAS  Google Scholar 

  2. 2.

    Billat LV. Interval training for performance: a scientific and empirical practice. Special recommendations for middle- and long-distance running. Part I: aerobic interval training. Sports Med 2001; 31 (1): 13–31

    PubMed  CAS  Article  Google Scholar 

  3. 3.

    Christensen EH, Hedman R, Saltin B. Intermittent and continuous running. (A further contribution to the physiology of intermittent work.) Acta Physiol Scand 1960 Dec 30; 50: 269–86

    PubMed  CAS  Article  Google Scholar 

  4. 4.

    Midgley AW, McNaughton LR, Carroll S. Physiological determinants of time to exhaustion during intermittent treadmill running at VO2max. Int J Sports Med 2007; 28 (4) 273–80

    PubMed  CAS  Article  Google Scholar 

  5. 5.

    Kemi OJ, Haram PM, Loennechen JP, et al. Moderate vs. high exercise intensity: differential effects on aerobic fitness, cardiomyocyte contractility, and endothelial function. Cardiovasc Res 2005 Jul 1; 67 (1): 161–72

    PubMed  CAS  Article  Google Scholar 

  6. 6.

    Kemi OJ, Haram PM, Wisloff U, et al. Aerobic fitness is associated with cardiomyocyte contractile capacity and endothelial function in exercise training and detraining. Circulation 2004 Jun 15; 109 (23): 2897–904

    PubMed  Article  Google Scholar 

  7. 7.

    Kemi OJ, Loennechen JP, Wisloff U, et al. Intensity-controlled treadmill running in mice: cardiac and skeletal muscle hypertrophy. J Appl Physiol 2002 Oct; 93 (4): 1301–9

    PubMed  Google Scholar 

  8. 8.

    Wisloff U, Helgerud J, Kemi OJ, et al. Intensity-controlled treadmill running in rats: VO(2 max) and cardiac hypertrophy. Am J Physiol Heart Circ Physiol 2001 Mar; 280(3):H1301–10

    PubMed  CAS  Google Scholar 

  9. 9.

    Wisloff U, Loennechen JP, Falck G, et al. Increased contractility and calcium sensitivity in cardiac myocytes isolated from endurance trained rats. Cardiovasc Res 2001 Jun; 50 (3): 495–508

    PubMed  CAS  Article  Google Scholar 

  10. 10.

    Gibala MJ. High-intensity interval training: a time-efficient strategy for health promotion? Curr Sports Med Rep 2007 Jul; 6 (4): 211–3

    PubMed  Article  Google Scholar 

  11. 11.

    Gibala MJ, Little JP. Just HIT it! A time-efficient exercise strategy to improve muscle insulin sensitivity. J Physiol 2010 Sep 15; 588 (Pt 18): 3341–2

    PubMed  CAS  Article  Google Scholar 

  12. 12.

    Gibala MJ, Little JP, van Essen M, et al. Short-term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance. J Physiol 2006 Sep 15; 575 (Pt 3): 901–11

    PubMed  CAS  Article  Google Scholar 

  13. 13.

    Gibala MJ, McGee SL. Metabolic adaptations to short-term high-intensity interval training: a little pain for a lot of gain? Exerc Sport Sci Rev 2008 Apr; 36 (2): 58–63

    PubMed  Article  Google Scholar 

  14. 14.

    Gibala MJ, McGee SL, Garnham AP, et al. Brief intense interval exercise activates AMPK and p38 MAPK signaling and increases the expression of PGC-1alpha in human skeletal muscle. J Appl Physiol 2009 Mar; 106 (3): 929–34

    PubMed  CAS  Article  Google Scholar 

  15. 15.

    Laursen PB, Jenkins DG. The scientific basis for highintensity interval training: optimising training programmes and maximising performance in highly trained endurance athletes. Sports Med 2002; 32 (1): 53–73

    PubMed  Article  Google Scholar 

  16. 16.

    Daussin FN, Ponsot E, Dufour SP, et al. Improvement of VO2max by cardiac output and oxygen extraction adaptation during intermittent versus continuous endurance training. Eur J Appl Physiol 2007 Oct; 101 (3): 377–83

    PubMed  Article  Google Scholar 

  17. 17.

    Helgerud J, Hoydal K, Wang E, et al. Aerobic high-intensity intervals improve VO2max more than moderate training. Med Sci Sports Exerc 2007 Apr; 39 (4): 665–71

    PubMed  Article  Google Scholar 

  18. 18.

    DiPietro L, Dziura J, Yeckel CW, et al. Exercise and improved insulin sensitivity in older women: evidence of the enduring benefits of higher intensity training. J Appl Physiol 2006 Jan; 100 (1): 142–9

    PubMed  CAS  Article  Google Scholar 

  19. 19.

    O’Donovan G, Kearney EM, Nevill AM, et al. The effects of 24 weeks of moderate- or high-intensity exercise on insulin resistance. Eur J Appl Physiol 2005 Dec; 95 (5–6): 522–8

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    O’Donovan G, Owen A, Bird SR, et al. Changes in cardiorespiratory fitness and coronary heart disease risk factors following 24 wk of moderate- or high-intensity exercise of equal energy cost. J Appl Physiol 2005 May; 98 (5): 1619–25

    PubMed  Article  Google Scholar 

  21. 21.

    Keteyian SJ, Brawner CA, Savage PD, et al. Peak aerobic capacity predicts prognosis in patients with coronary heart disease. Am Heart J 2008 Aug; 156 (2): 292–300

    PubMed  Article  Google Scholar 

  22. 22.

    Myers J, Prakash M, Froelicher V, et al. Exercise capacity and mortality among men referred for exercise testing. N Engl J Med 2002 Mar 14; 346 (11): 793–801

    PubMed  Article  Google Scholar 

  23. 23.

    O’Connor CM, Whellan DJ, Lee KL, et al. Efficacy and safety of exercise training in patients with chronic heart failure: HF-ACTION randomized controlled trial. JAMA 2009 Apr 8; 301 (14): 1439–50

    PubMed  Article  Google Scholar 

  24. 24.

    Balady GJ, Williams MA, Ades PA, et al. Core components of cardiac rehabilitation/secondary prevention programs: 2007 update. A scientific statement from the American Heart Association Exercise, Cardiac Rehabilitation, and Prevention Committee, the Council on Clinical Cardiology; the Councils on Cardiovascular Nursing, Epidemiology and Prevention, and Nutrition, Physical Activity, and Metabolism; and the American Association of Cardiovascular and Pulmonary Rehabilitation. Circulation 2007 May 22; 115 (20): 2675–82

    PubMed  Article  Google Scholar 

  25. 25.

    Kemi OJ, Wisloff U. High-intensity aerobic exercise training improves the heart in health and disease. J Cardiopulm Rehabil Prev 2010 Jan–Feb; 30 (1): 2–11

    PubMed  Google Scholar 

  26. 26.

    Hwang CL, Wu YT, Chou CH. Effect of aerobic interval training on exercise capacity and metabolic risk factors in people with cardiometabolic eisorders: a meta-analysis. J Cardiopulm Rehabil Prev 2011 Nov; 31 (6): 378–85

    PubMed  Google Scholar 

  27. 27.

    Cornish AK, Broadbent S, Cheema BS. Interval training for patients with coronary artery disease: a systematic review. Eur J Appl Physiol 2011 Apr; 111 (4): 579–89

    PubMed  Article  Google Scholar 

  28. 28.

    Wisloff U, Stoylen A, Loennechen JP, et al. Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: a randomized study. Circulation 2007 Jun 19; 115 (24): 3086–94

    PubMed  Article  Google Scholar 

  29. 29.

    Warburton DE, McKenzie DC, Haykowsky MJ, et al. Effectiveness of high-intensity interval training for the rehabilitation of patients with coronary artery disease. Am J Cardiol 2005 May 1; 95 (9): 1080–4

    PubMed  Article  Google Scholar 

  30. 30.

    Rognmo O, Hetland E, Helgerud J, et al. High intensity aerobic interval exercise is superior to moderate intensity exercise for increasing aerobic capacity in patients with coronary artery disease. Eur J Cardiovasc Prev Rehabil 2004 Jun; 11 (3): 216–22

    PubMed  Article  Google Scholar 

  31. 31.

    Saltin B, Essen B, Pedersen P. Intermittent exercise: its physiology and some practical applications. In: Joekle E, Anand R, Stoboy H, editors. Advances in exercise physiology: medicine sport series. Basel: Karger Publishers, 1976; 23–51

    Google Scholar 

  32. 32.

    Tanasescu M, Leitzmann MF, Rimm EB, et al. Exercise type and intensity in relation to coronary heart disease in men. JAMA 2002 Oct 23–30; 288 (16): 1994–2000

    PubMed  Article  Google Scholar 

  33. 33.

    Lee IM, Sesso HD, Oguma Y, et al. Relative intensity of physical activity and risk of coronary heart disease. Circulation 2003 Mar 4; 107 (8): 1110–6

    PubMed  Article  Google Scholar 

  34. 34.

    Schnohr P, Marott JL, Jensen JS, et al. Intensity versus duration of cycling, impact on all-cause and coronary heart disease mortality: the Copenhagen City Heart Study. Eur J Prev Cardiol 2012; 19 (1): 73–80

    PubMed  Article  Google Scholar 

  35. 35.

    Andersen LB, Schnohr P, Schroll M, et al. All-cause mortality associated with physical activity during leisure time, work, sports, and cycling to work. Arch Intern Med 2000 Jun 12; 160(11): 1621–8

    PubMed  CAS  Article  Google Scholar 

  36. 36.

    Wisloff U, Nilsen TI, Droyvold WB, et al. A single weekly bout of exercise may reduce cardiovascular mortality: how little pain for cardiac gain? ‘The HUNT study, Norway’. Eur J Cardiovasc Prev Rehabil 2006 Oct; 13 (5): 798–804

    PubMed  Article  Google Scholar 

  37. 37.

    Billat VL, Slawinksi J, Bocquet V, et al. Very short (15s-15s) interval-training around the critical velocity allows middle-aged runners to maintain VO2 max for 14 minutes. Int J Sports Med 2001 Apr; 22 (3): 201–8

    PubMed  CAS  Article  Google Scholar 

  38. 38.

    Dupont G, Blondel N, Berthoin S. Performance for short intermittent runs: active recovery vs. passive recovery. Eur J Appl Physiol 2003 Aug; 89 (6): 548–54

    PubMed  Article  Google Scholar 

  39. 39.

    Grundy SM, Cleeman JI, Daniels SR, et al. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 2005 Oct 25; 112 (17): 2735–52

    PubMed  Article  Google Scholar 

  40. 40.

    Billat VL, Slawinski J, Bocquet V, et al. Intermittent runs at the velocity associated with maximal oxygen uptake enables subjects to remain at maximal oxygen uptake for a longer time than intense but submaximal runs. Eur J Appl Physiol 2000 Feb; 81 (3): 188–96

    PubMed  CAS  Article  Google Scholar 

  41. 41.

    Billat LV, Koralsztein JP. Significance of the velocity at VO2max and time to exhaustion at this velocity. Sports Med 1996 Aug; 22 (2): 90–108

    PubMed  CAS  Article  Google Scholar 

  42. 42.

    Billat VL, Bocquet V, Slawinski J, et al. Effect of a prior intermittent run at VO2max on oxygen kinetics during an all-out severe run in humans. J Sports Med Phys Fitness 2000 Sep; 40 (3): 185–94

    PubMed  CAS  Google Scholar 

  43. 43.

    Dupont G, Blondel N, Lensel G, et al. Critical velocity and time spent at a high level of VO2 for short intermittent runs at supramaximal velocities. Can J Appl Physiol 2002 Apr; 27 (2): 103–15

    PubMed  Article  Google Scholar 

  44. 44.

    Millet GP, Millet GY, Candau RB. Duration and seriousness of running mechanics alterations after maximal cycling in triathletes: influence of the performance level. J Sports Med Phys Fitness 2001 Jun; 41 (2): 147–53

    PubMed  CAS  Google Scholar 

  45. 45.

    Dupont G, Bosquet L. Méthodologie de l’entrainement: ellipses. 2007 [online]. Available from URL: http://www.amazon.fr/Methodologie-lentrainement-Gregory-Dupont/dp/2729831908 [Accessed 2012 May 30]

  46. 46.

    Midgley AW, McNaughton LR, Jones AM. Training to enhance the physiological determinants of long-distance running performance: can valid recommendations be given to runners and coaches based on current scientific knowledge? Sports Med 2007; 37 (10): 857–80

    PubMed  Article  Google Scholar 

  47. 47.

    Rozenek R, Funato K, Kubo J, et al. Physiological responses to interval training sessions at velocities associated with VO2max. J Strength Cond Res 2007 Feb; 21 (1): 188–92

    PubMed  Google Scholar 

  48. 48.

    Thevenet D, Tardieu M, Zouhal H, et al. Influence of exercise intensity on time spent at high percentage of maximal oxygen uptake during an intermittent session in young endurance-trained athletes. Eur J Appl Physiol 2007 Dec; 102 (1): 19–26

    PubMed  Article  Google Scholar 

  49. 49.

    Guiraud T, Juneau M, Nigam A, et al. Optimization of high intensity interval exercise in coronary heart disease. Eur J Appl Physiol 2010 Nov 14; 108 (4): 733–40

    PubMed  Article  Google Scholar 

  50. 50.

    Meyer P, Normandin E, Gayda M, et al. High intensity interval exercise in chronic heart failure: protocol optimization. J Card Fail 2012 Feb; 18 (2): 126–33

    PubMed  Article  Google Scholar 

  51. 51.

    Dupont G, Blondel N, Berthoin S. Time spent at VO2max: a methodological issue. Int J Sports Med 2003 May; 24 (4): 291–7

    PubMed  CAS  Article  Google Scholar 

  52. 52.

    Millet GP, Candau R, Fattori P, et al. VO2 responses to different intermittent runs at velocity associated with VO2max. Can J Appl Physiol 2003 Jun; 28 (3): 410–23

    PubMed  Article  Google Scholar 

  53. 53.

    Bartlett JD, Close GL, MacLaren DP, et al. High-intensity interval running is perceived to be more enjoyable than moderate-intensity continuous exercise: implications for exercise adherence. J Sports Sci 2011 Mar; 29 (6): 547–53

    PubMed  Article  Google Scholar 

  54. 54.

    Yoshida T, Watari H, Tagawa K. Effects of active and passive recoveries on splitting of the inorganic phosphate peak determined by 31P-nuclear magnetic resonance spectroscopy. NMR Biomed 1996 Feb; 9 (1): 13–9

    PubMed  CAS  Article  Google Scholar 

  55. 55.

    Dupont G, Moalla W, Guinhouya C, et al. Passive versus active recovery during high-intensity intermittent exercises. Med Sci Sports Exerc 2004 Feb; 36 (2): 302–8

    PubMed  Article  Google Scholar 

  56. 56.

    Guiraud T, Nigam A, Juneau M, et al. Acute responses to high-intensity intermittent exercise in CHD patients. Med Sci Sports Exerc 2011 Feb; 43 (2): 211–7

    PubMed  Article  Google Scholar 

  57. 57.

    Coquart JB, Lemaire C, Dubart AE, et al. Intermittent versus continuous exercise: effects of perceptually lower exercise in obese women. Med Sci Sports Exerc 2008 Aug; 40 (8): 1546–53

    PubMed  Article  Google Scholar 

  58. 58.

    Juneau M, Roy N, Nigam A, et al. Exercise above the ischemic threshold and serum markers of myocardial injury. Can J Cardiol 2009 Oct; 25 (10): e338–41

    PubMed  CAS  Article  Google Scholar 

  59. 59.

    Noel M, Jobin J, Marcoux A, et al. Can prolonged exercise-induced myocardial ischaemia be innocuous? Eur Heart J 2007 Jul; 28 (13): 1559–65

    PubMed  Article  Google Scholar 

  60. 60.

    Swain DP, Franklin BA. Comparison of cardioprotective benefits of vigorous versus moderate intensity aerobic exercise. Am J Cardiol 2006 Jan 1; 97 (1): 141–7

    PubMed  Article  Google Scholar 

  61. 61.

    Gibbons RJ, Abrams J, Chatterjee K, et al. ACC/AHA 2002 guideline update for the management of patients with chronic stable angina: summary article. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on the Management of Patients With Chronic Stable Angina). Circulation 2003 Jan 7; 107 (1): 149–58

    PubMed  Article  Google Scholar 

  62. 62.

    Gibbons RJ, Chatterjee K, Daley J, et al. ACC/AHA/ACP-ASIM guidelines for the management of patients with chronic stable angina: executive summary and recommendations. A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Management of Patients with Chronic Stable Angina). Circulation 1999 Jun 1; 99 (21): 2829–48

    PubMed  CAS  Article  Google Scholar 

  63. 63.

    Hoberg E, Schuler G, Kunze B, et al. Silent myocardial ischemia as a potential link between lack of premonitoring symptoms and increased risk of cardiac arrest during physical stress. Am J Cardiol 1990 Mar 1; 65 (9): 583–9

    PubMed  CAS  Article  Google Scholar 

  64. 64.

    Bogaty P, Kingma Jr JG, Robitaille NM, et al. Attenuation of myocardial ischemia with repeated exercise in subjects with chronic stable angina: relation to myocardial contractility, intensity of exercise and the adenosine triphos-phate-sensitive potassium channel. J Am Coll Cardiol 1998 Nov 15; 32 (6): 1665–71

    PubMed  CAS  Article  Google Scholar 

  65. 65.

    Bogaty P, Poirier P, Boyer L, et al. What induces the warm-up ischemia/angina phenomenon: exercise or myocardial ischemia? Circulation 2003 Apr 15; 107 (14): 1858–63

    PubMed  Article  Google Scholar 

  66. 66.

    Tuomainen P, Hartikainen J, Vanninen E, et al. Warm-up phenomenon and cardiac autonomic control in patients with coronary artery disease. Life Sci 2005 Mar 25; 76 (19): 2147–58

    PubMed  CAS  Article  Google Scholar 

  67. 67.

    Meyer P, Guiraud T, Gayda M, et al. High-intensity aerobic interval training in a patient with stable angina pectoris. Am J Phys Med Rehabil 2009 Jan; 89 (1): 83–6

    Article  Google Scholar 

  68. 68.

    Tomai F. Warm up phenomenon and preconditioning in clinical practice. Heart 2002 Feb; 87 (2): 99–100

    PubMed  CAS  Article  Google Scholar 

  69. 69.

    Edwards RJ, Redwood SR, Lambiase PD, et al. The effect of an angiotensin-converting enzyme inhibitor and a K+(ATP) channel opener on warm up angina. Eur Heart J 2005 Mar; 26 (6): 598–606

    PubMed  CAS  Article  Google Scholar 

  70. 70.

    Domenech RJ. Preconditioning: a new concept about the benefit of exercise. Circulation 2006 Jan 3; 113 (1): e1–3

    PubMed  Article  Google Scholar 

  71. 71.

    Yellon DM, Downey JM. Preconditioning the myocardium: from cellular physiology to clinical cardiology. Physiol Rev 2003 Oct; 83 (4): 1113–51

    PubMed  CAS  Google Scholar 

  72. 72.

    McElroy CL, Gissen SA, Fishbein MC. Exercise-induced reduction in myocardial infarct size after coronary artery occlusion in the rat. Circulation 1978 May; 57 (5): 958–62

    PubMed  CAS  Article  Google Scholar 

  73. 73.

    Starnes JW, Taylor RP. Exercise-induced cardioprotection: endogenous mechanisms. Med Sci Sports Exerc 2007 Sep; 39 (9): 1537–43

    PubMed  Article  Google Scholar 

  74. 74.

    Cribier A, Korsatz L, Koning R, et al. Improved myocardial ischemic response and enhanced collateral circulation with long repetitive coronary occlusion during angioplasty: a prospective study. J Am Coll Cardiol 1992 Sep; 20 (3): 578–86

    PubMed  CAS  Article  Google Scholar 

  75. 75.

    Lu X, Wu T, Huang P, et al. Effect and mechanism of intermittent myocardial ischemia induced by exercise on coronary collateral formation. Am J Phys Med Rehabil 2008 Oct; 87 (10): 803–14

    PubMed  Article  Google Scholar 

  76. 76.

    Tyldum GA, Schjerve IE, Tjonna AE, et al. Endothelial dysfunction induced by post-prandial lipemia: complete protection afforded by high-intensity aerobic interval exercise. J Am Coll Cardiol 2009 Jan 13; 53 (2): 200–6

    PubMed  CAS  Article  Google Scholar 

  77. 77.

    Walther C, Gielen S, Hambrecht R. The effect of exercise training on endothelial function in cardiovascular disease in humans. Exerc Sport Sci Rev 2004 Oct; 32 (4): 129–34

    PubMed  Article  Google Scholar 

  78. 78.

    Guiraud T, Gayda M, Juneau M, et al. A single bout of high-intensity interval exercise may decrease blood levels of endothelial microparticles in coronary heart disease patients [abstract no. P207 plus oral presentation]. American Heart Association EPI/NPAM 2011, Scientific Sessions; 2011 Mar 24; Atlanta (GA), 240 [online]. Available from URL: http://www.abstractsonline.com [Accessed 2012 May 30]

  79. 79.

    Boulanger CM, Amabile N, Tedgui A. Circulating microparticles: a potential prognostic marker for atherosclerotic vascular disease. Hypertension 2006 Aug; 48 (2): 180–6

    PubMed  CAS  Article  Google Scholar 

  80. 80.

    Boulanger CM, Scoazec A, Ebrahimian T, et al. Circulating microparticles from patients with myocardial infarction cause endothelial dysfunction. Circulation 2001 Nov 27; 104 (22): 2649–52

    PubMed  CAS  Article  Google Scholar 

  81. 81.

    Esposito K, Ciotola M, Schisano B, et al. Endothelial microparticles correlate with endothelial dysfunction in obese women. J Clin Endocrinol Metab 2006 Sep; 91 (9): 3676–9

    PubMed  CAS  Article  Google Scholar 

  82. 82.

    Koga H, Sugiyama S, Kugiyama K, et al. Elevated levels of VE-cadherin-positive endothelial microparticles in patients with type 2 diabetes mellitus and coronary artery disease. J Am Coll Cardiol 2005 May 17; 45 (10): 1622–30

    PubMed  CAS  Article  Google Scholar 

  83. 83.

    Möbius-Winkler S, Hilberg T, Menzel K, et al. Time dependent mobilization of circulating progenitor cells during strenuous exercise in healthy individuals. J Appl Physiol 2009 Dec; 107 (6): 1943–50

    PubMed  Article  CAS  Google Scholar 

  84. 84.

    Meyer K, Samek L, Schwaibold M, et al. Interval training in patients with severe chronic heart failure: analysis and recommendations for exercise procedures. Med Sci Sports Exerc 1997 Mar; 29 (3): 306–12

    PubMed  CAS  Article  Google Scholar 

  85. 85.

    Beale L, Silberbauer J, Guy L, et al. Limitations to high intensity exercise prescription in chronic heart failure patients. Eur J Cardiovasc Nurs 2010 Jul 17

  86. 86.

    Meyer K, Samek L, Schwaibold M, et al. Physical responses to different modes of interval exercise in patients with chronic heart failure: application to exercise training. Eur Heart J 1996 Jul; 17 (7): 1040–7

    PubMed  CAS  Article  Google Scholar 

  87. 87.

    Meyer P, Normandin E, Nigam A, et al. Acute responses to high intensity interval exercise versus moderate intensity continuous exercise in patients with heart failure [abstract no. 320]. Eur J Cardiovasc Prev Rehabil 2011 Apr 17; 18(Suppl. 1):63S

    Google Scholar 

  88. 88.

    Meyer P, Normandin E, Nigam A, et al. Central hemodynamic responses during high-intensity exercise and moderate continuous exercise in patients with chronic heart failure [abstract no. P478]. Eur J Cardiovasc Prev Rehabil 2011 Apr–May; 18 (Suppl. 1): 90S

    Google Scholar 

  89. 89.

    Tomczak CR, Thompson RB, Paterson I, et al. Effect of acute high-intensity interval exercise on postexercise biventricular function in mild heart failure. J Appl Physiol 2011 Feb; 110 (2): 398–406

    PubMed  Article  Google Scholar 

  90. 90.

    Labrunee M, Guiraud T, Gaucher-Cazalis K, et al. Improvement of ventricular arrhytmias and heart rate variability after a single session of intermittent exercise in chronic heart failure patients [abstract no P567]. Eur J Cardiovasc Prev Rehabil 2011 Apr; 18 (Suppl. 1): 122S

    Google Scholar 

  91. 91.

    Meyer K, Lehmann M, Sunder G, et al. Interval versus continuous exercise training after coronary bypass surgery: a comparison of training-induced acute reactions with respect to the effectiveness of the exercise methods. Clin Cardiol 1990 Dec; 13 (12): 851–61

    PubMed  CAS  Article  Google Scholar 

  92. 92.

    Jensen BE, Fletcher BJ, Rupp JC, et al. Training level comparison study: effect of high and low intensity exercise on ventilatory threshold in men with coronary artery disease. J Cardiopulm Rehabil 1996 Jul–Aug; 16 (4): 227–32

    PubMed  CAS  Article  Google Scholar 

  93. 93.

    Gastin PB. Energy system interaction and relative contribution during maximal exercise. Sports Med 2001; 31 (10): 725–41

    PubMed  CAS  Article  Google Scholar 

  94. 94.

    Bosquet L, Leger L, Legros P. Methods to determine aerobic endurance. Sports Med 2002; 32 (11): 675–700

    PubMed  Article  Google Scholar 

  95. 95.

    Amundsen BH, Rognmo O, Hatlen-Rebhan G, et al. High-intensity aerobic exercise improves diastolic function in coronary artery disease. Scand Cardiovasc J 2008 Apr; 42(2): 110–7

    PubMed  Article  Google Scholar 

  96. 96.

    Munk PS, Staal EM, Butt N, et al. High-intensity interval training may reduce in-stent restenosis following percutaneous coronary intervention with stent implantation: a randomized controlled trial evaluating the relationship to endothelial function and inflammation. Am Heart J 2009 Nov; 158 (5): 734–41

    PubMed  Article  Google Scholar 

  97. 97.

    Lipke EA, West JL. Localized delivery of nitric oxide from hydrogels inhibits neointima formation in a rat carotid balloon injury model. Acta Biomater 2005 Nov; 1 (6): 597–606

    PubMed  Article  Google Scholar 

  98. 98.

    Munk PS, Breland UM, Aukrust P, et al. High intensity interval training reduces systemic inflammation in post-PCI patients. Eur J Cardiovasc Prev Rehabil 2011; 18 (6): 850–7

    PubMed  Google Scholar 

  99. 99.

    Munk PS, Butt N, Larsen AI. High-intensity interval exercise training improves heart rate variability in patients following percutaneous coronary intervention for angina pectoris. Int J Cardiol 2009 Nov 19; 145 (2): 312–4

    PubMed  Article  Google Scholar 

  100. 100.

    Karlsen T, Hoff J, Stoylen A, et al. Aerobic interval training improves VO2 peak in coronary artery disease patients: no additional effect from hyperoxia. Scand Cardiovasc J 2008 Oct; 42 (5): 303–9

    PubMed  Article  Google Scholar 

  101. 101.

    Helgerud J, Karlsen T, Kim WY, et al. Interval and strength training in CAD patients. Int J Sports Med 2010 Jan; 32 (1): 54–9

    PubMed  Article  Google Scholar 

  102. 102.

    Moholdt TT, Amundsen BH, Rustad LA, et al. Aerobic interval training versus continuous moderate exercise after coronary artery bypass surgery: a randomized study of cardiovascular effects and quality of life. Am Heart J 2009 Dec; 158(6): 1031–7

    PubMed  Article  Google Scholar 

  103. 103.

    Moholdt T, Aamot IL, Granoien I, et al. Aerobic interval training increases peak oxygen uptake more than usual care exercise training in myocardial infarction patients: a randomised, controlled study. Clin Rehabil 2012; 26 (1): 33–44

    PubMed  Article  Google Scholar 

  104. 104.

    Moholdt T, Aamot IL, Granoien I, et al. Long-term follow-up after cardiac rehabilitation: a randomized study of usual care exercise training versus aerobic interval training after myocardial infarction. Int J Cardiol 2011 Nov 3; 152(3): 388–90

    PubMed  Article  Google Scholar 

  105. 105.

    Meyer K, Schwaibold M, Westbrook S, et al. Effects of short-term exercise training and activity restriction on functional capacity in patients with severe chronic congestive heart failure. Am J Cardiol 1996 Nov 1; 78 (9): 1017–22

    PubMed  CAS  Article  Google Scholar 

  106. 106.

    Meyer K, Foster C, Georgakopoulos N, et al. Comparison of left ventricular function during interval versus steady-state exercise training in patients with chronic congestive heart failure. Am J Cardiol 1998 Dec 1; 82 (11): 1382–7

    PubMed  CAS  Article  Google Scholar 

  107. 107.

    Willenheimer R, Erhardt L, Cline C, et al. Exercise training in heart failure improves quality of life and exercise capacity. Eur Heart J 1998 May; 19 (5): 774–81

    PubMed  CAS  Article  Google Scholar 

  108. 108.

    Deljanin Ilic M, Ilic S, Lazarevic G, et al. Impact of interval versus steady state exercise on nitric oxide production in patients with left ventricular dysfunction. Acta Cardiol 2009 Apr; 64 (2): 219–24

    PubMed  Article  Google Scholar 

  109. 109.

    Nilsson BB, Hellesnes B, Westheim A, et al. Group-based aerobic interval training in patients with chronic heart failure: Norwegian Ullevaal Model. Phys Ther 2008 Apr; 88 (4): 523–35

    PubMed  Article  Google Scholar 

  110. 110.

    Nilsson BB, Westheim A, Risberg MA. Effects of group-based high-intensity aerobic interval training in patients with chronic heart failure. Am J Cardiol 2008 Nov 15; 102(10): 1361–5

    PubMed  Article  Google Scholar 

  111. 111.

    Nilsson BB, Westheim A, Risberg MA. Long-term effects of a group-based high-intensity aerobic interval-training program in patients with chronic heart failure. Am J Cardiol 2008 Nov 1; 102 (9): 1220–4

    PubMed  Article  Google Scholar 

  112. 112.

    Nilsson BB, Westheim A, Risberg MA, et al. No effect of group-based aerobic interval training on N-terminal pro-B-type natriuretic peptide levels in patients with chronic heart failure. Scand Cardiovasc J 2010 Aug; 44 (4): 223–9

    PubMed  CAS  Article  Google Scholar 

  113. 113.

    Hermann TS, Dall CH, Christensen SB, et al. Effect of high intensity exercise on peak oxygen uptake and endothelial function in long-term heart transplant recipients. Am J Transplant 2011 Mar; 11 (3): 536–41

    PubMed  CAS  Article  Google Scholar 

  114. 114.

    Anagnostakou V, Chatzimichail K, Dimopoulos S, et al. Effects of interval cycle training with or without strength training on vascular reactivity in heart failure patients. J Card Fail 2011 Jul; 17 (7): 585–91

    PubMed  Article  Google Scholar 

  115. 115.

    Smart NA, Dieberg G, Giallauria F. Intermittent versus continuous exercise training in chronic heart failure: a meta-analysis. Int J Cardiol. Epub 2011 Nov 16

  116. 116.

    Tjonna AE, Lee SJ, Rognmo O, et al. Aerobic interval training versus continuous moderate exercise as a treatment for the metabolic syndrome: a pilot study. Circulation 2008 Jul 22; 118 (4): 346–54

    PubMed  Article  Google Scholar 

  117. 117.

    Boutcher SH. High-intensity intermittent exercise and fat loss. J Obes 2011; 2011: 868305

    PubMed  Article  Google Scholar 

  118. 118.

    Stensvold D, Tjonna AE, Skaug EA, et al. Strength training versus aerobic interval training to modify risk factors of metabolic syndrome. J Appl Physiol 2010 Apr; 108 (4): 804–10

    PubMed  Article  Google Scholar 

  119. 119.

    Gremeaux V, Drigny J, Nigam A, et al. Long-term lifestyle intervention with optimized high intensity interval iraining improves body composition, cardiometabolic risk and exercise parameters in patients with abdominal obesity. Am J Phys Med Rehabil (2012). In press

  120. 120.

    Drigny J, Guiraud T, Gremeaux V, et al. Long-term high intensity interval training improves QT dispersion parameters in metabolic syndrome patients. Eur Heart J 2011; 32(Suppl. 1):715S

    Google Scholar 

  121. 121.

    Bartels MN, Bourne GW, Dwyer JH. High-intensity exercise for patients in cardiac rehabilitation after myocardial infarction. PM R 2010 Feb; 2 (2): 151–5; discussion 155

    PubMed  Article  Google Scholar 

  122. 122.

    Belardinelli R, Georgiou D, Cianci G, et al. Randomized, controlled trial of long-term moderate exercise training in chronic heart failure: effects on functional capacity, quality of life, and clinical outcome. Circulation 1999 Mar 9; 99 (9): 1173–82

    PubMed  CAS  Article  Google Scholar 

  123. 123.

    Taylor RS, Brown A, Ebrahim S, et al. Exercise-based rehabilitation for patients with coronary heart disease: systematic review and meta-analysis of randomized controlled trials. Am J Med 2004 May 15; 116 (10): 682–92

    PubMed  Article  Google Scholar 

  124. 124.

    Vanhees L, Kornaat M, Defoor J, et al. Effect of exercise training in patients with an implantable cardioverter defibrillator. Eur Heart J 2004 Jul; 25 (13): 1120–6

    PubMed  Article  Google Scholar 

  125. 125.

    Isaksen K, Morken IM, Munk PS, et al. Exercise training and cardiac rehabilitation in patients with implantable cardioverter defibrillators: a review of current literature focusing on safety, effects of exercise training, and the psychological impact of programme participation. Eur J Cardiovasc Prev Rehabil. Epub 2011 Jun 22

  126. 126.

    Støylen A, Conraads V, Halle M, et al. Controlled study of myocardial recovery after interval training in heart failure: SMARTEX-HF-rationale and design. Eur J Cardiovasc Prev Rehabil. Epub 2011 Mar 21

Download references

Acknowledgements

All of the authors contributed to the writing of this manuscript. This paper was funded by the EPIC Foundation. The authors have no conflicts of interest to declare that are directly relevant to the content of this review.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dr Thibaut Guiraud PhD.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Guiraud, T., Nigam, A., Gremeaux, V. et al. High-Intensity Interval Training in Cardiac Rehabilitation. Sports Med 42, 587–605 (2012). https://doi.org/10.2165/11631910-000000000-00000

Download citation

Keywords

  • Heart Failure Patient
  • Cardiac Rehabilitation
  • Coronary Artery Disease Patient
  • Exercise Protocol
  • Interval Training