Skip to main content

Circadian Disruption and Remedial Interventions

Effects and Interventions for Jet Lag for Athletic Peak Performance

Abstract

Jet lag has potentially serious deleterious effects on performance in athletes following transmeridian travel, where time zones are crossed eastwards or westwards; as such, travel causes specific effects related to desynchronization of the athlete’s internal body clock or circadian clock. Athletes are particularly sensitive to the effects of jet lag, as many intrinsic aspects of sporting performance show a circadian rhythm, and optimum competitive results require all aspects of the athlete’s mind and body to be working in tandem at their peak efficiency. International competition often requires transmeridian travel, and competition timings cannot be adjusted to suit individual athletes. It is therefore in the interest of the individual athlete and team to understand the effects of jet lag and the potential adaptation strategies that can be adopted. In this review, we describe the underlying genetic and physiological mechanisms controlling the circadian clock and its inherent ability to adapt to external conditions on a daily basis. We then examine the fundamentals of the various adaptation stimuli, such as light, chronobiotics (e.g. melatonin), exercise, and diet and meal timing, with particular emphasis on their suitability as strategies for competing athletes on the international circuit. These stimuli can be artificially manipulated to produce phase shifts in the circadian rhythm to promote adaptation in the optimum direction, but care must be taken to apply them at the correct time and dose, as the effects produced on the circadian rhythm follow a phase-response curve, with pronounced shifts in direction at different times. Light is the strongest realigning stimulus and careful timing of light exposure and avoidance can promote adjustment. Chronobiotics such as melatonin can also be used to realign the circadian clock but, as well as timing and dosage issues, there are also concerns as to its legal status in different countries and with the World Anti-Doping Agency. Experimental data con-cerning the effects of food intake and exercise timing on jet lag is limited to date in humans, and more research is required before firm guidelines can be stated. All these stimuli can also be used in pre-flight adaptation strategies to promote adjustment in the required direction, and implementation of these is described. In addition, the effects of individual variability at the behavioural and genetic levels are also discussed, along with the current limitations in assessment of these factors, and we then put forward three case studies, as examples of practical applications of these strategies, focusing on adaptations to travel involving competition in the Rugby Sevens World Cup and the 2016 Summer Olympics in Rio de Janeiro, Brazil. Finally, we provide a list of practice points for optimal adaptation of athletes to jet lag.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 6
Fig. 4
Fig. 5
Table I

References

  1. American Psychiatric Association. Diagnostic and statistical manual of mental disorders: DSM-IV-TR. Text rev. 4th ed. Washington, DC: American Psychiatric Association, 2000

    Google Scholar 

  2. WHO. International statistical classification of diseases and related health problems. 10th rev. 2nd ed. Geneva: World Health Organization, 2004

    Google Scholar 

  3. Jackson G. Come fly with me: jet lag and melatonin. Int J Clin Prac 2010 Jan; 64 (2): 135

    CAS  Article  Google Scholar 

  4. Shneerson JM. Sleep medicine: a guide to sleep and its disorders. 2nd ed. Oxford: Blackwell, 2005

    Google Scholar 

  5. Waterhouse J, Reilly T, Atkinson G, et al. Jet lag: trends and coping strategies. Lancet 2007 Mar 31; 369 (9567): 1117–29

    PubMed  Article  Google Scholar 

  6. Hastings M, O’Neill JS, Maywood ES. Circadian clocks: regulators of endocrine and metabolic rhythms. J Endocrinol 2007 Nov; 195 (2): 187–98

    PubMed  CAS  Article  Google Scholar 

  7. Albrecht U, Eichele G. The mammalian circadian clock. Curr Opin Genet Dev 2003 Jun; 13 (3): 271–7

    PubMed  CAS  Article  Google Scholar 

  8. Czeisler CA, Duffy JF, Shanahan TL, et al. Stability, precision, and near-24-hour period of the human circadian pacemaker. Science 1999; 284 (5423): 2177–81

    PubMed  CAS  Article  Google Scholar 

  9. Middleton B, Arendt J, Stone BM. Human circadian rhythms in constant dim light (8 lux) with knowledge of clock time. J Sleep Res 1996; 5 (2): 69–76

    PubMed  CAS  Article  Google Scholar 

  10. Scheer FA, Wright Jr KP, Kronauer RE, et al. Plasticity of the intrinsic period of the human circadian timing system. PLoS One 2007; 2 (1): e721

    PubMed  Article  Google Scholar 

  11. Eastman CI, Burgess HJ. How to travel the world without jet lag. Sleep Med Clin 2009; 4 (2): 241–55

    PubMed  Article  Google Scholar 

  12. Manfredini R, Manfredini F, Fersini C, et al. Circadian rhythms, athletic performance, and jet lag. Br J Sports Med 1998; 32 (2): 101–6

    PubMed  CAS  Article  Google Scholar 

  13. Samel A, Wegmann HM, Vejvoda M, et al. Influence of melatonin treatment on human circadian rhythmicity before and after a simulated 9-hr time shift. J Biol Rhythms 1991; 6 (3): 235–48

    PubMed  CAS  Article  Google Scholar 

  14. Gander PH, Kronauer RE, Graeber RC. Phase shifting two coupled circadian pacemakers: implications for jet lag. Am J Physiol 1985; 249 (6 Pt 2): R704–19

    PubMed  CAS  Google Scholar 

  15. Gundel A, Wegmann HM. Transition between advance and delay responses to eastbound transmeridian flights. Chronobiol Int 1989; 6 (2): 147–56

    PubMed  CAS  Article  Google Scholar 

  16. Arendt J, Aldhous M, Marks V. Alleviation of jet lag by melatonin: preliminary results of controlled double blind trial. Br Med J (Clin Res Ed) 1986; 292 (6529): 1170

    CAS  Article  Google Scholar 

  17. Deacon S, Arendt J. Adapting to phase shifts, I: an experimental model for jet lag and shift work. Physiol Behav 1996; 59 (4-5): 665–73

    PubMed  CAS  Article  Google Scholar 

  18. Winfree AT. The geometry of biological time. 2nd ed. New York, London: Springer, 2001

    Book  Google Scholar 

  19. Heggie TW. Traveling to Canada for the Vancouver 2010 Winter Olympic and Paralympic Games. Travel Med Infect Dis 2009; 7 (4): 207–11

    PubMed  Article  Google Scholar 

  20. Arendt J, Stone B, Skene DJ. Sleep disruption in jet lag and other circadian rhythm disturbances. In: Kryger MH, Roth T, Dement WC, editors. Principles and practice of sleep medicine. 4th ed. Philadelphia, (PA), Edinburgh: Elsevier Saunders, 2005: 659–72

    Chapter  Google Scholar 

  21. Haimov I, Arendt J. The prevention and treatment of jet lag. Sleep Med Rev 1999 Sep; 3 (3): 229–40

    PubMed  CAS  Article  Google Scholar 

  22. Williams RL, Karacan I, Moore CA, editors. Sleep disorders: diagnosis and treatment. 2nd ed. New York (NY): Wiley; 1988

    Google Scholar 

  23. Sack RL. The pathophysiology of jet lag. Travel Med Infect Dis 2009; 7 (2): 102–10

    PubMed  Article  Google Scholar 

  24. Touzet S, Rabilloud M, Boehringer H, et al. Relationship between sleep and secretion of gonadotropin and ovarian hormones in women with normal cycles. Fertil Steril 2002; 77 (4): 738–44

    PubMed  Article  Google Scholar 

  25. Baumgartner A, Dietzel M, Saletu B, et al. Influence of partial sleep deprivation on the secretion of thyrotropin, thyroid hormones, growth hormone, prolactin, luteinizing hormone, follicle stimulating hormone, and estradiol in healthy young women. Psychiatry Res 1993 Aug; 48 (2): 153–78

    PubMed  CAS  Article  Google Scholar 

  26. Reilly T, Waterhouse J. Sports performance: is there evidence that the body clock plays a role? Eur J Appl Physiol 2009; 106 (3): 321–32

    PubMed  Article  Google Scholar 

  27. Winget CM, De Roshia CW, Holley DC. Circadian rhythms and athletic performance. Med Sci Sports Exerc 1985; 17 (5): 498–516

    PubMed  CAS  Google Scholar 

  28. Guette M, Gondin J, Martin A. Time-of-day effect on the torque and neuromuscular properties of dominant and non-dominant quadriceps femoris. Chronobiol Int 2005; 22 (3): 541–58

    PubMed  Article  Google Scholar 

  29. Nicolas A, Gauthier A, Bessot N, et al. Time of day effects on myoelectric and mechanical properties of muscle during maximal and prolonged isokinetic exercise. Chronobiol Int 2005; 22 (6): 997–1011

    PubMed  CAS  Article  Google Scholar 

  30. Sedliak M, Finni T, Cheng S, et al. Effect of time-of-day-specific strength training on serum hormone concentrations and isometric strength in men. Chronobiol Int 2007; 24 (6): 1159–77

    PubMed  CAS  Article  Google Scholar 

  31. Wyse JP, Mercer TH, Gleeson NP. Time of day dependence of isokinetic leg strength and associated interday variability. Br J Sports Med 1994; 28 (3): 167–70

    PubMed  CAS  Article  Google Scholar 

  32. Souissi N, Gauthier A, Sesboue B, et al. Circadian rhythms in two types of anaerobic cycle leg exercise:force velocity and 30-s Wingate tests. Int J Sports Med 2004; 25 (1): 14–9

    PubMed  CAS  Article  Google Scholar 

  33. Gauthier A, Davenne D, Martin A, et al. Diurnal rhythm of the muscular performance of elbow flexors during isometric contractions. Chronobiol Int 1996; 13 (2): 135–46

    PubMed  CAS  Article  Google Scholar 

  34. Nicolas A, Gauthier A, Trouillet J, et al. The influence of circadian rhythm during a sustained submaximal exercise and on recovery process. J Electromyogr Kinesiol 2008; 18 (2): 284–90

    PubMed  CAS  Article  Google Scholar 

  35. Souissi N, Bessot N, Chamari K, et al. Effect of time of day on aerobic contribution to the 30-s Wingate test performance. Chronobiol Int 2007; 24 (4): 739–48

    PubMed  Article  Google Scholar 

  36. Reilly T, Down A. Investigation of circadian rhythms in anaerobic power and capacity of the legs. J Sports Med Phys Fitness 1992; 32 (4): 343–7

    PubMed  CAS  Google Scholar 

  37. Martin L, Doggart AL, Whyte GP. Comparison of physiological responses to morning and evening submaximal running. J Sports Sci 2001; 19 (12): 969–76

    PubMed  CAS  Article  Google Scholar 

  38. Arnett MG. Effects of prolonged and reduced warm-ups on diurnal variation in body temperature and swim performance. J Strength Cond Res 2002; 16 (2): 256–61

    PubMed  Google Scholar 

  39. Baxter C, Reilly T. Influence of time of day on all-out swimming. Br J Sports Med 1983; 17 (2): 122–7

    PubMed  CAS  Article  Google Scholar 

  40. Martin L, Thompson K. Reproducibility of diurnal variation in sub-maximal swimming. Int J Sports Med 2000; 21 (6): 387–92

    PubMed  CAS  Article  Google Scholar 

  41. Atkinson G, Reilly T. Effects of age and time of day on preferred work rates during prolonged exercise. Chronobiol Int 1995; 12 (2): 121–34

    PubMed  CAS  Article  Google Scholar 

  42. Atkinson G, Todd C, Reilly T, et al. Diurnal variation in cycling performance:influence of warm-up. J Sports Sci 2005; 23 (3): 321–9

    PubMed  Article  Google Scholar 

  43. Bessot N, Nicolas A, Moussay S, et al. The effect of pedal rate and time of day on the time to exhaustion from high-intensity exercise. Chronobiol Int 2006; 23 (5): 1009–24

    PubMed  CAS  Article  Google Scholar 

  44. Deschenes MR, Kraemer WJ, Bush JA, et al. Biorhythmic influences on functional capacity of human muscle and physiological responses. Med Sci Sports Exerc 1998; 30 (9): 1399–407

    PubMed  CAS  Google Scholar 

  45. Giacomoni M, Billaut F, Falgairette G. Effects of the time of day on repeated all-out cycle performance and short-term recovery patterns. Int J Sports Med 2006; 27 (6): 468–74

    PubMed  CAS  Article  Google Scholar 

  46. Racinais S, Blonc S, Jonville S, et al. Time of day influences the environmental effects on muscle force and contractility. Med Sci Sports Exerc 2005; 37 (2): 256–61

    PubMed  Article  Google Scholar 

  47. Racinais S, Connes P, Bishop D, et al. Morning versus evening power output and repeated-sprint ability. Chronobiol Int 2005; 22 (6): 1029–39

    PubMed  Article  Google Scholar 

  48. Reilly T, Atkinson G, Edwards B, et al. Diurnal variation in temperature, mental and physical performance, and tasks specifically related to football (soccer). Chronobiol Int 2007; 24 (3): 507–19

    PubMed  Article  Google Scholar 

  49. Drust B, Waterhouse J, Atkinson G, et al. Circadian rhythms in sports performance: an update. Chronobiol Int 2005; 22 (1): 21–44

    PubMed  CAS  Article  Google Scholar 

  50. Hayes LD, Bickerstaff GF, Baker JS. Interactions of cortisol, testosterone, and resistance training: influence of circadian rhythms. Chronobiol Int 2010; 27 (4): 675–705

    PubMed  CAS  Article  Google Scholar 

  51. O’Connor PJ. FIMS position statement:air travel and performance in sports. 2004 [online]. Available from URL: http://www.fims.org Accessed 2011 Dec 10

  52. Bullock N, Martin DT, Ross A, et al. Effect of long haul travel on maximal sprint performance and diurnal variations in elite skeleton athletes. Br J Sports Med 2007; 41 (9): 569–73; discussion 73

    PubMed  Article  Google Scholar 

  53. O’Connor PJ, Morgan WP, Koltyn KF, et al. Air travel across four time zones in college swimmers. J Appl Physiol 1991; 70 (2): 756–63

    PubMed  Google Scholar 

  54. Reilly T, Atkinson G, Budgett R. Effect of low-dose temazepam on physiological variables and performance tests following a westerly flight across five time zones. Int J Sports Med 2001; 22 (3): 166–74

    PubMed  CAS  Article  Google Scholar 

  55. Lemmer B, Kern RI, Nold G, et al. Jet lag in athletes after eastward and westward time-zone transition. Chronobiol Int 2002; 19 (4): 743–64

    PubMed  Article  Google Scholar 

  56. Bishop D. The effects of travel on team performance in the Australian national netball competition. J Sci Med Sport 2004; 7 (1): 118–22

    PubMed  CAS  Article  Google Scholar 

  57. Jehue R, Street D, Huizenga R. Effect of time zone and game time changes on team performance: National Football League. Med Sci Sports Exerc 1993; 25 (1): 127–31

    PubMed  CAS  Article  Google Scholar 

  58. Smith RS, Guilleminault C, Efron B. Circadian rhythms and enhanced athletic performance in the National Football League. Sleep 1997; 20 (5): 362–5

    PubMed  CAS  Google Scholar 

  59. Steenland K, Deddens JA. Effect of travel and rest on performance of professional basketball players. Sleep 1997; 20 (5): 366–9

    PubMed  CAS  Google Scholar 

  60. Meney I, Waterhouse J, Atkinson G, et al. The effect of one night’s sleep deprivation on temperature, mood, and physical performance in subjects with different amounts of habitual physical activity. Chronobiol Int 1998; 15 (4): 349–63

    PubMed  CAS  Article  Google Scholar 

  61. Van Dongen HP, Dinges DF. Sleep, circadian rhythms, and psychomotor vigilance. Clin Sports Med 2005; 24 (2): 237–49, vii-viii

    PubMed  Article  Google Scholar 

  62. Kang JE, Lim MM, Bateman RJ, et al. Amyloid-beta dynamics are regulated by orexin and the sleep-wake cycle. Science 2009; 326 (5955): 1005–7

    PubMed  CAS  Article  Google Scholar 

  63. Blumert PA, Crum AJ, Ernsting M, et al. The acute effects of twenty-four hours of sleep loss on the performance of national-caliber male collegiate weightlifters. J Strength Cond Res 2007; 21 (4): 1146–54

    PubMed  Google Scholar 

  64. Scott AJ. Shift work and health. Prim Care 2000; 27 (4): 1057–79

    PubMed  CAS  Article  Google Scholar 

  65. Knutsson A. Health disorders of shift workers. Occup Med (Lond) 2003; 53 (2): 103–8

    Article  Google Scholar 

  66. Cho K, Ennaceur A, Cole JC, et al. Chronic jet lag produces cognitive deficits. J Neurosci 2000; 20 (6): RC66 (1–5)

    Google Scholar 

  67. Katz G, Durst R, Zislin Y, et al. Psychiatric aspects of jet lag: review and hypothesis. Med Hypotheses 2001; 56 (1): 20–3

    PubMed  CAS  Article  Google Scholar 

  68. Turek FW. From circadian rhythms to clock genes in depression. Int Clin Psychopharmacol 2007; 22: S1–8

    PubMed  Article  Google Scholar 

  69. Mahoney MM. Shift work, jet lag, and female reproduction. Int J Endocrinol. Epub 2010 Mar 8

    Google Scholar 

  70. Moser M, Schaumberger K, Schernhammer E, et al. Cancer and rhythm. Cancer Causes Control 2006; 17 (4): 483–7

    PubMed  Article  Google Scholar 

  71. Filipski E, King VM, Li X, et al. Disruption of circadian coordination accelerates malignant growth in mice. Pathol Biol (Paris) 2003; 51 (4): 216–9

    Article  Google Scholar 

  72. Filipski E, Delaunay F, King VM, et al. Effects of chronic jet lag on tumor progression in mice. Cancer Res 2004; 64 (21): 7879–85

    PubMed  CAS  Article  Google Scholar 

  73. Davidson AJ, Sellix MT, Daniel J, et al. Chronic jet-lag increases mortality in aged mice. Curr Biol 2006; 16 (21): R914–6

    PubMed  CAS  Article  Google Scholar 

  74. Stevens RG. Working against our endogenous circadian clock: breast cancer and electric lighting in the modern world. Mutat Res 2009; 680 (1-2): 106–8

    PubMed  CAS  Article  Google Scholar 

  75. Davis S, Mirick DK. Circadian disruption, shift work and the risk of cancer: a summary of the evidence and studies in Seattle. Cancer Causes Control 2006; 17 (4): 539–45

    PubMed  Article  Google Scholar 

  76. Davis S, Mirick DK, Stevens RG. Night shift work, light at night, and risk of breast cancer. J Natl Cancer Inst 2001; 93 (20): 1557–62

    PubMed  CAS  Article  Google Scholar 

  77. Kojo K, Pukkala E, Auvinen A. Breast cancer risk among Finnish cabin attendants: a nested case-control study. Occup Environ Med 2005; 62 (7): 488–93

    PubMed  CAS  Article  Google Scholar 

  78. Fu L, Lee CC. The circadian clock: pacemaker and tumour suppressor. Nat Rev Cancer 2003; 3 (5): 350–61

    PubMed  CAS  Article  Google Scholar 

  79. Cho K. Chronic’ jet lag’ produces temporal lobe atrophy and spatial cognitive deficits. Nat Neurosci 2001; 4 (6): 567–8

    PubMed  CAS  Article  Google Scholar 

  80. Reilly T, Edwards B. Altered sleep-wake cycles and physical performance in athletes. Physiol Behav 2007; 90 (2-3): 274–84

    PubMed  CAS  Article  Google Scholar 

  81. Gallego M, Virshup DM. Post-translational modifications regulate the ticking of the circadian clock. Nat Rev Mol Cell Biol 2007; 8 (2): 139–48

    PubMed  CAS  Article  Google Scholar 

  82. Gekakis N, Staknis D, Nguyen HB, et al. Role of the CLOCK protein in the mammalian circadian mechanism. Science 1998; 280 (5369): 1564–9

    PubMed  CAS  Article  Google Scholar 

  83. Hogenesch JB, Gu YZ, Jain S, et al. The basic-helix-loop-helix-PAS orphan MOP3 forms transcriptionally active complexes with circadian and hypoxia factors. Proc Natl Acad Sci U S A 1998; 95 (10): 5474–9

    PubMed  CAS  Article  Google Scholar 

  84. Honma S, Ikeda M, Abe H, et al. Circadian oscillation of BMAL1, a partner of a mammalian clock gene Clock, in rat suprachiasmatic nucleus. Biochem Biophys Res Commun 1998; 250 (1): 83–7

    PubMed  CAS  Article  Google Scholar 

  85. Shearman LP, Zylka MJ, Weaver DR, et al. Two period homologs: circadian expression and photic regulation in the suprachiasmatic nuclei. Neuron 1997; 19 (6): 1261–9

    PubMed  CAS  Article  Google Scholar 

  86. Shigeyoshi Y, Taguchi K, Yamamoto S, et al. Light-induced resetting of a mammalian circadian clock is associated with rapid induction of the mPer1 transcript. Cell 1997; 91 (7): 1043–53

    PubMed  CAS  Article  Google Scholar 

  87. Zylka MJ, Shearman LP, Weaver DR, et al. Three period homologs in mammals: differential light responses in the suprachiasmatic circadian clock and oscillating transcripts outside of brain. Neuron 1998; 20 (6): 1103–10

    PubMed  CAS  Article  Google Scholar 

  88. Ceriani MF, Darlington TK, Staknis D, et al. Light-dependent sequestration of TIMELESS by CRYPTOCHROME. Science 1999; 285 (5427): 553–6

    PubMed  CAS  Article  Google Scholar 

  89. Griffin Jr EA, Staknis D, Weitz CJ. Light-independent role of CRY1 and CRY2 in the mammalian circadian clock. Science 1999; 286 (5440): 768–71

    PubMed  CAS  Article  Google Scholar 

  90. BioCarta. Pathways:circadian rhythms online. Available from URL: (http://www.biocarta.com/pathfiles/m_circadianPathway.asp) Accessed 2011 Nov 14

  91. Gachon F, Nagoshi E, Brown SA, et al. The mammalian circadian timing system: from gene expression to physiology. Chromosoma 2004; 113 (3): 103–12

    PubMed  Article  Google Scholar 

  92. Hofstra WA, de Weerd AW. How to assess circadian rhythm in humans: a review of literature. Epilepsy Behav 2008; 13 (3): 438–44

    PubMed  Article  Google Scholar 

  93. Weinert D. Circadian temperature variation and ageing. Ageing research reviews 2009; 9 (1): 51–60

    PubMed  Article  Google Scholar 

  94. Hsu DS, Zhao X, Zhao S, et al. Putative human blue-light photoreceptors hCRY1 and hCRY2 are flavoproteins. Biochemistry 1996; 35 (44): 13871–7

    PubMed  CAS  Article  Google Scholar 

  95. Zhang EE, Liu AC, Hirota T, et al. A genome-wide RNAi screen for modifiers of the circadian clock in human cells. Cell 2009; 139 (1): 199–210

    PubMed  CAS  Article  Google Scholar 

  96. Zheng B, Albrecht U, Kaasik K, et al. Nonredundant roles of the mPer1 and mPer2 genes in the mammalian circadian clock. Cell 2001; 105 (5): 683–94

    PubMed  CAS  Article  Google Scholar 

  97. Zhu Y, Stevens RG, Leaderer D, et al. Non-synonymous polymorphisms in the circadian gene NPAS2 and breast cancer risk. Breast Cancer Res Treat 2008; 107 (3): 421–5

    PubMed  CAS  Article  Google Scholar 

  98. Preitner N, Damiola F, Lopez-Molina L, et al. The orphan nuclear receptor REV-ERB alpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 2002; 110 (2): 251–60

    PubMed  CAS  Article  Google Scholar 

  99. Sato TK, Panda S, Miraglia LJ, et al. A functional genomics strategy reveals Rora as a component of the mammalian circadian clock. Neuron 2004; 43 (4): 527–37

    PubMed  CAS  Article  Google Scholar 

  100. Eide EJ, Woolf MF, Kang H, et al. Control of mammalian circadian rhythm by CKI epsilon-regulated proteasome-mediated PER2 degradation. Mol Cell Biol 2005; 25 (7): 2795–807

    PubMed  CAS  Article  Google Scholar 

  101. Busino L, Bassermann F, Maiolica A, et al. SCFF bxl3 controls the oscillation of the circadian clock by directing the degradation of cryptochrome proteins. Science 2007; 316 (5826): 900–4

    PubMed  CAS  Article  Google Scholar 

  102. Shirogane T, Jin J, Ang XL, et al. SCF beta-TRCP controls clock-dependent transcription via casein kinase 1-dependent degradation of the mammalian period-1 (Per1) protein. J Biol Chem 2005; 280 (29): 26863–72

    PubMed  CAS  Article  Google Scholar 

  103. Duffy JF, Dijk DJ, Hall EF, et al. Relationship of endogenous circadian melatonin and temperature rhythms to self-reported preference for morning or evening activity in young and older people. J Investig Med 1999; 47 (3): 141–50

    PubMed  CAS  Google Scholar 

  104. Rollag MD, Berson DM, Provencio I. Melanopsin, gang-lion-cell photoreceptors, and mammalian photoentrainment. J Biol Rhythms 2003; 18 (3): 227–34

    PubMed  Article  Google Scholar 

  105. Foster RG, Hankins MW. Circadian vision. Curr Biol 2007; 17 (17): R746–51

    PubMed  CAS  Article  Google Scholar 

  106. Foster RG. Neurobiology: bright blue times. Nature 2005; 433 (7027): 698–9

    PubMed  CAS  Article  Google Scholar 

  107. Thapan K, Arendt J, Skene DJ. An action spectrum for melatonin suppression: evidence for a novel non-rod, non-cone photoreceptor system in humans. J Physiol 2001; 535 (Pt 1): 261–7

    PubMed  CAS  Article  Google Scholar 

  108. Brainard GC, Hanifin JP, Greeson JM, et al. Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor. J Neurosci 2001; 21 (16): 6405–12

    PubMed  CAS  Google Scholar 

  109. Lucas RJ, Freedman MS, Munoz M, et al. Regulation of the mammalian pineal by non-rod, non-cone, ocular photoreceptors. Science 1999; 284 (5413): 505–7

    PubMed  CAS  Article  Google Scholar 

  110. Stephan FK, Zucker I. Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Natl Acad Sci U S A 1972; 69 (6): 1583–6

    PubMed  CAS  Article  Google Scholar 

  111. Whitmore D, Sassone-Corsi P, Foulkes NS. PASting together the mammalian clock. Curr Opin Neurobiol 1998; 8 (5): 635–41

    PubMed  CAS  Article  Google Scholar 

  112. Tosini G, Menaker M. Circadian rhythms in cultured mammalian retina. Science 1996; 272 (5260): 419–21

    PubMed  CAS  Article  Google Scholar 

  113. Plautz JD, Kaneko M, Hall JC, et al. Independent photoreceptive circadian clocks throughout Drosophila. Science 1997; 278 (5343): 1632–5

    PubMed  CAS  Article  Google Scholar 

  114. Fahrenkrug J, Georg B, Hannibal J, et al. Diurnal rhythmicity of the clock genes Per1 and Per2 in the rat ovary. Endocrinology 2006; 147 (8): 3769–76

    PubMed  CAS  Article  Google Scholar 

  115. Karman BN, Tischkau SA. Circadian clock gene expression in the ovary: effects of luteinizing hormone. Biol Reprod 2006; 75 (4): 624–32

    PubMed  CAS  Article  Google Scholar 

  116. Horard B, Rayet B, Triqueneaux G, et al. Expression of the orphan nuclear receptor ERRalpha is under circadian regulation in estrogen-responsive tissues. J Mol Endocrinol 2004; 33 (1): 87–97

    PubMed  CAS  Article  Google Scholar 

  117. Nakamura TJ, Moriya T, Inoue S, et al. Estrogen differentially regulates expression of Per1 and Per2 genes between central and peripheral clocks and between reproductive and nonreproductive tissues in female rats. J Neurosci Res 2005; 82 (5): 622–30

    PubMed  CAS  Article  Google Scholar 

  118. He PJ, Hirata M, Yamauchi N, et al. Up-regulation of Per1 expression by estradiol and progesterone in the rat uterus. J Endocrinol 2007; 194 (3): 511–9

    PubMed  CAS  Article  Google Scholar 

  119. Kennaway DJ. The role of circadian rhythmicity in reproduction. Hum Reprod Update 2005; 11 (1): 91–101

    PubMed  Article  Google Scholar 

  120. Gibbs JE, Beesley S, Plumb J, et al. Circadian timing in the lung; a specific role for bronchiolar epithelial cells. Endocrinology 2009; 150 (1): 268–76

    PubMed  CAS  Article  Google Scholar 

  121. Tanioka M, Yamada H, Doi M, et al. Molecular clocks in mouse skin. J Invest Derm 2009; 129 (5): 1225–31

    PubMed  CAS  Article  Google Scholar 

  122. Granados-Fuentes D, Tseng A, Herzog ED. A circadian clock in the olfactory bulb controls olfactory responsivity. J Neurosci 2006; 26 (47): 12219–25

    PubMed  CAS  Article  Google Scholar 

  123. Balsalobre A, Damiola F, Schibler U. A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 1998; 93 (6): 929–37

    PubMed  CAS  Article  Google Scholar 

  124. Reddy AB, Field MD, Maywood ES, et al. Differential resynchronisation of circadian clock gene expression within the suprachiasmatic nuclei of mice subjected to experimental jet lag. J Neurosci 2002; 22 (17): 7326–30

    PubMed  CAS  Google Scholar 

  125. Yamazaki S, Numano R, Abe M, et al. Resetting central and peripheral circadian oscillators in transgenic rats. Science 2000; 288 (5466): 682–5

    PubMed  CAS  Article  Google Scholar 

  126. Sosniyenko S, Parkanova D, Illnerova H, et al. Different mechanisms of adjustment to a change of the photoperiod in the suprachiasmatic and liver circadian clocks. Am J Physiol Regul Integr Comp Physiol 2010; 298 (4): R959–71

    PubMed  CAS  Article  Google Scholar 

  127. Stokkan KA, Yamazaki S, Tei H, et al. Entrainment of the circadian clock in the liver by feeding. Science 2001; 291 (5503): 490–3

    PubMed  CAS  Article  Google Scholar 

  128. Mendoza J. Circadian clocks: setting time by food. J Neuro-endocrinol 2007; 19 (2): 127–37

    CAS  Google Scholar 

  129. Khalsa SB, Jewett ME, Cajochen C, et al. A phase response curve to single bright light pulses in human subjects. J Physiol 2003; 549 (Pt 3): 945–52

    PubMed  CAS  Article  Google Scholar 

  130. Burgess HJ, Revell VL, Eastman CI. A three pulse phase response curve to three milligrams of melatonin in humans. J Physiol 2008; 586 (2): 639–47

    PubMed  CAS  Article  Google Scholar 

  131. Duffy JF, Czeisler CA. Effect of light on human circadian physiology. Sleep Med Clin 2009; 4 (2): 165–77

    PubMed  Article  Google Scholar 

  132. Czeisler CA, Kronauer RE, Allan JS, et al. Bright light induction of strong (type 0) resetting of the human circadian pacemaker. Science 1989; 244 (4910): 1328–33

    PubMed  CAS  Article  Google Scholar 

  133. Jewett ME, Rimmer DW, Duffy JF, et al. Human circadian pacemaker is sensitive to light throughout subjective day without evidence of transients. Am J Physiol 1997; 273 (5 Pt 2): R1800–9

    PubMed  CAS  Google Scholar 

  134. Zeitzer JM, Dijk DJ, Kronauer R, et al. Sensitivity of the human circadian pacemaker to nocturnal light: melatonin phase resetting and suppression. J Physiol 2000; 526 (Pt 3): 695–702

    PubMed  CAS  Google Scholar 

  135. Duffy JF, Zeitzer JM, Czeisler CA. Decreased sensitivity to phase-delaying effects of moderate intensity light in older subjects. Neurobiol Aging 2007; 28 (5): 799–807

    PubMed  Article  Google Scholar 

  136. Deacon S, Arendt J. Melatonin-induced temperature suppression and its acute phase-shifting effects correlate in a dose-dependent manner in humans. Brain research 1995; 688 (1-2): 77–85

    PubMed  CAS  Article  Google Scholar 

  137. Paul MA, Miller JC, Gray GW, et al. Melatonin treatment for eastward and westward travel preparation. Psycho-pharmacology 2010; 208 (3): 377–86

    CAS  Article  Google Scholar 

  138. Burgess HJ, Revell VL, Molina TA, et al. Human phase response curves to three days of daily melatonin: 0.5 mg versus 3.0 mg. J Clin Endocrinol Metab 2010 Jul; 95 (7):3325–31

    PubMed  CAS  Article  Google Scholar 

  139. Duffy JF, Wright Jr KP. Entrainment of the human circadian system by light. J Biol Rhythms 2005; 20 (4): 326–38

    PubMed  Article  Google Scholar 

  140. Cain SW, Dennison CF, Zeitzer JM, et al. Sex differences in phase angle of entrainment and melatonin amplitude in humans. J Biol Rhythms 2010; 25 (4): 288–96

    PubMed  CAS  Article  Google Scholar 

  141. Arendt J. Managing jet lag: some of the problems and possible new solutions. Sleep Med Rev 2009; 13 (4): 249–56

    PubMed  Article  Google Scholar 

  142. Milner CE, Cote KA. Benefits of napping in healthy adults: impact of nap length, time of day, age, and experience with napping. J Sleep Res 2009; 18 (2): 272–81

    PubMed  Article  Google Scholar 

  143. Bes F, Jobert M, Schulz H. Modeling napping, post-lunch dip, and other variations in human sleep propensity. Sleep 2009; 32 (3): 392–8

    PubMed  Google Scholar 

  144. Auger RR, Morgenthaler TI. Jet lag and other sleep disorders relevant to the traveler. Travel Med Infect Dis 2009; 7 (2): 60–8

    PubMed  Article  Google Scholar 

  145. Cook CJ, Crewther BT, Kilduff LP, et al. Skill execution and sleep deprivation: effects of acute caffeine or creatine supplementation a randomized placebo-controlled trial. J Int Soc Sports Nutr 2011; 8 (2) 1–8

    Google Scholar 

  146. Pierard C, Beaumont M, Enslen M, et al. Resynchronization of hormonal rhythms after an eastbound flight in humans: effects of slow-release caffeine and melatonin. Eur J Appl Physiol 2001; 85 (1-2): 144–50

    PubMed  CAS  Article  Google Scholar 

  147. Beaumont M, Batejat D, Pierard C, et al. Caffeine or melatonin effects on sleep and sleepiness after rapid eastward transmeridian travel. J Appl Physiol 2004; 96 (1): 50–8

    PubMed  CAS  Article  Google Scholar 

  148. Burke LM. Caffeine and sports performance. Appl Physiol Nutr Metab 2008; 33 (6): 1319–34

    PubMed  CAS  Article  Google Scholar 

  149. Czeisler CA, Walsh JK, Roth T, et al. Modafinil for excessive sleepiness associated with shift-work sleep disorder. N Engl J Med 2005; 353 (5): 476–86

    PubMed  CAS  Article  Google Scholar 

  150. Agency TWA-D. The prohibited list. 2011 [online]. Available from URL: http://www.wada-ama.org/en/Science-Medicine/Prohibited-List Accessed 2011 Nov 24

    Google Scholar 

  151. Charles RB, Kirkham AJ, Guyatt AR, et al. Psychomotor, pulmonary and exercise responses to sleep medication. Br J Clin Pharmacol 1987; 24 (2): 191–7

    PubMed  CAS  Article  Google Scholar 

  152. Reilly T, Maughan R, Budgett R. Melatonin: a position statement of the British Olympic Association. Br J Sports Med 1998; 32 (2): 99–100

    PubMed  CAS  Google Scholar 

  153. Wirz-Justice A, Krauchi K, Cajochen C, et al. Evening melatonin and bright light administration induce additive phase shifts in dim light melatonin onset. J Pineal Res 2004; 36 (3): 192–4

    PubMed  CAS  Article  Google Scholar 

  154. Revell VL, Burgess HJ, Gazda CJ, et al. Advancing human circadian rhythms with afternoon melatonin and morning intermittent bright light. J Clin Endocrinol Metab 2006; 91 (1): 54–9

    PubMed  CAS  Article  Google Scholar 

  155. Cagnacci A, Soldani R, Yen SS. Contemporaneous melatonin administration modifies the circadian response to nocturnal bright light stimuli. Am J Physiol 1997; 272 (2 Pt 2): R482–6

    PubMed  CAS  Google Scholar 

  156. Cajochen C, Krauchi K, Danilenko KV, et al. Evening administration of melatonin and bright light: interactions on the EEG during sleep and wakefulness. J Sleep Res 1998; 7 (3): 145–57

    PubMed  CAS  Article  Google Scholar 

  157. Minors DS, Waterhouse JM, Wirz-Justice A. A human phase-response curve to light. Neurosci Lett 1991; 133 (1): 36–40

    PubMed  CAS  Article  Google Scholar 

  158. Samel A, Wegmann HM. Bright light: a countermeasure for jet lag? Chronobiol Int 1997; 14 (2): 173–83

    PubMed  CAS  Article  Google Scholar 

  159. Houpt TA, Boulos Z, Moore-Ede MC. MidnightSun: software for determining light exposure and phase-shifting schedules during global travel. Physiol Behav 1996; 59 (3): 561–8

    PubMed  CAS  Article  Google Scholar 

  160. Virgin Atlantic. Jet lag fighter online. Available from URL: http://www.virginatlantic.com/en/gb/bookflightsandmore/innovationzone/virginfamily/jetlagfighter.jsp) Accessed 2011 Nov 11

  161. Gronfier C, Wright Jr KP, Kronauer RE, et al. Efficacy of a single sequence of intermittent bright light pulses for delaying circadian phase in humans. Am J Physiol Endocrinol Metab 2004; 287 (1): E174–81

    PubMed  CAS  Article  Google Scholar 

  162. Boivin DB, Duffy JF, Kronauer RE, et al. Dose-response relationships for resetting of human circadian clock by light. Nature 1996; 379 (6565): 540–2

    PubMed  CAS  Article  Google Scholar 

  163. Lockley SW, Brainard GC, Czeisler CA. High sensitivity of the human circadian melatonin rhythm to resetting by short wavelength light. J Clin Endocrinol Metab 2003; 88 (9): 4502–5

    PubMed  CAS  Article  Google Scholar 

  164. Revell VL, Arendt J, Terman M, et al. Short-wavelength sensitivity of the human circadian system to phase-advancing light. J Biol Rhythms 2005; 20 (3): 270–2

    PubMed  Article  Google Scholar 

  165. Viola AU, James LM, Schlangen LJ, et al. Blue-enriched white light in the workplace improves self-reported alertness, performance and sleep quality. Scand J Work Environ Health 2008; 34 (4): 297–306

    PubMed  Article  Google Scholar 

  166. Francis G, Bishop L, Luke C, et al. Sleep during the Antarctic winter: preliminary observations on changing the spectral composition of artificial light. J Sleep Res 2008; 17 (3): 354–60

    PubMed  Article  Google Scholar 

  167. Sasseville A, Paquet N, Sevigny J, et al. Blue blocker glasses impede the capacity of bright light to suppress melatonin production. J Pineal Res 2006; 41 (1): 73–8

    PubMed  CAS  Article  Google Scholar 

  168. Zawilska JB, Skene DJ, Arendt J. Physiology and pharmacology of melatonin in relation to biological rhythms. Pharmacol Rep 2009; 61 (3): 383–410

    PubMed  CAS  Google Scholar 

  169. Rajaratnam SM, Middleton B, Stone BM, et al. Melatonin advances the circadian timing of EEG sleep and directly facilitates sleep without altering its duration in extended sleep opportunities in humans. J Physiol 2004; 561 (Pt 1): 339–51

    PubMed  CAS  Article  Google Scholar 

  170. Brown GM, Pandi-Perumal SR, Trakht I, et al. Melatonin and its relevance to jet lag. Travel Med Infect Dis 2009; 7 (2): 69–81

    PubMed  Article  Google Scholar 

  171. Arendt J, Skene DJ. Melatonin as a chronobiotic. Sleep Med Rev 2005; 9 (1): 25–39

    PubMed  Article  Google Scholar 

  172. Arendt J. Does melatonin improve sleep? Efficacy of melatonin. BMJ 2006; 332 (7540): 550

    Google Scholar 

  173. Morgenthaler TI, Lee-Chiong T, Alessi C, et al. Practice parameters for the clinical evaluation and treatment of circadian rhythm sleep disorders: an American Academy of Sleep Medicine report. Sleep 2007; 30 (11): 1445–59

    PubMed  Google Scholar 

  174. Herxheimer A, Petrie KJ. Melatonin for preventing and treating jet lag. Cochrane Database Syst Rev 2001; (1): CD001520

    PubMed  Google Scholar 

  175. Herxheimer A, Petrie KJ. Melatonin for the prevention and treatment of jet lag. Cochrane Database Syst Rev 2002; (2): CD001520

    PubMed  Google Scholar 

  176. Revell VL, Eastman CI. How to trick mother nature into letting you fly around or stay up all night. J Biol Rhythms 2005 Aug; 20 (4): 353–65

    PubMed  Article  Google Scholar 

  177. Lewy AJ, Bauer VK, Ahmed S, et al. The human phase response curve (PRC) to melatonin is about 12 hours out of phase with the PRC to light. Chronobiol Int 1998; 15 (1): 71–83

    PubMed  CAS  Article  Google Scholar 

  178. Wirz-Justice A, Werth E, Renz C, et al. No evidence for a phase delay in human circadian rhythms after a single morning melatonin administration. J Pineal Res 2002; 32 (1): 1–5

    PubMed  CAS  Article  Google Scholar 

  179. Atkinson G, Jones H, Edwards BJ, et al. Effects of daytime ingestion of melatonin on short-term athletic performance. Ergonomics 2005; 48 (11-14): 1512–22

    PubMed  CAS  Article  Google Scholar 

  180. Tan DX, Hardeland R, Manchester LC, et al. The changing biological roles of melatonin during evolution: from an antioxidant to signals of darkness, sexual selection and fitness. Biol Rev Camb Philos Soc 2010; 85 (3): 607–23

    PubMed  Google Scholar 

  181. Reiter RJ, Manchester LC, Fuentes-Broto L, et al. Cardiac hypertrophy and remodelling: pathophysiological consequences and protective effects of melatonin. J Hypertens 2010; 28 Suppl. 1: S7–12

    PubMed  CAS  Article  Google Scholar 

  182. European Medicines Agency. Circadin online. Available from URL: (http://www.emea.europa.eu/humandocs/Humans/EPAR/circadin/circadin.htm) Accessed 2011 Nov 11

  183. Arendt J, Rajaratnam SM. Melatonin and its agonists: an update. Br J Psychiatry 2008; 193 (4): 267–9

    PubMed  Article  Google Scholar 

  184. Suhner A, Schlagenhauf P, Johnson R, et al. Comparative study to determine the optimal melatonin dosage form for the alleviation of jet lag. Chronobiol Int 1998; 15 (6): 655–66

    PubMed  CAS  Article  Google Scholar 

  185. Mistlberger RE. Scheduled daily exercise or feeding alters the phase of photic entrainment in Syrian hamsters. Physiol Behav 1991; 50 (6): 1257–60

    PubMed  CAS  Article  Google Scholar 

  186. Mistlberger RE. Effects of daily schedules of forced activity on free-running rhythms in the rat. J Biol Rhythms 1991; 6 (1): 71–80

    PubMed  CAS  Article  Google Scholar 

  187. Redlin U, Mrosovsky N. Exercise and human circadian rhythms: what we know and what we need to know. Chronobiol Int 1997; 14 (2): 221–9

    PubMed  CAS  Article  Google Scholar 

  188. Beersma DG, Hiddinga AE. No impact of physical activity on the period of the circadian pacemaker in humans. Chronobiol Int 1998; 15 (1): 49–57

    PubMed  CAS  Article  Google Scholar 

  189. Atkinson G, Fullick S, Grindey C, et al. Exercise, energy balance and the shift worker. Sports Med 2008; 38 (8): 671–85

    PubMed  Article  Google Scholar 

  190. Atkinson G, Edwards B, Reilly T, et al. Exercise as a synchroniser of human circadian rhythms: an update and discussion of the methodological problems. Eur J Appl Physiol 2007; 99 (4): 331–41

    PubMed  Article  Google Scholar 

  191. Baehr EK, Eastman CI, Revelle W, et al. Circadian phase-shifting effects of nocturnal exercise in older compared with young adults. Am J Physiol Regul Integr Comp Physiol 2003; 284 (6): R1542–50

    PubMed  CAS  Google Scholar 

  192. Youngstedt SD, Kripke DF, Elliott JA. Circadian phase-delaying effects of bright light alone and combined with exercise in humans. Am J Physiol Regul Integr Comp Physiol 2002; 282 (1): R259–66

    PubMed  CAS  Google Scholar 

  193. Buxton OM, Lee CW, L’Hermite-Baleriaux M, et al. Exercise elicits phase shifts and acute alterations of melatonin that vary with circadian phase. Am J Physiol Regul Integr Comp Physiol 2003; 284 (3): R714–24

    PubMed  CAS  Google Scholar 

  194. Atkinson G, Drust B, Reilly T, et al. The relevance of melatonin to sports medicine and science. Sports Med 2003; 33 (11): 809–31

    PubMed  Article  Google Scholar 

  195. Yamanaka Y, Hashimoto S, Tanahashi Y, et al. Physical exercise accelerates reentrainment of human sleep-wake cycle but not of plasma melatonin rhythm to 8-h phase-advanced sleep schedule. Am J Physiol Regul Integr Comp Physiol2010; 298 (3): R681–91

    PubMed  CAS  Article  Google Scholar 

  196. Waterhouse J, Edwards B, Nevill A, et al. Do subjective symptoms predict our perception of jet-lag? Ergonomics 2000; 43 (10): 1514–27

    PubMed  CAS  Article  Google Scholar 

  197. Atkinson G, Davenne D. Relationships between sleep, physical activity and human health. Physiol Behav 2007; 90 (2-3): 229–35

    PubMed  CAS  Article  Google Scholar 

  198. Mistlberger RE, Skene DJ. Nonphotic entrainment in humans? J Biol Rhythms 2005; 20 (4): 339–52

    PubMed  Article  Google Scholar 

  199. Fuller PM, Lu J, Saper CB. Differential rescue of light- and food-entrainable circadian rhythms. Science 2008; 320 (5879): 1074–7

    PubMed  CAS  Article  Google Scholar 

  200. Saper CB, Fuller PM. Inducible clocks: living in an un-predictable world. Cold Spring Harb Symp Quant Biol 2007; 72: 543–50

    PubMed  CAS  Article  Google Scholar 

  201. Wu T, Ni Y, Kato H, et al. Feeding-induced rapid resetting of the hepatic circadian clock is associated with acute induction of Per2 and Dec1 transcription in rats. Chronobiol Int 2010; 27 (1): 1–18

    PubMed  Article  Google Scholar 

  202. Kohsaka A, Bass J. A sense of time: how molecular clocks organize metabolism. Trends in endocrinology and metabolism: TEM 2007; 18 (1): 4–11

    PubMed  CAS  Article  Google Scholar 

  203. Waterhouse J. Chronobiology and nutrition. In: MacLaren D, editor. Nutrition and sport. Philadelphia (PA): Churchill Livingstone, 2007: 207–28

    Chapter  Google Scholar 

  204. Reilly T, Waterhouse J, Burke LM, et al. Nutrition for travel. J Sports Sci 2007; 25 Suppl. 1: S125–34

    PubMed  Article  Google Scholar 

  205. Hirao A, Tahara Y, Kimura I, et al. A balanced diet is necessary for proper entrainment signals of the mouse liver clock. PLoS One 2009; 4 (9): e6909

    PubMed  Article  CAS  Google Scholar 

  206. Mendoza J, Pevet P, Challet E. High-fat feeding alters the clock synchronization to light. J Physiol 2008; 586 (Pt 24): 5901–10

    PubMed  CAS  Article  Google Scholar 

  207. Oike H, Nagai K, Fukushima T, et al. High-salt diet advances molecular circadian rhythms in mouse peripheral tissues. Biochem Biophys Res Commun 2010; 402 (1): 7–13

    PubMed  CAS  Article  Google Scholar 

  208. Ehret CF, Scanlon LW. Overcoming jet lag. New York (NY): Berkley Books, 1983

    Google Scholar 

  209. Krauchi K, Cajochen C, Werth E, et al. Alteration of internal circadian phase relationships after morning versus evening carbohydrate-rich meals in humans. J Biol Rhythms 2002 Aug; 17 (4): 364–76

    PubMed  Google Scholar 

  210. Laboratory UOCAN [online]. Available from URL: http://www.antijetlagdiet.com) Accessed 2011 Dec 5

  211. Hanauer SB. Jet lag: life in the fast (and feast) lane [editorial]. Nat Clin Pract Gastroenterol Hepatol 2008; 5 (7): 349

    PubMed  Article  Google Scholar 

  212. Reynolds Jr NC, Montgomery R. Using the Argonne diet in jet lag prevention: deployment of troops across nine time zones. Mil Med 2002; 167 (6): 451–3

    PubMed  Google Scholar 

  213. Hirao A, Nagahama H, Tsuboi T, et al. Combination of starvation interval and food volume determines the phase of liver circadian rhythm in Per2: luc knock-in mice under two meals per day feeding. Am J Physiol Gastrointest Liver Physiol 2010; 299 (5): G1045–53

    PubMed  CAS  Article  Google Scholar 

  214. Bechtold DA. Energy-responsive timekeeping. J Genet 2008; 87 (5): 447–58

    PubMed  CAS  Article  Google Scholar 

  215. Eastman CI, Gazda CJ, Burgess HJ, et al. Advancing circadian rhythms before eastward flight: a strategy to prevent or reduce jet lag. Sleep 2005; 28 (1): 33–44

    PubMed  Google Scholar 

  216. Stewart KT, Hayes BC, Eastman CI. Light treatment for NASA shiftworkers. Chronobiol Int 1995; 12 (2): 141–51

    PubMed  CAS  Article  Google Scholar 

  217. Morgan L, Hampton S, Gibbs M, et al. Circadian aspects of postprandial metabolism. Chronobiol Int 2003; 20 (5): 795–808

    PubMed  CAS  Article  Google Scholar 

  218. Harma MI, Ilmarinen J, Knauth P, et al. Physical training intervention in female shift workers: II. The effects of intervention on the circadian rhythms of alertness, short-term memory, and body temperature. Ergonomics 1988; 31 (1): 51–63

    PubMed  CAS  Article  Google Scholar 

  219. Costa G, Lievore F, Casaletti G, et al. Circadian characteristics influencing interindividual differences in tolerance and adjustment to shiftwork. Ergonomics 1989; 32 (4): 373–85

    PubMed  CAS  Article  Google Scholar 

  220. Waterhouse J, Edwards B, Nevill A, et al. Identifying some determinants of “jet lag” and its symptoms: a study of athletes and other travellers. Br J Sports Med 2002; 36 (1): 54–60

    PubMed  CAS  Article  Google Scholar 

Download references

Acknowledgements

Support for the preparation of this manuscript was provided by UK Sport and the Engineering and Physical Sciences Research Council of the United Kingdom. The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Forbes-Robertson.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Forbes-Robertson, S., Dudley, E., Vadgama, P. et al. Circadian Disruption and Remedial Interventions. Sports Med 42, 185–208 (2012). https://doi.org/10.2165/11596850-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11596850-000000000-00000

Keywords

  • Melatonin
  • Circadian Rhythm
  • Circadian Clock
  • Modafinil
  • Phase Advance