American Journal of Clinical Dermatology

, Volume 13, Issue 3, pp 167–190 | Cite as

Corticosteroid-Induced Osteoporosis

An Update for Dermatologists
Article

Abstract

Long-term corticosteroid treatment is the most common secondary cause of bone loss. Patients treated with long-term corticosteroid therapy may develop osteopenia or osteoporosis, and many have fractures. It is difficult to predict which corticosteroid-treated patients will develop significant skeletal complications because of variability in the underlying diseases treated with corticosteroids, and because of variation in corticosteroid dose over time. Corticosteroid therapy causes an alteration in the ratio between osteoprotegerin (OPG) and receptor activator of nuclear factor κ B (RANK) ligand (RANKL), which leads to early increased bone resorption for the first 3–6 months, with long-term treatment leading primarily to suppression of bone formation. Recently published recommendations advise the use of bisphosphonates or teriparatide in high-risk patients, depending on fracture risk assessed by bone mineral density testing. This article gives an update of current knowledge regarding the pathophysiology, clinical presentation and evaluation, and prevention and treatment of patients with corticosteroid-induced osteoporosis.

References

  1. 1.
    Cushing H. The basophil adenomas of the pituitary body and their clinical manifestations. Bull Johns Hopkins Hosp 1932; 50: 137–95Google Scholar
  2. 2.
    Bressot C, Meunier PJ, Chapuy MC, et al. Histomorphometric profile, pathophysiology and reversibility of corticosteroid induced osteoporosis. Metab Bone Dis Rel Res 1979 Sep; 1 (4): 303–11CrossRefGoogle Scholar
  3. 3.
    Adinoff AD, Hollister JR. Steroid induced fractures and bone loss in patients with asthma. N Engl J Med 1983 Aug; 309 (5): 265–8Google Scholar
  4. 4.
    Kim HJ, Zhao H, Kitaura H, et al. Glucocorticoids suppress bone formation via the osteoclast. J Clin Invest 2006 Aug; 116 (8): 2152–60Google Scholar
  5. 5.
    Hong JM, Kim TH, Ross FP, et al.Calpain 6, a targetmolecule of glucocorticoids, regulates osteoclastic bone resorption via cytoskeletal organization and microtubule acetylation. J Bone Miner Res 2011 Mar; 26 (3): 657–65Google Scholar
  6. 6.
    Yao W, Cheng Z, Busse C, et al. Glucocorticoid excess in mice results in early activation of osteoclastogenesis and adipogenesis and prolonged suppression of osteogenesis: a longitudinal study of gene expression in bone tissue from glucocorticoid-treated mice. Arthritis Rheum 2008 Jun; 58 (6): 1674–86Google Scholar
  7. 7.
    Hofbauer LC, Heufelder AE. Osteoprotegerin and its cognate ligand: a new paradigm of osteoclastogenesis. Eur J Endocrinol 1998 Aug; 139 (2): 152–4Google Scholar
  8. 8.
    Fuller K, Wong B, Fox S, et al. TRANCE is necessary and sufficient for osteoblast-mediated activation of bone resorption in osteoclasts. J Exp Med 1998 Sep; 188 (5): 997–1001Google Scholar
  9. 9.
    Yasuda H, Shima N, Nakagawa N, et al. Identity of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG): a mechanism by which OPG/OCIF inhibits osteoclastogenesis in vitro. Endocrinol 1998 Mar; 139 (3): 1329–37Google Scholar
  10. 10.
    Mizuno A, Amizuka N, Irie K, et al. Severe osteoporosis in mice lacking osteoclastogenesis inhibitory factor/osteoprotegerin. Biochem Biophys Res Comm 1998 Jun; 247 (3): 610–5Google Scholar
  11. 11.
    Bucay N, Sarosi I, Dunstan CR, et al. Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Develop 1998 May; 12 (9): 1260–8PubMedCrossRefGoogle Scholar
  12. 12.
    Simonet WS, Lacey DL, Dunstan CR, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 1997 Apr; 89 (2): 309–19Google Scholar
  13. 13.
    Morinaga T, Nakagawa N, Yasuda H, et al. Cloning and characterization of the gene encoding human osteoprotegerin/osteoclastogenesis-inhibitory factor. Eur J Biochem 1998 Jun; 254 (3): 685–91Google Scholar
  14. 14.
    Vidal ON, Sjogren K, Eriksson BI, et al. Osteoprotegerin mRNA is increased by interleukin-1 alpha in the human osteosarcoma cell line MG-63 and in human osteoblast-like cells. Biochem Biophys Res Comm 1998 Jul; 248 (3):696–700Google Scholar
  15. 15.
    Brandström H, Jonsson KB, Vidal O, et al. Tumor necrosis factor-alpha and -beta upregulate the levels of osteoprotegerin mRNA in human osteosarcoma MG-63 cells. Biochem Biophys Res Comm 1998 Jul; 248 (3): 454–7Google Scholar
  16. 16.
    Takai H, Kanematsu M, Yano K, et al. Transforming growth factor-b stimulates the production of osteoprotegerin/osteoclastogenesis inhibitory factor by bone marrow stromal cells. J Biol Chem 1998 Oct; 273 (42): 27091–6Google Scholar
  17. 17.
    Hofbauer LC, Khosla S, Dunstan CR, et al. Estrogen stimulates production of the anti-resorptive cytokine receptor osteoprotegerin in human osteoblastic cells. Endocrinol 1999 Sep; 140 (9): 4367–70Google Scholar
  18. 18.
    Brandström H, Jonsson KB, Ohlsson C, et al. Regulation of osteoprotegerin mRNA levels by prostaglandin E2 in human bone marrow cells. Biochem Biophys Res Comm 1998 Jun; 247 (2): 338–41Google Scholar
  19. 19.
    Vidal NO, Brandström H, Jonsson KB, et al. Osteoprotegerin mRNA is expressed in primary human osteoblast-like cells: down-regulation by glucocorticoids. J Endocrinol 1998 Oct; 159 (1): 191–5Google Scholar
  20. 20.
    Tsukii K, Shima N, Mochizuki S, et al. Osteoclast differentiation factor mediates an essential signal for bone resorption induced by 1-alpha,25-dihydroxyvitamin D3, prostaglandin E2, or parathyroid hormone in the microenvironment of bone. Biochem Biophys Res Comm 1998 May; 246 (2): 337–41Google Scholar
  21. 21.
    Emery JG, McDonnell P, Burke MB, et al. Osteoprotegerin is a receptor for the cytotoxic ligand TRAIL. J Biol Chem 1998 Jun; 273 (23): 14363–7Google Scholar
  22. 22.
    Lacey DL, Timms E, Tan HL, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 1998 Apr; 93 (2): 165–76Google Scholar
  23. 23.
    Yasuda H, Shima N, Nakagawa N, et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A 1998 Mar; 95 (7): 3597–602Google Scholar
  24. 24.
    Rubin J, Biskobing DM, Jadhav L, et al. Dexamethasone promotes expression of membrane-bound macrophage colony-stimulating factor in murine osteoblast-like cells. Endocrinology 1998 Mar; 139 (3): 1006–12Google Scholar
  25. 25.
    Soares-Schanoski A, Gómez-Piña V, del Fresno C, et al. 6-methylprednisolone down-regulates IRAK-M in human and murine osteoclasts and boosts bone-resorbing activity: a putative mechanism for corticosteroidinduced osteoporosis. J Leukoc Biol 2007 Sep; 82 (3): 700–9Google Scholar
  26. 26.
    SéK, Delaissé JM. Glucocorticoids maintain human osteoclasts in the active mode of their resorption cycle. J Bone Miner Res 2010 Oct; 25 (10): 2184–92Google Scholar
  27. 27.
    Frost HM, Villanueva AR. Human osteoblastic activity: III. The effect of cortisone on lamellar osteoblastic activity. Henry Ford Hosp Med J 1961 Mar; 9 (1): 97–101Google Scholar
  28. 28.
    Dempster DW, Arlot MA, Meunier PJ. Mean wall thickness and formation periods of trabecular bone packets in corticosteroid-induced osteoporosis. Calcif Tiss Int 1983 Jul; 61 (4-5): 173–92Google Scholar
  29. 29.
    Pereira RMR, Delany AM, Canalis E. Cortisol inhibits the differentiation and apoptosis of osteoblasts in culture. Bone 2001 May; 28 (5): 484–90Google Scholar
  30. 30.
    Weinstein RS, Jilka RL, Parfitt AM, et al. Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids. J Clin Invest 1998 Jul; 102 (2): 274–82Google Scholar
  31. 31.
    Smith E, Frenkel B. Glucocorticoids inhibit the transcriptional activity of LEF/TCF in differentiation osteoblasts in a glycogen synthase kinase-3betadependent and -independent manner. J Biol Chem 2005 Jan; 280 (3): 2388–94Google Scholar
  32. 32.
    Pereira RC, Delany AM, Canalis E. Effects of cortisol and bone morphogenetic protein-2 on stromal cell differentiation: correlation with CCAATenhancer binding protein expression. Bone 2002 May; 30 (5): 685–91Google Scholar
  33. 33.
    Ramji DP, Foka P. CCAAT/enhancer-binding proteins: structure, function, and regulation. Biochem J 2002 Aug; 365 (Pt 3): 561–75Google Scholar
  34. 34.
    Wu Z, Bucher NLR, Farmer SR. Induction of peroxisome proliferatoractivated receptor g during the conversion of 3T3 fibroblasts into adipocytes is mediated by C/EBPb, C/EBPd, and glucocorticoids. Mol Cell Biol 1996 Aug; 16 (8): 4128-36Google Scholar
  35. 35.
    Pereira RMR, Delany AM, Durant D, et al. Cortisol regulates the expression of Notch in osteoblasts. J Cell Biochem 2002 Feb; 85 (2): 252–8Google Scholar
  36. 36.
    Sciaudone M, Gazzero E, Priest L, et al. Notch 1 impairs osteoblastic cell differentiation. Endocrinology 2003 Dec; 144 (12): 5631–9Google Scholar
  37. 37.
    Weinmaster G. Review: the ins and outs of notch signaling. Mol Cell Neurosci 1997 Feb; 9 (2): 91–102Google Scholar
  38. 38.
    Mumm JS, Kopan R. Notch signaling: from the outside in. Dev Biol 2000 Dec; 228 (2): 151–65Google Scholar
  39. 39.
    Dallas DJ, Genever PG, Patton AJ, et al. Localization of ADAM10 and Notch receptors in bone. Bone 1999 Jul; 25 (1): 9–15Google Scholar
  40. 40.
    Axelrod JD, Matsuno K, Artavanis-Tsakonas S, et al. Interaction between Wingless and Notch signaling pathways mediated by dishevelled. Science 1996 Mar; 271 (5257): 1826–32Google Scholar
  41. 41.
    Garces C, Ruiz-Hidalgo MJ, Font de Mora J, et al. Notch-1 controls the expression of fatty acid-activated transcription factors and is required for adipogenesis. J Biol Chem 1997 Nov; 272 (47): 29729–34Google Scholar
  42. 42.
    Ross SE, Hemati N, Longo KA, et al. Inhibition of adipogenesis by Wnt signaling. Science 2000 Aug; 289 (5481): 950–3Google Scholar
  43. 43.
    Giustina A, Bussi AR, Jacobello C, et al. Effects of recombinant human growth hormone (GH) on bone and intermediary metabolism in patients receiving chronic glucocorticoid treatment with suppressed endogenous GH response to GH-releasing hormone. J Clin Endocrinol Metab 1995 Jan; 80 (1): 122–9Google Scholar
  44. 44.
    Delany AM, Durant D, Canalis E. Glucocorticoid suppression of IGF I transcription in osteoblasts. Mol Endocrinol 2001 Oct; 15 (10): 1781–9Google Scholar
  45. 45.
    Dempster DW, Moonga BS, Stein LS, et al. Glucocorticoids inhibit bone resorption by isolated rat osteoclasts by enhancing apoptosis. J Endocrinol 1997 Sep; 154 (3): 397–406Google Scholar
  46. 46.
    Diederich S, Quinkler M, Burkhardt P, et al. 11b hydroxysteroid dehydrogenase isoforms: tissue distribution and implications for clinical medicine. Eur J Clin Invest 2000 Dec; 30 Suppl. 3: 21–7Google Scholar
  47. 47.
    Canalis E, Delany AM. 11b-hydroxysteroid dehydrogenase, an amplifier of glucocorticoid action in osteoblasts. J Bone Miner Res 2002 Jun; 17 (6): 987–90Google Scholar
  48. 48.
    Cooper MS, Rabbitt EH, Goddard PE, et al. Autocrine activation of glucocorticoids in osteoblasts increase with age and glucocorticoid exposure. J Bone Miner Res 2002 Jun; 17 (6): 979–86Google Scholar
  49. 49.
    Cooper MS, Bujalska I, Rabbitt E, et al. Modulation of 11betahydroxysteroid dehydrogenase isozymes by proinflammatory cytokines in osteoblasts: an autocrine switch from glucocorticoid inactivation to activation. J Bone Miner Res 2001 Jun; 16 (6): 1037–44Google Scholar
  50. 50.
    Williams LJ, Lyons V, MacLeod I, et al. C/EBP regulates hepatic transcription of 11beta-hydroxysteroid dehydrogenase type 1: a novel mechanism for cross-talk between the C/EBP and glucocorticoid signaling pathways. J Biol Chem 2000 Sep; 275 (39): 30232–9Google Scholar
  51. 51.
    Bonewald LF. The amazing osteocyte. J Bone Miner Res 2011 Feb; 26 (2): 229–38Google Scholar
  52. 52.
    Weinstein RS, Nicholas RW, Manolagas SC. Apoptosis of osteocytes in glucocorticoid-induced osteonecrosis of the hip. J Clin Endocrinol Metab 2000 Aug; 84 (8): 2907–12Google Scholar
  53. 53.
    Bonewald L. Osteocytes. In: Marcus R, Nelson D, Rosen C, editors. Osteoporosis. 3rd ed. Vol. 1. San Diego (CA): Elsevier, 2007: 169–90Google Scholar
  54. 54.
    Kitase Y, Barragan L, Jiang JX, et al. Mechanical induction of PGE2 in osteocytes blocks glucocorticoid-induced apoptosis through both the b-catenin and PKA pathways. J Bone Miner Res 2010 Dec; 25 (12): 2381–92Google Scholar
  55. 55.
    Bellido T. Antagonistic interplay between mechanical forces and glucocorticoids in bone: a tale of kinases. J Cell Biochem 2010 Sep; 111 (1): 1–6Google Scholar
  56. 56.
    Hahn TJ, Halstead LR, Teitelbaum SL, et al. Altered mineral metabolism in glucocorticoid induced osteopenia: effect of 25-hydroxyvitamin D administration. J Clin Invest 1979 Aug; 64 (2): 655–65Google Scholar
  57. 57.
    Hahn TJ, Halstead LR, Haddad Jr JG, et al. Serum 25-hydroxyvitamin D concentrations in patients receiving chronic corticosteroid therapy. J Lab Clin Med 1977 Aug; 90 (2): 399–404Google Scholar
  58. 58.
    Chesney RW, Mazess RB, Hamstra AJ. Reduction of serum 1,25-dihydroxyvitamin D in children receiving glucocorticoids. Lancet 1978 Nov; 2 (8100): 1123–5Google Scholar
  59. 59.
    O’Regan S, Chesney RW, Hamstra AJ. Reduced serum 1,25 (OH) vitamin D levels in prednisone treated adolescents with systemic erythematosus. Acta Pediatr Scand 1979 Jan; 68 (1): 109–11CrossRefGoogle Scholar
  60. 60.
    Carre M, Ayiegebede O, Miravet L, et al. The effect of prednisone on the metabolism and action of 25-hydroxy and 1,25-dihydroxyvitamin D. Proc Natl Acad Sci USA 1974 Aug; 71(8) 2996–3000PubMedCrossRefGoogle Scholar
  61. 61.
    Favus MJ, Kimberg DV, Millar GN, et al. Effects of cortisone administration on the metabolism and localization of 25-hydroxycholecalciferol in the rat. J Clin Invest 1973 Jul; 52 (7): 1328–31Google Scholar
  62. 62.
    Kimberg DV, Baerg RD, Gershon E, et al. Effect of cortisone treatment on the active transport of calcium by the small intestines. J Clin Invest 1971 Jun; 50 (6): 1309–21Google Scholar
  63. 63.
    Godschalk M, Levy J, Downs RW. Glucocorticoids decrease vitamin D receptor numbers and gene expression in human osteosarcoma cells. J Bone Miner Res 1992 Jan; 7 (1): 21–7Google Scholar
  64. 64.
    Seeman E, Kumar R, Hunder GG, et al. Production, degradation, and circulating levels of 1,25-dihydroxyvitamin D in health and chronic glucocorticoid excess. J Clin Invest 1980 Oct; 66 (4): 664–9Google Scholar
  65. 65.
    Hahn TJ. Drug induced disorders of vitamin D and mineral metabolis. Clin Endocrinol Metab 1980 Mar; 9 (1): 107–29Google Scholar
  66. 66.
    Suzuki Y, Ichikawa Y, Saito E, et al. Importance of increased urinary calcium excretion in the development of secondary hyperparathyroidism of patients under glucocorticoid therapy. Metabolism 1983 Feb; 32 (2): 151–6Google Scholar
  67. 67.
    Jee WS, Park HZ, Roberts WE, et al. Corticosteroid and bone. Am J Anat 1970 Dec; 129 (4): 477–9Google Scholar
  68. 68.
    Fucik RF, Kukreja SC, Hargis GK, et al. Effect of glucocorticoids on function of the parathyroid glands in man. J Clin Endocrinol Metab 1975 Jan; 40 (1): 152–5Google Scholar
  69. 69.
    Avioli LV, Birge SJ, Lee SW. Effects of prednisone on vitamin D metabolism in man. J Clin Endocrinol Metab 1968 Sep; 28 (9): 1341–6Google Scholar
  70. 70.
    Lukert BP, Adams JS. Calcium and phosphorus homeostasis in man: effect of corticosteroids. Arch Int Med 1976 Nov; 136 (11): 1249–53Google Scholar
  71. 71.
    Hahn TJ, Hahn BH. Osteopenia in patients with rheumatic diseases: principles of diagnosis and therapy. Semin Arthr Rheum 1976 Nov; 6 (2): 165–88Google Scholar
  72. 72.
    Hahn TJ, Halstead LR, Baran DT. Effects of short-term glucocorticoid administration on intestinal calcium absorption and circulating vitamin D metabolite concentrations in man. J Clin Endocrinol Metab 1981 Jan; 52 (1): 111–5Google Scholar
  73. 73.
    Klein RG, Arnaud SB, Gallagher JC, et al. Intestinal calcium absorption in exogenous hypercortisolism: role of 25-hydroxyvitamin D concentrations in patients receiving chronic corticosteroid therapy. J Lab Clin Med 1971 Jul; 60 (1): 253–9Google Scholar
  74. 74.
    Rubin MR, Bilezikian JP. Clinical review 151: the role of parathyroid hormone in the pathogenesis of glucocorticoid-induced osteoporosis. A re-examination of the evidence. J Clin EndocrinolMetab 2002 Sep; 87 (9): 4033–41Google Scholar
  75. 75.
    Bonadonna S, Burattin A, Nuzzo M, et al. Chronic glucocorticoid treatment alters spontaneous pulsatile parathyroid hormone secretory dynamics in human subjects. Eur J Endocrinol 2005 Feb; 152 (2): 199–205Google Scholar
  76. 76.
    Hahn TJ, Boiseau VC, Avioli LV. Effect of chronic corticosteroid administration on diaphyseal and metaphyseal bone mass. J Clin Endocrinol Metab 1974 Aug; 39 (2): 274–82Google Scholar
  77. 77.
    Sakakura M, Takebe K, Nakagawa S. Inhibition of luteinizing hormone secretion induced by synthetic LRH by long-term treatment with glucocorticoids in human subjects. J Clin Endocrinol Metab 1975 May; 40 (5): 774–9Google Scholar
  78. 78.
    Luton JP, Thieblot P, Valcke JC, et al. Reversible gonadotropin deficiency in male Cushing’s disease. J Clin Endocrinol Metab 1977 Sep; 45 (3): 488–95Google Scholar
  79. 79.
    Hsueh AJ, Erickson GF. Glucocorticoid inhibition of FSH-induced estrogen production in cultured rat granulosa cells. Steroids 1978 Dec; 32 (5): 639–48Google Scholar
  80. 80.
    Doerr P, Pirke KM. Cortisol-induced suppression of plasma testosterone in normal adult males. J Clin Endocrinol Metab 1976 Sep; 43 (3): 622–9Google Scholar
  81. 81.
    Schaison G, Durand F, Mowszowicz I. Effect of glucocorticoids on plasma testosterone in men. Acta Endocrinol (Copenh) 1978 Sep; 89 (1): 126–31Google Scholar
  82. 82.
    MacAdams MR, White RH, Chipps BE. Reduction of serum testosterone levels during chronic glucocorticoid therapy. Ann Int Med 1986 May; 104 (5): 648–51Google Scholar
  83. 83.
    Nordin BE, Marshall DH, Francis RM, et al. The effects of sex steroid and corticosteroid hormones on bone. J Steroid Biochem 1981 Dec; 15 (12): 171–4Google Scholar
  84. 84.
    Goulding A, Gold E. Effects of chronic prednisolone treatment on bone resorption and bone composition in intact and ovariectomized rats and in ovariectomized rats receiving b-estradiol. Endocrinol 1988 Feb; 122 (2): 482–7Google Scholar
  85. 85.
    Ruegsegger P, Medici TC, Anliker M. Corticosteroid-induced bone loss: a longitudinal study of alternate day therapy in patients with bronchial asthma using quantitative computed tomography. Eur J Clin Pharmacol 1983 May; 25 (5): 615–20Google Scholar
  86. 86.
    Kanis JA, Johansson H, Oden A, et al. Ameta-analysis of prior corticosteroid use and fracture risk. J Bone Miner Res 2004 Jun; 19 (6): 893–9Google Scholar
  87. 87.
    Gennari C. Glucocorticoids and bone. In: Peck WA, itor. Bone and mineral research/3. Amsterdam: Elsevier Publishers BV, 1985: 213–32Google Scholar
  88. 88.
    Adachi JD, Bensen WG, Bell MJ, et al. Corticosteroid induced osteoporosis: follow-up over 3 years. In: Christiansen C, Overgaard K, editors. Osteoporosis 1990 (3). Third International Symposium on Osteoporosis. Copenhagen: Osteopress ApS, 1990: 1745–77Google Scholar
  89. 89.
    Weinstein RS. Clinical practice: glucocorticoid-induced bone disease. New Engl J Med 2011 Jul; 365 (1): 62–70Google Scholar
  90. 90.
    von Staa TP, Leufkens HGM, Abenhaim L, et al. Use of oral corticosteroids and risk of fractures. J Bone Miner Res 2000 Jun; 15 (6): 993–1000Google Scholar
  91. 91.
    von Staa TP, Leufkens HG, Cooper C. The epidemiology of corticosteroidinduced osteoporosis: a meta-analysis. Osteoporos Int 2002 Oct; 13 (10): 777–87Google Scholar
  92. 92.
    Saito JK, Davis JW, Wasnich RD, et al. Users of low dose glucocorticoids have increased bone loss rates: a longitudinal study. Calcif Tiss Int 1995 Aug; 57 (2): 115–9Google Scholar
  93. 93.
    von Staa TP, Leufkens HG, Cooper C. Use of inhaled corticosteroids and risk of fractures. J Bone Miner Res 2001 Mar; 16 (3): 581–8Google Scholar
  94. 94.
    Wong CA, Walsh LJ, Smith CJ, et al. Inhaledcorticosteroiduseandbone-mineral density in patients with asthma. Lancet 2000 Apr; 22 (9213): 1399–403Google Scholar
  95. 95.
    Israel E, Banerjee TR, Fitzmaurice GM, et al. Effects of inhaled glucocorticoids on bone density in premenopausal women. NEngl J Med 2001 Sep; 345 (13): 941–7Google Scholar
  96. 96.
    von Staa TP, Leufkens HGM, Abenhaim L, et al. Use of oral corticosteroids in the United Kingdom. Q J Med 2000 Feb; 93 (2): 105–11Google Scholar
  97. 97.
    Sambrook PN, Eisman JA, Champion GD, et al. Determinants of axial bone loss in rheumatoid arthritis. Arthr Rheum 1987 Jul; 30 (7): 721–8Google Scholar
  98. 98.
    Dykman TR, Gluck OS, Murphy WA, et al. Evaluation of factors associated with glucocorticoid-induced osteopenia in patients with rheumatic diseases. Arthr Rheum 1985 Apr; 28 (4): 361–8Google Scholar
  99. 99.
    Kulak CA, Borba VC, Jorgetti V, et al. Skeletal microstructural abnormalities in postmenopausal women with chronic obstructive pulmonary disease. J Bone Miner Res 2010 Sep; 25 (9): 1931–40Google Scholar
  100. 100.
    Summey BT, Yosipovitch G. Glucocorticoid-induced bone loss in dermatologic patients: an update. Arch Dermatol 2006 Jan; 142 (1): 82–90Google Scholar
  101. 101.
    Gonnelli S, Caffarelli C, Maggi S, et al., EOLO study group. Effect of inhaled glucocorticoids and beta(2) agonists on vertebral fracture risk in COPD patients: the EOLO study. Calcif Tissue Int 2010 Aug; 87 (2): 137–43Google Scholar
  102. 102.
    Dam TT, Harrison S, Fink HA, et al., Osteoporotic Fractures in Men (MrOS) Research Group. Bone mineral density and fractures in older men with chronic obstructive pulmonary disease or asthma. Osteoporos Int 2010 Aug; 21 (8): 1341–9Google Scholar
  103. 103.
    Ferguson GT, Calverley PM, Anderson JA, et al. Prevalence and progression of osteoporosis in patients with COPD: results from the TOwards a Revolution in COPD Health study. Chest 2009 Dec; 136 (6): 1456–65Google Scholar
  104. 104.
    Scanlon PD, Connett JE, Wise RA, et al., Lung Health Study Research Group. Loss of bone density with inhaled triamcinolone in Lung Health Study II. Am J Respir Crit Care Med 2004 Dec; 170 (12): 1302–9Google Scholar
  105. 105.
    Langhammer A, Norjavaara E, de Verdier MG, et al. Use of inhaled corticosteroids and bone mineral density in a population based study: the Nord-Trøndelag Health Study (the HUNT Study). Pharmacoepidemiol Drug Saf 2004 Aug; 13 (8): 569–79Google Scholar
  106. 106.
    Vestergaard P, Olsen ML, Paaske Johnsen S, et al. Corticosteroid use and risk of hip fracture: a population-based case-control study in Denmark. J Intern Med 2003 Nov; 254 (5): 486–93Google Scholar
  107. 107.
    Haeck IM, Hamdy NA, Timmer-de Mik L, et al. Low bone mineral density in adult patients with moderate to severe atopic dermatitis. Br J Dermatol 2009 Dec; 161 (6): 1248–54Google Scholar
  108. 108.
    van Velsen SG, Knol MJ, van Eijk RL, et al. Bone mineral density in children with moderate to severe atopic dermatitis. J Am Acad Dermatol 2010 Nov; 63 (5): 824–31Google Scholar
  109. 109.
    Pedreira CC, King E, Jones G, et al. Oral cyclosporine plus topical corticosteroid therapy diminishes bone mass in children with eczema. Pediatr Dermatol 2007 Nov-Dec; 24 (6): 613–20Google Scholar
  110. 110.
    Vestergaard P. Skeletal effects of systemic and topical corticosteroids. Curr Drug Saf 2008 Sep; 3 (3): 190–3Google Scholar
  111. 111.
    Chiodini I, Morelli V, Masserini B, et al. Bone mineral density, prevalence of vertebral fractures, and bone quality in patients with adrenal incidentalomas with and without subclinical hypercortisolism: an Italian multicenter study. J Clin Endocrinol Metab 2009 Sep; 94 (9): 3207–14Google Scholar
  112. 112.
    Chiodini I, Torlontano M, Carnevale V, et al. Skeletal involvement in adult patients with endogenous hypercortisolism. J Endocrinol Invest 2008 Mar; 31 (3): 267–76Google Scholar
  113. 113.
    Di Somma C, Pivonello R, Loche S, et al. Severe impairment of bone mass and turnover in Cushing’s disease: comparison between childhood-onset and adulthood-onset disease. Clin Endocrinol (Oxf) 2002 Feb; 56 (2): 153–8Google Scholar
  114. 114.
    Chiodini I, Torlantano M, Carnevale V, et al. Bone loss rate in adrenal incidentalomas: a longitudinal study. J Clin Endocrinol Metab 2001 Nov; 86 (11): 5337–41Google Scholar
  115. 115.
    Godang K, Ueland T, Bollerslev J. Decreased bone area, bone mineral content, formative markers, and increased bone resorptive markers in endogenous Cushing’s syndrome. Eur J Endocrinol 1999 Aug; 141 (2): 126–31Google Scholar
  116. 116.
    Minetto M, Reimondo G, Osella G, et al. Bone loss is more severe in primary adrenal than in pituitary-dependent Cushing’s syndrome. Osteoporos Int 2004 Nov; 15 (11): 855–61Google Scholar
  117. 117.
    Ohmori N, Nomura K, Ohmori K, et al. Osteoporosis is more prevalent in adrenal than in pituitary Cushing’s syndrome. Endocr J 2003 Feb; 50 (1): 1–7Google Scholar
  118. 118.
    Tauchmanová L, Pivonello R, De Martino MC, e t al. Effects of sex steroids on bone in women with subclinical or overt endogenous hypercortisolism. Eur J Endocrinol 2007 Sep; 157 (3): 359–66Google Scholar
  119. 119.
    Thomas MK, Lloyd-Jones DM, Thadhani RI, et al. Hypovitaminosis D in medical inpatients. New Engl J Med 1998 Mar; 338 (12): 777–83Google Scholar
  120. 120.
    Need AG, Philcox JC, Hartley TF, et al. Calcium metabolism and osteoporosis in corticosteroid-treated postmenopausal women. Aust NZ J Med 1986 Jun; 16 (3): 341–6Google Scholar
  121. 121.
    Garnero P, Weichung JS, Gineyts E, et al. Comparison of new biochemical markers of bone turnover in late postmenopausal osteoporotic women in response to alendronate treatment. J Clin Endocrinol Metab 1994 Dec; 79 (6): 1693–700Google Scholar
  122. 122.
    Nielsen HK, Charles P, Mosekilde L. The effect of single oral doses of prednisone on the circadian rhythm of serum osteocalcin in normal subjects. J Clin Endocrinol Metab 1988 Nov; 67 (5): 1025–30Google Scholar
  123. 123.
    Maldague B, Malghem J, de Deuxchaisnes C. Radiologic aspects of glucocorticoid-induced bone disease. Adv Exp Med Biol 1984; 171: 352–64Google Scholar
  124. 124.
    Luckert BP, Raisz LG. Glucocorticoid-induced osteoporosis: pathogenesis and management. Ann Int Med 1990 Mar; 112 (5): 352–64Google Scholar
  125. 125.
    Peck WA, Brand J, Miller I. Hydrocortisone-induced inhibition of protein synthesis and uridine incorporation in isolated bone cells in vitro. Proc Natl Acad Sci U S A 1967 Jun; 57 (6): 1599–606Google Scholar
  126. 126.
    Chappard D, Josselin N, Rouge-Maillart C, et al. Bone microarchitecture in males with corticosteroid-induced osteoporosis. Osteoporos Int 2007 Apr; 18 (4): 487–94Google Scholar
  127. 127.
    Seeman E, Wahner HW, Offord KP, et al. Differential aspects of endocrine dysfunction on the axial and appendicular skeleton. J Clin Invest 1982 Jun; 69 (6): 1302–9Google Scholar
  128. 128.
    American College of Rheumatology Ad Hoc Committee on Glucocorticoid-Induced Osteoporosis. Recommendations for the prevention and treatment of glucocorticoid-induced osteoporosis. Arthritis Rheum 2001 Jul; 44 (7): 1496–503Google Scholar
  129. 129.
    Grossman JM, Gordon R, Ranganath VK, et al. American College of Rheumatology 2010 recommendations for the prevention and treatment of glucocorticoid-induced osteoporosis. Arthr Care Res (Hoboken) 2010 Nov; 62 (11): 1515–26Google Scholar
  130. 130.
    Adachi JD, Olszynski WP, Hanley DA, et al. Management of corticosteroidinduced osteoporosis. Semin Arthritis Rheum 2000 Feb; 29 (4): 228–51Google Scholar
  131. 131.
    Soen S, Tanaka Y. Glucocorticoid-induced osteoporosis: skeletal manifestations of glucocorticoid use and 2004 Japanese Society for Bone and Mineral Research. Proposed guidelines for it management. Mod Rheumatol 2005 Mar; 15 (3): 163–8Google Scholar
  132. 132.
    Eastell R, Reid DM, Compston J, et al. A UK Consensus Group on management of glucocorticoid-induced osteoporosis: an update. J Intern Med 1998 Oct; 244 (4): 271–92Google Scholar
  133. 133.
    FRAX®. WHO Fracture Risk Assessment Tool [online]. Available from URL: (http://www.shef.ac.uk/FRAX/) [Accessed 2012 Feb 2]
  134. 134.
    Leib ES, Saag KG, Adachi JD, et al. Official positions for FRAX® clinical regarding glucocorticoids: the impact of the use of glucocorticoids on the estimate by FRAX® of the 10 year risk of fracture. J Clin Densitom 2011 Mar; 14 (3): 212–9Google Scholar
  135. 135.
    Kanis JA, Oden A, Johansson H, et al. FRAX and its applications to clinical practice. Bone 2009 May; 44 (5): 734–43Google Scholar
  136. 136.
    Kanis JA, Johansson H, Oden A, et al. Guidance for the adjustment of FRAX according to the dose of glucocorticoids. Osteoporos Int 2011 Feb; 22 (2): 809–16Google Scholar
  137. 137.
    Solomon DH, Katz JN, Jacobs JP, et al. Management of glucocorticoidinduced osteoporosis in patients with rheumatoid arthritis: rates and predictors of care in an academic rheumatology practice. Arthritis Rheum 2002 Dec; 46 (12): 3136–42Google Scholar
  138. 138.
    Sheagren JN, Jowsey J, Bird DC, et al. Effect on bone growth of daily versus alternate day corticosteroid administration: an experimental study. J Lab Clin Med 1977 Jan; 89 (1): 120–30Google Scholar
  139. 139.
    Gluck OS, Murphy WA, Hahn TJ, et al. Bone loss in adults receiving alternate day glucocorticoid therapy. Arthritis Rheum 1981 Jul; 24 (7): 892–8Google Scholar
  140. 140.
    Gennari C, Imbimbo B, Montagnani M, et al. Effects of prednisone and deflazacort on mineral metabolism and parathyroid hormone activity in humans. Calcif Tiss Int 1984 May; 36 (3): 245–52Google Scholar
  141. 141.
    Olgaard K, Storm T, van Wowern N, et al.Glucocorticoid-induced osteoporosis in the lumbar spine, forearm, and mandible of nephrotic patients: a double blind study on the high-dose, long-term effects of prednisone versus deflazacor. Calcif Tiss Int 1992 Jun; 50 (6): 490–7Google Scholar
  142. 142.
    Kawamata A, Iihara M, Okamoto T, et al. Bone mineral density before and after surgical cure of Cushing’s syndrome due to adrenocortical adenoma: prospective study. World J Surg 2008 May; 32 (5): 890–6Google Scholar
  143. 143.
    Di Somma C, Pivonello R, Loche S, et al. Effect of 2 years of cortisol normalization on the impaired bone mass and turnover in adolescent and adult patients with Cushing’s disease: a prospective study. Clin Endocrinol (Oxf) 2003 Mar; 58 (3): 302–8Google Scholar
  144. 144.
    Howland WJ, Pugh DG, Sprague RG. Roentgenologic changes of the skeletal system in Cushing’s syndrome. Radiol 1958 Jul; 71 (1): 69–78Google Scholar
  145. 145.
    Riggs BL, Jowsey J, Kelly PJ. Quantitative microradiographic study of bone remodeling in Cushing’s syndrome. Metabolism 1966 Sep; 15 (9): 773–80Google Scholar
  146. 146.
    Adachi JD, Bensen WG, Bianchi F, et al. Vitamin D and calcium in the prevention of corticosteroid-induced osteoporosis: a three-year follow-up. J Rheumatol 1996 Jun; 23 (6): 995–1000Google Scholar
  147. 147.
    Dykman TR, Haralson KM, Gluck OS, et al. Effect of oral 1,25-dihydroxyvitamin D and calcium on glucocorticoid-induced osteopenia in patients with rheumatic diseases. Arthritis Rheum 1984 Dec; 27 (12): 1336–43Google Scholar
  148. 148.
    Sambrook P, Birmingham J, Kelly P, et al. Prevention of corticosteroid osteoporosis: a comparison of calcium, calcitriol, and calcitonin. N Engl J Med 1993 Jun; 328 (24): 1747–52Google Scholar
  149. 149.
    Bernstein CN, Seeger LL, Anton PA, et al. A randomized, placebo-controlled trial of calcium supplementation for decreased bone density in corticosteroidusing patients with inflammatory bowel disease: a pilot study. Aliment Pharmacol Ther 1996 Oct; 10 (5): 777–86Google Scholar
  150. 150.
    Kung AW, Chan TM, Lau CS, et al. Osteopenia in young hypogonadal women with systemic lupus erythematosus receiving chronic steroid therapy: a randomized controlled trial comparing calcitriol and hormonal replacement therapy. Rheumatol (Oxf) 1999 Dec; 38 (12): 1239–44Google Scholar
  151. 151.
    Lakatos P, Nagy Z, Kiss L, et al. Prevention of corticosteroid-induced osteoporosis by alfacalcidol. Z Rheumatol 2000; 59 Suppl. 1: 48–52PubMedCrossRefGoogle Scholar
  152. 152.
    Lambrinoudaki I, Chan DT, Lau CS, et al. Effect of calcitriol on bone mineral density in premenopausal Chinese women taking chronic steroid therapy: a randomized, double-blind, placebo controlled study. J Rheumatol 2000 Jul; 27 (7): 1759–65Google Scholar
  153. 153.
    McDonald CF, Zebaze RM, Seeman E. Calcitriol does not prevent bone loss in patients with asthma receiving corticosteroid therapy: a double-blind placebo-controlled trial. Osteoporos Int 2006 Oct; 17 (10): 1546–51Google Scholar
  154. 154.
    Ringe JD, Dorst A, Faber H, et al. Superiority of alfacalcidol over plain vitamin D in the treatment of glucocorticoid-induced osteoporosis. Rheumatol Int 2004 Mar; 24 (2): 63–70Google Scholar
  155. 155.
    Homik J, Suarez-Almazor ME, Shea B, et al. Calcium and vitamin D for corticosteroid-induced osteoporosis. Cochrane Database Syst Rev 2000; (2): CD000952Google Scholar
  156. 156.
    De Nijs RN, Jacobs JW, Algra A, et al. Prevention and treatment of glucocorticoid-induced osteoporosis with active vitamin D3 analogues: a review with meta-analysis of randomized controlled trials including organ transplantation studies. Osteoporos Int 2004 Aug; 15 (8): 589–602Google Scholar
  157. 157.
    Amin S, La Valley MP, Simms RW, et al. The role of vitamin D in corticosteroid-induced osteoporosis: a meta-analytic approach. Arthritis Rheum 1999 Aug; 42(8): 1740–51Google Scholar
  158. 158.
    Adams JS, Wahl TO, Lukert BP. Effects of hydrochlorothiazide and dietary sodium restriction on calcium metabolism in corticosteroid treated patients. Metabolism 1981 Mar; 30 (3): 217–21Google Scholar
  159. 159.
    Schwartzman MS, Franck WA. Vitamin D toxicity complicating the treatment of senile, postmenopausal and glucocorticoid-induced osteoporosis: four case reports and a critical commentary on the use of vitamin D in these disorders. Am J Med 1987 Feb; 82 (2): 224–30Google Scholar
  160. 160.
    Hall GM, Daniels M, Doyle D, et al. Effect of hormone replacement therapy on bone mass in rheumatoid arthritis patients treated with and without steroids. Arthr Rheum 1994 Oct; 37 (10): 1499–505Google Scholar
  161. 161.
    Luckert BP, Johnson BE, Robinson RG. Estrogen and progesterone replacement therapy reduces glucocorticoid-induced bone loss. J Bone Miner Res 1992 Sep; 7 (9): 1063–9Google Scholar
  162. 162.
    Reid IR, Wattie DJ, Evans MC, et al. Testosterone therapy in glucocorticoidtreated men. Arch Int Med 1996 Jun; 156 (11): 1173–7Google Scholar
  163. 163.
    Mok CC, To CH, Mak A, et al. Raloxifene for postmenopausal women with systemic lupus erythematosus: a pilot randomized controlled study. Arthritis Rheum 2005 Dec; 52 (12): 3997–4002Google Scholar
  164. 164.
    Adachi J, Cranney A, Goldsmith CH, et al. Intermittent cyclic therapy with etidronate in the prevention of corticosteroid induced bone loss. J Rheumatol 1994 Oct; 21 (10): 1922–6Google Scholar
  165. 165.
    Adachi JD, Bensen WG, Brown J, et al. Intermittent etidronate therapy to prevent corticosteroid-induced osteoporosis. New Engl JMed 1997 Aug; 337 (6): 382–7Google Scholar
  166. 166.
    Mulder H, Struys A. Intermittent cyclical etidronate in the prevention of corticosteroid-induced bone loss. Br J Rheumatol 1994 Apr; 33 (4): 348–50Google Scholar
  167. 167.
    Diamond T, McGuigan L, Barbagello S, et al. Cyclical etidronate plus ergocalciferol prevents glucocorticoid-induced bone loss in postmenopausal women. Am J Med 1995 May; 98 (5): 459–63Google Scholar
  168. 168.
    Struys A, Snelder AA, Mulder H. Cyclical etidronate reverses bone loss of the spine and proximal femur in patients with well-established corticosteroidinduced osteoporosis. Am J Med 1995 Sep; 99 (3): 235–42Google Scholar
  169. 169.
    Wolfhagen FH, van Buuren HR, denOuden JW, et al. Cyclical etidronate in the prevention of bone loss in corticosteroid-treated primary biliary cirrhosis: a prospective, controlled pilot study. J Hepatol 1997 Feb; 26(2): 325–30Google Scholar
  170. 170.
    Pitt P, Li F, Todd P, et al. A double blind placebo controlled study to determine the effects of intermittent cyclical etidronate on bonemineral density in patients on long-term corticosteroid treatment. Thorax 1998 May; 53 (5): 351–6Google Scholar
  171. 171.
    Roux C, Oriente P, Laan R, et al., and the Ciblos Study Group. Randomized trial of effect of cyclical etidronate in the prevention of corticosteroidinduced bone loss. J Clin Endocrinol Metab 1998 Apr; 83 (4): 1128–33Google Scholar
  172. 172.
    Geusens P, Dequecker J, Vanhoof J, et al. Cyclical etidronate increases bone density in the spine and hip of postmenopausal women receiving long term corticosteroid treatment: a double blind, randomized placebo controlled study. Ann Rheum Dis 1998 Dec; 57 (12): 724–7Google Scholar
  173. 173.
    Campbell IA, Douglas JG, Francis RM, et al. Five-year study of etidronate and/or calcium as prevention and treatment for osteoporosis and fractures in patients with asthma receiving long term oral and/or inhaled glucocorticoids. Thorax 2004 Sep; 59 (9): 761–8Google Scholar
  174. 174.
    Furukawa F, Kaminaka C, Ikeda T, et al. Preliminary study of etidronate for prevention of corticosteroid-induced osteoporosis cause by oral glucocorticoid therapy. Clin Exp Dermatol 2011 Mar; 36 (2): 165–8Google Scholar
  175. 175.
    Sato S, Takada T, Katsuki Y, et al. Longterm effect of intermittent cyclical etidronate therapy on corticosteroid-induced osteoporosis in Japanese patients with connective tissue disease: 7-year follow up. J Rheumatol 2008 Jan; 35 (1): 142–6Google Scholar
  176. 176.
    Saag K, Emkey R, Schnitzer TJ, et al. Alendronate for the prevention and treatment of glucocorticoid-induced osteoporosis. New Engl J Med 1998 Jul; 339 (5): 292–9Google Scholar
  177. 177.
    Adachi JD, Saag KG, Delmas PD, et al. Two-year effects of alendronate on bone mineral density and fracture in patients receiving glucocorticoids: a randomized, double-blind, placebo-controlled extension trial. Arthritis Rheum 2001 Jan; 44 (1): 202–11Google Scholar
  178. 178.
    Cohen SK, Levy RM, Keller M, et al. Risedronate therapy prevents corticosteroid-induced bone loss: a twelve-month, multi-center, randomized,double-blind, placebo-controlled, parallel-group study. Arthritis Rheum 1999 Nov; 42 (11): 2309–18Google Scholar
  179. 179.
    Reid DM, Hughes RA, Laan RFJM, et al. Efficacy and safety of daily risedronate in the treatment of corticosteroid-induced osteoporosis in men and women: a randomized trial. J Bone Miner Res 2000 Jun; 15 (6): 1006–13Google Scholar
  180. 180.
    Reid IR, King AR, Alexander CJ, et al. Prevention of steroid-induced osteoporosis with (3-amino-1-hydroxypropylidene)-1,1-bisphosphonate (APD). Lancet 1988 Jan; 1 (8578): 143–6Google Scholar
  181. 181.
    Boutsen Y, Jamart J, Esselinckx W, et al. Primary prevention of glucocorticoidinduced osteoporosiswith intravenous pamidronate and calcium: a prospective controlled 1-year study comparing a single infusion, an infusion given once every 3 months, and calciumalone. J Bone Miner Res 2001 Jan; 16 (1): 104–12Google Scholar
  182. 182.
    Reid DM, Devogelaer JP, Saag K, et al., HORIZON investigators. Zoledronic acid and risedronate in the prevention and treatment of glucocorticoid-induced osteoporosis (HORIZON): a multicentre, double-blind, double-dummy, randomised controlled trial. Lancet 2009 Apr; 373 (9671): 1253–63Google Scholar
  183. 183.
    Homik JE, Cranney A, Shea B, et al. A meta-analysis on the use of bisphosphonates in corticosteroid-induced osteoporosis. J Rheumatol 1999 May; 26 (5): 1148–57Google Scholar
  184. 184.
    Homik J, Cranney A, Shea B, et al. Bisphosphonates for steroid-induced osteoporosis. Cochrane Database Syst Rev 2000; (2): CD001347Google Scholar
  185. 185.
    Teitelbaum SL, Seton MP, Saag KG. Should bisphosphonates be used for long-term treatment of glucocorticoid-induced osteoporosis? Arthritis Rheum 2011 Feb; 63 (2): 325–8Google Scholar
  186. 186.
    Ringe JD, Welzel D. Salmon calcitonin in the therapy of corticoid-induced osteoporosis. Eur J Clin Pharmacol 1987 Jan; 33 (1): 35–9Google Scholar
  187. 187.
    Luengo M, Picado C, Del Rio L, et al. Treatment of steroid-induced osteopenia with calcitonin in corticosteroid-dependent asthma: a one-year follow up study. Am Rev Resp Dis 1990 Jul; 142 (1): 104–7Google Scholar
  188. 188.
    Montemurro L, Schiraldi G, Fraioli P, et al. Prevention of corticosteroidinduced osteoporosis with salmon calcitonin in sarcoid patients. Calcif Tiss Int 1991 Aug; 49 (2): 71–6Google Scholar
  189. 189.
    Adachi JD, Bensen WG, Bell MJ, et al. Salmon calcitonin nasal spray in the prevention of corticosteroid-induced osteoporosis. Br J Rheumatol 1997 Feb; 36 (2): 255–9Google Scholar
  190. 190.
    Cranney A, Welch V, Adachi JD, et al. Calcitonin for the treatment and prevention of corticosteroid-induced osteoporosis. Cochrane Database Syst Rev 2000; (2): CD001983Google Scholar
  191. 191.
    Lane NE, Sanchez S, Modin GW, et al. Parathyroid hormone treatment can reverse corticosteroid-induced osteoporosis. J Clin Invest 1998 Oct; 102 (8): 1627–33Google Scholar
  192. 192.
    Lane NE, Sanchez S, Modin GW, et al. Bone mass continues to increase at the hip after parathyroid hormone treatment is discontinued in glucocorticoidinduced osteoporosis: results of a randomized controlled clinical trial. J Bone Miner Res 2000 May; 15 (5): 944–51Google Scholar
  193. 193.
    Saag KG, Shane E, Boonen S, et al. Teriparatide or alendronate in glucocorticoid-induced osteoporosis. N Engl J Med 2007 Nov; 357 (20): 2028–39Google Scholar
  194. 194.
    Saag KG, Zanchetta JR, Devogelaer JP, et al. Effects of teriparatide versus alendronate for treating glucocorticoid-induced osteoporosis: thirty-six month results of a randomized, double-blind, controlled trial. Arthritis Rheum 2009 Nov; 60 (11): 3346–55Google Scholar
  195. 195.
    Eastell R, Chen P, Saag KG, et al. Bone formation markers in patients with glucocorticoid-induced osteoporosis treated with teriparatide or alendronate. Bone 2010 Apr; 46 (4): 929–34Google Scholar

Copyright information

© Adis Data Information BV 2012

Authors and Affiliations

  1. 1.Mayo Clinic School of MedicineRochesterUSA
  2. 2.Division of Endocrinology, Diabetes, Metabolism, and NutritionMayo ClinicRochesterUSA

Personalised recommendations