Cannabis in Sport

Anti-Doping Perspective

Abstract

Since 2004, when the World Anti-Doping Agency assumed the responsibility for establishing and maintaining the list of prohibited substances and methods in sport (i.e. the Prohibited List), cannabinoids have been prohibited in all sports during competition. The basis for this prohibition can be found in the World Anti-Doping Code, which defines the three criteria used to consider banning a substance. In this context, we discuss the potential of cannabis to enhance sports performance, the risk it poses to the athlete’s health and its violation of the spirit of sport. Although these compounds are prohibited in-competition only, we explain why the pharmacokinetics of their main psychoactive compound, D9-tetrahydrocannabinol, may complicate the results management of adverse analytical findings. Passive inhalation does not appear to be a plausible explanation for a positive test. Although the prohibition of cannabinoids in sports is one of the most controversial issues in anti-doping, in this review we stress the reasons behind this prohibition, with strong emphasis on the evolving knowledge of cannabinoid pharmacology

This is a preview of subscription content, access via your institution.

Fig. 1
Table I
Table II

References

  1. 1.

    International Olympic Committee. Prohibited classes of substances and prohibited methods. Olympic Movement Anti-Doping Code: appendix A. Lausanne: International Olympic Committee, 2003

    Google Scholar 

  2. 2.

    World Anti-Doping Agency (WADA). The 2004 prohibited list. Montreal (QC): WADA, 2004

    Google Scholar 

  3. 3.

    World Anti-Doping Agency (WADA). World anti-doping code. Montreal (QC): WADA, 2009: 29

    Google Scholar 

  4. 4.

    World Anti-Doping Agency (WADA). World anti-doping code. Montreal (QC): WADA, 2003: 14

    Google Scholar 

  5. 5.

    Turner CE, Elsohly MA, Boeren EG. Constituents of Cannabis sativa L: XVII. A review of the natural constituents. J Nat Prod 1980; 43: 169–234

    PubMed  CAS  Article  Google Scholar 

  6. 6.

    Musty RE, Conti LH, Mechoulam R. Anxiolytic properties of cannabidiol. In: Harvey DJ, editor. Marihuana’ 84: proceedings of the Oxford Symposium on Cannabis. Oxford: IRL Press Ltd, 1994: 713–9

    Google Scholar 

  7. 7.

    Onaivi ES, Green MR, Martin BR. Pharmacological characterization of cannabinoids in the elevated plus maze. J Pharmacol Exp Ther 1990; 253: 1002–9

    PubMed  CAS  Google Scholar 

  8. 8.

    Zuardi AW, Crippa JAS, Hallak JEC, et al. Cannabidiol, a Cannabis sativa constituent, as an antipsychotic drug. Braz J Med Biol Res 2006; 39: 421–9

    PubMed  CAS  Article  Google Scholar 

  9. 9.

    Gardner DM, Baldessarini RJ, Waraich P. Modern antipsychotic drugs: a critical overview. CMAJ 2005; 172: 1703–11

    PubMed  Article  Google Scholar 

  10. 10.

    Wade DT, Makela P, Robson P, et al. Do cannabis-based medicinal extracts have general or specific effects on symptoms in multiple sclerosis? A double-blind, randomized, placebo-controlled study on 160 patients. Mult Scler 2004; 10 (4): 434–41

    PubMed  CAS  Article  Google Scholar 

  11. 11.

    Riedel G, Davies SN. Cannabinoid function in learning, memory and plasticity. In: Pertwee RG, editor. Handbook of experimental pharmacology, Vol. 168. New York (NY): Springer, 2005: 446–70

    Article  Google Scholar 

  12. 12.

    Ramaekers JG, Berghaus G, van Laar M, et al. Doserelated risk of motor vehicle crashes after cannabis use. Drug Alcohol Depend 2004; 73: 109–19

    PubMed  CAS  Article  Google Scholar 

  13. 13.

    Verdejo-Garcia A, Benbrook A, Funderburk F, et al. The differential relationship between cocaine use and marijuana use on decision-making performance over repeat testing with the Iowa Gambling Task. Drug Alcohol Depend 2007; 90 (1): 2–11

    PubMed  Article  Google Scholar 

  14. 14.

    Blair RE, Deshpande LS, Sombati S, et al. Prolonged exposure to WIN55,212-2 causes downregulation of the CB1 receptor and the development of tolerance to its anticonvulsant effects in the hippocampal neuronal culture model of acquired epilepsy. Neuropharmacology 2009; 57: 208–18

    PubMed  CAS  Article  Google Scholar 

  15. 15.

    Cabral GA, Griffin-Thomas L. Emerging role of the cannabinoid receptor CB2 in immune regulation: therapeutic prospects for neuroinflammation. Expert Rev Mol Med 2009 Jan 20; 11: e3

    Article  Google Scholar 

  16. 16.

    Fattore L, Fadda P, Spano MS, et al. Neurobiological mechanisms of cannabinoid addiction. Mol Cell Endocrinol 2008; 286 (1-2 Suppl.1): S97–107

    Article  CAS  Google Scholar 

  17. 17.

    Huestis MA, Smith ML. Human cannabinoid pharmacokinetics and interpretation of cannabinoid concentrations in biological fluids and tissues. In: ElSohly MA, editor. Marijuana and the cannabinoids. Totowa (NJ): Humana Press, 2006: 205–36

    Google Scholar 

  18. 18.

    European Monitoring Centre for Drugs and Drug Addiction (EMCDDA). A cannabis reader: global issues and local experiences. Monograph, series 8, Volume 2. Lisbon: EMCDDA, 2008

  19. 19.

    National Drug Strategy. Cannabis in Australia: use, supply and responses. Monograph Series no. 57. Canberra (ACT): Australian Government, Department of Health and Ageing, 2006

    Google Scholar 

  20. 20.

    National Drug Strategy. Cannabis and mental health: put into context. Monograph Series no. 68. Canberra (ACT): Australian Government, Department of Health and Ageing, 2008

    Google Scholar 

  21. 21.

    Moreira FA, Lutz B. The endocannabinoid system: emotion, learning and addiction. Addict Biol 2008; 13: 196–212

    PubMed  CAS  Article  Google Scholar 

  22. 22.

    Huestis MA, Henningfield JE, Cone EJ. Blood cannabinoids: I. Absorption of THC and formation of 11-OHTHC and THCCOOH during and after smoking marijuana. J Anal Toxicol 1992; 16: 276–82

    PubMed  CAS  Google Scholar 

  23. 23.

    Huestis MA, Sampson A, Holicky B, et al. Characterization of the absorption phase of marijuana smoking. Clin Pharmacol Ther 1992; 52: 31–41

    PubMed  CAS  Article  Google Scholar 

  24. 24.

    Gorelick DA, Heishman SJ, Preston KL, et al. The cannabinoid CB1 receptor antagonist rimonabant attenuates the hypotensive effect of smoked marijuana in male smokers. Am Heart J 2006; 151: 754

    PubMed  CAS  Article  Google Scholar 

  25. 25.

    Substance Abuse and, Office of Applied. Drug abuse warning network, 2006: national estimates of drug-related emergency department visits. DAWN Series D-30. Rockville (MD): US Department of Health and Human Services, 2008

    Google Scholar 

  26. 26.

    Appelboam A, Oades PJ. Coma due to cannabis toxicity in an infant. Eur J Emerg Med 2006; 13: 177–9

    PubMed  Article  Google Scholar 

  27. 27.

    Robinson K. Beyond resinable doubt? J Clin Forensic Med 2005; 12: 164–6

    PubMed  Article  Google Scholar 

  28. 28.

    Richer I, Bergeron J. Driving under the influence of cannabis: links with dangerous driving, psychological predictors, and accident involvement. Accid Anal Prev 2009; 41: 299–307

    PubMed  Article  Google Scholar 

  29. 29.

    Hunt CA, Jones RT. Tolerance and disposition of tetrahydrocannabinol in man. J Pharmacol Exp Ther 1980; 215: 35–44

    PubMed  CAS  Google Scholar 

  30. 30.

    Bolla KI, Brown K, Eldreth D, et al. Dose-related neurocognitive effects of marijuana use. Neurology 2002; 59: 1337–43

    PubMed  CAS  Article  Google Scholar 

  31. 31.

    Pope Jr HG, Gruber AJ, Hudson JI, et al. Neuropsychological performance in long-term cannabis users. Arch Gen Psychiatry 2001; 58: 909–15

    PubMed  Article  Google Scholar 

  32. 32.

    Karschner EL, Schwilke EW, Lowe RH, et al. Do delta9- tetrahydrocannabinol concentrations indicate recent use in chronic cannabis users? Addiction 2009; 104: 2041–8

    PubMed  Article  Google Scholar 

  33. 33.

    Karschner EL, Schwilke EW, Lowe RH, et al. Implications of plasma delta9-tetrahydrocannabinol, 11-hydroxy-THC, and 11-nor-9-carboxy-THC concentrations in chronic cannabis smokers. J Anal Toxicol 2009; 33: 469–77

    PubMed  CAS  Google Scholar 

  34. 34.

    Lowe RH, Abraham TT, Darwin WD, et al. Extended urinary delta9-tetrahydrocannabinol excretion in chronic cannabis users precludes use as a biomarker of new drug exposure. Drug Alcohol Depend 2009; 105: 24–32

    PubMed  CAS  Article  Google Scholar 

  35. 35.

    Hall W, Degenhardt L. Adverse health effects of nonmedical cannabis use. Lancet 2009; 374: 1383–91

    PubMed  CAS  Article  Google Scholar 

  36. 36.

    Singh R, Sandhu J, Kaur B, et al. Evaluation of the DNA damaging potential of cannabis cigarette smoke by the determination of acetaldehyde derived N2-ethyl-2’-deoxyguanosine adducts. Chem Res Toxicol 2009; 22: 1181–8

    PubMed  CAS  Article  Google Scholar 

  37. 37.

    Moir D, Rickert WS, Levasseur G, et al. A comparison of mainstream and sidestream marijuana and tobacco cigarette smoke produced under two machine smoking conditions. Chem Res Toxicol 2008; 21: 494–502

    PubMed  CAS  Article  Google Scholar 

  38. 38.

    Bailey JR, Cunny HC, Paule MG, et al. Fetal disposition of delta 9-tetrahydrocannabinol (THC) during late pregnancy in the rhesus monkey. Toxicol Appl Pharmacol 1987; 90: 315–21

    PubMed  CAS  Article  Google Scholar 

  39. 39.

    Battista N, Bari M, Rapino C, et al. Regulation of female fertility by the endocannabinoid system. Hum Fertil (Camb) 2007; 10: 207–16

    CAS  Article  Google Scholar 

  40. 40.

    Campolongo P, Trezza V, Palmery M, et al. Developmental exposure to cannabinoids causes subtle and enduring neurofunctional alterations. Int Rev Neurobiol 2009; 85: 117–33

    PubMed  CAS  Article  Google Scholar 

  41. 41.

    Porath AJ, Fried PA. Effects of prenatal cigarette and marijuana exposure on drug use among offspring. Neurotoxicol Teratol 2005; 27: 267–77

    PubMed  CAS  Article  Google Scholar 

  42. 42.

    Cabral GA. Drugs of abuse, immune modulation, and AIDS. J Neuroimmune Pharmacol 2006; 1: 280–95

    PubMed  Article  Google Scholar 

  43. 43.

    Croxford JL, Yamamura T. Cannabinoids and the immune system: potential for the treatment of inflammatory diseases? J Neuroimmunol 2005; 166: 3–18

    PubMed  CAS  Article  Google Scholar 

  44. 44.

    Ottani A, Giuliani D. HU-210: a potent tool for investigations of the cannabinoid system. CNS Drug Rev 2001; 7: 131–45

    PubMed  CAS  Article  Google Scholar 

  45. 45.

    Pertwee RG. Emerging strategies for exploiting cannabinoid receptor agonists as medicines. Br J Pharmacol 2009; 156: 397–411

    PubMed  CAS  Article  Google Scholar 

  46. 46.

    Glass M, Dragunow M, Faull RL. Cannabinoid receptors in the human brain: a detailed anatomical and quantitative autoradiographic study in the fetal, neonatal and adult human brain. Neuroscience 1997; 77 (2): 299–318

    PubMed  CAS  Article  Google Scholar 

  47. 47.

    Drummer OH, Gerostamoulos J, Batziris H, et al. The incidence of drugs in drivers killed in Australian road traffic crashes. Forensic Sci Int 2003; 134: 154–62

    PubMed  Article  Google Scholar 

  48. 48.

    Janowsky DS, Meacham MP, Blaine JD, et al. Simulated flying performance after marihuana intoxication. Aviat Space Environ Med 1976; 47: 124–8

    PubMed  CAS  Google Scholar 

  49. 49.

    Yesavage JA, Leirer VO, Denari M, et al. Carry-over effects of marijuana intoxication on aircraft pilot performance: a preliminary report. Am J Psychiatry 1985; 142: 1325–9

    PubMed  CAS  Google Scholar 

  50. 50.

    European Monitoring Centre for Drugs and Drug Addiction (EMCDDA). Synthetic cannabinoids and ‘Spice’. 2009 [online]. Available from URL: http://www.emcdda.europa.eu/publications/drug-profiles/synthetic-cannabinoids [Accessed 2011 Aug 31]

    Google Scholar 

  51. 51.

    Skinner R, Conlon L, Gibbons D, et al. Cannabis use and non-clinical dimensions of psychosis in university students presenting to primary care. Acta Psychiatr Scand 2011; 123: 21–7

    PubMed  CAS  Article  Google Scholar 

  52. 52.

    Scholes KE, Martin-Iverson MT. Alterations to pre-pulse inhibition (PPI) in chronic cannabis users are secondary to sustained attention deficits. Psychopharmacology (Berl) 2009; 207: 469–84

    CAS  Article  Google Scholar 

  53. 53.

    Hunault CC, Mensinga TT, Böcker KB, et al. Cognitive and psychomotor effects in males after smoking a combination of tobacco and cannabis containing up to 69 mg delta-9-tetrahydrocannabinol (THC). Psychopharmacology (Berl) 2009; 204: 85–94

    CAS  Article  Google Scholar 

  54. 54.

    Solowij N. Do cognitive impairments recover following cessation of cannabis use? Life Sci 1995; 56: 2119–26

    PubMed  CAS  Article  Google Scholar 

  55. 55.

    Pope Jr HG, Gruber AJ, Hudson JI, et al. Early-onset cannabis use and cognitive deficits: what is the nature of the association? Drug Alcohol Depend 2003; 69: 303–10

    PubMed  Article  Google Scholar 

  56. 56.

    McHale S, Hunt N. Executive function deficits in shortterm abstinent cannabis users. Hum Psychopharmacol 2008; 23: 409–15

    PubMed  Article  Google Scholar 

  57. 57.

    Lynskey M, Hall W. The effects of adolescent cannabis use on educational attainment: a review. Addiction 2000; 95: 1621–30

    PubMed  CAS  Article  Google Scholar 

  58. 58.

    Tashkin DP. Smoked marijuana as a cause of lung injury. Monaldi Arch Chest Dis 2005; 63: 93–100

    PubMed  CAS  Google Scholar 

  59. 59.

    Reece AS. Chronic toxicology of cannabis. Clin Toxicol (Phila) 2009; 47: 517–24

    CAS  Article  Google Scholar 

  60. 60.

    Purohit V, Rapaka R, Shurtleff D. Role of cannabinoids in the development of fatty liver (steatosis). AAPS J 2010; 12: 233–7

    PubMed  CAS  Article  Google Scholar 

  61. 61.

    Whan LB, West MC, McClure N, et al. Effects of delta- 9-tetrahydrocannabinol, the primary psychoactive cannabinoid in marijuana, on human sperm function in vitro. Fertil Steril 2006; 85: 653–60

    PubMed  CAS  Article  Google Scholar 

  62. 62.

    Welch KA, McIntosh AM, Job DE, et al. The impact of substance use on brain structure in people at high risk of developing schizophrenia. Schizophr Bull. Epub 2010

    Google Scholar 

  63. 63.

    Mazzoncini R, Donoghue K, Hart J, et al. Illicit substance use and its correlates in first episode psychosis. Acta Psychiatr Scand. Epub 2009 Oct 13

    Google Scholar 

  64. 64.

    Vandrey R, Haney M. Pharmacotherapy for cannabis dependence: how close are we? CNS Drugs 2009; 23 (7): 543–53

    PubMed  CAS  Article  Google Scholar 

  65. 65.

    Budney AJ, Hughes JR. The cannabis withdrawal syndrome. Curr Opin Psychiatry 2006; 19: 233–8

    PubMed  Article  Google Scholar 

  66. 66.

    Vandrey R, Budney AJ, Kamon JL, et al. Cannabis withdrawal in adolescent treatment seekers. Drug Alcohol Depend 2005; 78: 205–10

    PubMed  Article  Google Scholar 

  67. 67.

    Copersino ML, Boyd SJ, Tashkin DP, et al. Cannabis withdrawal among non-treatment-seeking adult cannabis users. Am J Addict 2006; 15: 8–14

    PubMed  Article  Google Scholar 

  68. 68.

    Hasin DS, Keyes KM, Alderson D, et al. Cannabis withdrawal in theUnited States: results from NESARC. J Clin Psychiatry 2008; 69: 1354–63

    PubMed  Article  Google Scholar 

  69. 69.

    Cornelius JR, Chung T, Martin C, et al. Cannabis withdrawal is common among treatment-seeking adolescents with cannabis dependence and major depression, and is associated with rapid relapse to dependence. Addict Behav 2008; 33: 1500–5

    PubMed  Article  Google Scholar 

  70. 70.

    Lupica CR, Riegel AC, Hoffman AF. Marijuana and cannabinoid regulation of brain reward circuits. Br J Pharmacol 2004; 143: 227–34

    PubMed  CAS  Article  Google Scholar 

  71. 71.

    Gardner EL. Endocannabinoid signaling system and brain reward: emphasis on dopamine. Pharmacol Biochem Behav 2005; 81: 263–84

    PubMed  CAS  Article  Google Scholar 

  72. 72.

    Zangen A, Solinas M, Ikemoto S, et al. Two brain sites for cannabinoid reward. J Neurosci 2006; 26: 4901–7

    PubMed  CAS  Article  Google Scholar 

  73. 73.

    Solinas M, Yasar S, Goldberg SR. Endocannabinoid system involvement in brain reward processes related to drug abuse. Pharmacol Res 2007; 56: 393–405

    PubMed  CAS  Article  Google Scholar 

  74. 74.

    Matthew RJ, Wilson WH, Turkington TG, et al. Cerebellar activity and disturbed time sense after THC. Brain Res 1998; 797: 183–9

    Article  Google Scholar 

  75. 75.

    Ashton CH. Pharmacology and effects of cannabis: a brief review. Br J Psychiatry 2001; 178: 101–6

    PubMed  CAS  Article  Google Scholar 

  76. 76.

    Wachtel SR, ElSohly MA, Ross SA, et al. Comparison of the subjective effects of delta(9)-tetrahydrocannabinol and marijuana in humans. Psychopharmacology (Berl) 2002; 161: 331–9

    CAS  Article  Google Scholar 

  77. 77.

    Grotenhermen F. The toxicology of cannabis and cannabis prohibition. Chem Biodivers 2007; 4: 1744–69

    PubMed  CAS  Article  Google Scholar 

  78. 78.

    Steadward RD, Singh M. The effects of smokingmarihuana on physical performance. Med Sci Sports 1975; 7: 309–11

    PubMed  CAS  Google Scholar 

  79. 79.

    Renaud AM, Cormier Y. Acute effects of marihuana smoking on maximal exercise performance. Med Sci Sports Exerc 1986; 18: 685–9

    PubMed  CAS  Google Scholar 

  80. 80.

    Berrendero F, Maldonado R. Involvement of the opioid system in the anxiolytic-like effects induced by delta(9)-tetrahydrocannabinol. Psychopharmacology (Berl) 2002; 163: 111–7

    CAS  Article  Google Scholar 

  81. 81.

    Saugy M, Avois L, Saudan C, et al. Cannabis and sport. Br J Sports Med 2006; 40 Suppl.1: i13–5

    Article  Google Scholar 

  82. 82.

    Bortolato M, Campolongo P, Mangieri RA, et al. Anxiolytic- like properties of the anadamide transport inhibitor AM404. Neuropsychopharmacology 2006; 31: 2652–9

    PubMed  CAS  Article  Google Scholar 

  83. 83.

    Naidu PS, Varel SA, Ahn K, et al. Evaluation of fatty acid amide hydrolase inhibition in murine models of emotionality. Psychopharmacology (Berl) 2007; 192: 61–70

    CAS  Article  Google Scholar 

  84. 84.

    Moreira FA, Aguiar DC, Guimaraes FS. Anxiolytic-like effect of cannabidiol in the rat Vogel conflict test. Prog Neuropsychopharmacol Biol Psychiatry 2006; 30: 1466–71

    PubMed  CAS  Article  Google Scholar 

  85. 85.

    Haller J, Varga B, Ledent C, et al. Context-dependent effects of CB1 cannabinoid gene disruption on anxiety-like and social behaviour in mice. Eur J Neurosci 2004; 19: 1906–12

    PubMed  CAS  Article  Google Scholar 

  86. 86.

    McDonald J, Schleifer L, Richards JB, et al. Effects of THC on behavioral measures of impulsivity in humans. Neuropsychopharmacology 2003; 28: 1356–65

    PubMed  CAS  Article  Google Scholar 

  87. 87.

    Lane SD, Cherek DR, Tcheremissine OV, et al. Acute marijuana effects on human risk taking. Neuropsychopharmacology 2005; 30: 800–9

    PubMed  CAS  Article  Google Scholar 

  88. 88.

    Martinez D. Le dopage au cannabis releve surtout de la question des droits et des devoirs du sportif. 20 Minutes France, 2007 Jan 31 [online]. Available from URL: http://www.20minutes.fr/article/136277/Sport-Le-dopage-au-cannabis-releve-surtout-de-la-question-des-droits-et-des-devoirsdu-sportif.php [Accessed 2011 Aug 31]

    Google Scholar 

  89. 89.

    Marsicano G, Wotjak CT, Azad SC, et al. The endogenous cannabinoid system controls extinction of aversive memories. Nature 2002; 418: 530–4

    PubMed  CAS  Article  Google Scholar 

  90. 90.

    Chhatwal JP, Davies M, Maguschak KA, et al. Enhancing cannabinoid neurotransmission augments the extinction of conditioned fear. Neuropsychopharmacology 2005; 30: 516–24

    PubMed  CAS  Article  Google Scholar 

  91. 91.

    Lutz B. The endocannabinoid system and extinction learning. Mol Neurobiol 2007; 36: 92–101

    PubMed  CAS  Article  Google Scholar 

  92. 92.

    Wagner JC. Abuse of drugs used to enhance athletic performance. Am J Hosp Pharm 1989; 46: 2059–67

    PubMed  CAS  Google Scholar 

  93. 93.

    Bambico FR, Katz N, Debonnel G, et al. Cannabinoids elicit antidepressant-like behavior and activate serotonergic neurons through the medial prefrontal cortex. J Neurosci 2007; 27: 11700–11

    PubMed  CAS  Article  Google Scholar 

  94. 94.

    Bortolato M, Mangieri RA, Fu J, et al. Antidepressant-like activity of the fatty acid amide hydrolase inhibitor URB597 in a rat model of chronic mild stress. Biol Psychiatry 2007; 62: 1103–10

    PubMed  CAS  Article  Google Scholar 

  95. 95.

    Chabrol H, Ducongé E, Casas C, et al. Relations between cannabis use and dependence, motives for cannabis use and anxious, depressive and borderline symptomatology. Addict Behav 2005; 30: 829–40

    PubMed  Article  Google Scholar 

  96. 96.

    Simons JS, Gaher RM, Correia CJ, et al. An affectivemotivational model of marijuana and alcohol problems among college students. Psychol Addict Behav 2005; 19: 326–34

    PubMed  Article  Google Scholar 

  97. 97.

    Bonn-Miller MO, Zvolensky MJ, Bernstein A. Marijuana use motives: concurrent relations to frequency of past 30-day use and anxiety sensitivity among young adult marijuana smokers. Addict Behav 2007; 32: 49–62

    PubMed  Article  Google Scholar 

  98. 98.

    Catlin DH, Murray TH. Performance-enhancing drugs, fair competition, and Olympic sport. JAMA 1996; 276: 231–7

    PubMed  CAS  Article  Google Scholar 

  99. 99.

    Iven VG. Recreational drugs. Clin Sports Med 1998; 17 (2): 245–59

    PubMed  CAS  Article  Google Scholar 

  100. 100.

    Lorente FO, Peretti-Watel P, Grelot L. Cannabis use to enhance sportive and non-sportive performances among French sport students. Addict Behav 2005; 30: 1382–91

    PubMed  Article  Google Scholar 

  101. 101.

    Pillard F, Cances-Lauwers V, Godeau E, et al. Sport practice and cannabis consumption in a representative sample of French high school adolescents [in French]. Ann Med Interne (Paris) 2001; 152 Suppl.7: 28–36

    Google Scholar 

  102. 102.

    Red C, Quinn TJ, O’Keeffe M. Reefer madness: why more athletes are turning to marijuana. New York Daily News 2003 May 4 [online]. Available from URL: http://articles.nydailynews.com/2003-05-04/sports/18221489_1_wadatesting-marijuana [Accessed 2011 Sep 7]

    Google Scholar 

  103. 103.

    USA Swimming. Updated statement from USA Swimming regarding Michael Phelps. 2009 February 5 [online]. Available from URL: http://www.usaswimming.org/USASWeb/ViewNewsArticle.aspx?TabId=0&Alias=Rainbow&Lang=en&ItemId=2354&mid=2943 [Accessed 2011Aug 31]

    Google Scholar 

  104. 104.

    Van Valkenburg K. Michael Phelps suspended 3 months. Baltimore Sun 2009 Feb 6 [online]. Available from URL: http://www.baltimoresun.com/sports/olympics/bal-sp.phelps06feb06,0,1898488.story [Accessed 2011 Aug 31]

    Google Scholar 

  105. 105.

    World Anti-Doping Agency (WADA). WADA technical document: Decision limits for the confirmatory quantification TD2011DL. The world anti-doping code. International Standards for Laboratories [online]. Available from URL http://www.wada-ama.org/Documents/World_Anti-Doping_Program/WADP-IS-Laboratories/WADA_TD2010DLv1.0_Decision%20Limits%20for%20the%20Confirmatory%20Quantification%20of%20Threshold%20Substances_May%2008%202010_EN.doc.pdf [Accessed 2011Sep 5]

  106. 106.

    Goodwin RS, Gustafson RA, Barnes A, et al. Delta(9)-tetrahydrocannabinol, 11-hydroxy-delta(9)-tetrahydrocannabinol and 11-nor-9-carboxy-delta(9)-tetrahydrocannabinol in human plasma after controlled oral administration of cannabinoids. Ther Drug Monit 2006; 28: 545–51

    PubMed  CAS  Article  Google Scholar 

  107. 107.

    Huestis MA, Mitchell JM, Cone EJ. Urinary excretion profiles of 11-nor-9-carboxy-delta 9-tetrahydrocannabinol in humans after single smoked doses of marijuana. J Anal Toxicol 1996; 20: 441–52

    PubMed  CAS  Google Scholar 

  108. 108.

    McGilveray IJ. Pharmacokinetics of cannabinoids. Pain Res Manag 2005; 10 Suppl.A: 15A–22A

    Google Scholar 

  109. 109.

    Hunault CC, Mensinga TT, de Vries I, et al. Delta-9-tetrahydrocannabinol (THC) serum concentrations and pharmacological effects in males after smoking a combination of tobacco and cannabis containing up to 69mg THC. Psychopharmacology (Berl) 2008; 201: 171–81

    CAS  Article  Google Scholar 

  110. 110.

    Huestis MA, Cone EJ. Urinary excretion half-life of 11- Nor-9-carboxy-delta9-tetrahydrocannabinol in humans. Ther Drug Monit 1998; 20: 570–6

    PubMed  CAS  Article  Google Scholar 

  111. 111.

    Huestis MA, Mitchell JM, Cone EJ. Detection times of marijuana metabolites in urine by immunoassay and GCMS. J Anal Toxicol 1995; 19: 443–9

    PubMed  CAS  Google Scholar 

  112. 112.

    Niedbala RS, Kardos KW, Fritch DF, et al. Detection of marijuana use by oral fluid and urine analysis following single-dose administration of smoked and oral marijuana. J Anal Toxicol 2001; 25: 289–303

    PubMed  CAS  Google Scholar 

  113. 113.

    Goodwin RS, Darwin WD, Chiang CN, et al. Urinary elimination of 11-nor-9-carboxy-delta9-tetrahydrocannnabinol in cannabis users during continuously monitored abstinence. J Anal Toxicol 2008; 32: 562–9

    PubMed  CAS  Google Scholar 

  114. 114.

    Smith ML, Barnes AJ, Huestis MA. Identifying new cannabis use with urine creatinine-normalized THCCOOH concentrations and time intervals between specimen collections. J Anal Toxicol 2009; 33: 185–9

    PubMed  CAS  Google Scholar 

  115. 115.

    Schwilke EW, Gullberg RG, Darwin WD, et al. Differentiating new cannabis use from residual urinary cannabinoid excretion in chronic, daily cannabis users. Addiction 2011; 106: 499–506

    PubMed  Article  Google Scholar 

  116. 116.

    Kemp PM, Abukhalaf IK, Manno JE, et al. Cannabinoids in humans: II. The influence of three methods of hydrolysis on the concentration of THC and two metabolites in urine. J Anal Toxicol 1995; 19: 292–8

    PubMed  CAS  Google Scholar 

  117. 117.

    Manno JE, Manno BR, Kemp PM, et al. Temporal indication of marijuana use can be estimated from plasma and urine concentrations of delta9-tetrahydrocannabinol, 11-hydroxy-delta9-tetrahydrocannab-inol, and 11-nordelta9- tetrahydrocannabinol-9-carboxylic acid. J Anal Toxicol 2001; 25: 538–49

    PubMed  CAS  Google Scholar 

  118. 118.

    ElSohly MA, deWit H, Wachtel SR, et al. Delta9-tetrahydrocannabivarin as a marker for the ingestion of marijuana versus Marinol: results of a clinical study. J Anal Toxicol 2001; 25: 565–71

    Google Scholar 

  119. 119.

    Levin FR, Mariani JJ, Brooks DJ, et al. Delta9-tetrahydrocannabivarin testing may not have the sensitivity to detect marijuana use among individuals ingesting dronabinol. Drug Alcohol Depend 2010; 106: 65–8

    PubMed  CAS  Article  Google Scholar 

  120. 120.

    Jung J, Kempf J, Mahler H, et al. Detection of delta9-tetrahydrocannabinolic acid A in human urine and blood serum by LC-MS/MS. J Mass Spectrom 2007; 42: 354–60

    PubMed  CAS  Article  Google Scholar 

  121. 121.

    Jung J, Meyer MR, Maurer HH, et al. Studies on the metabolism of the delta9-tetrahydrocannabinol precursor delta9-tetrahydrocannabinolic acid A (delta9-THCA-A) in rat using LC-MS/MS, LC-QTOF MS and GC-MS techniques. J Mass Spectrom 2009; 44: 1423–33

    PubMed  CAS  Article  Google Scholar 

  122. 122.

    World Anti-Doping Agency. International Standard for Laboratories. 2009 [online]. Available from URL: http://www.wada-ama.org/en/Science-Medicine/Anti-Doping-Laboratories/International-Standard-for-Laboratories/ [Accessed 2011 Sep 7]

    Google Scholar 

  123. 123.

    Mulé SJ, Lomax P, Gross SJ. Active and realistic passive marijuana exposure tested by three imunoassays and GC/MS in urine. J Anal Toxicol 1988; 12: 113–6

    PubMed  Google Scholar 

  124. 124.

    Westin AA, Slørdal L. Passive inhalation of cannabis smoke: is it detectable [in Norwegian]? Tidsskr Nor Laegeforen 2009; 129: 109–13

    PubMed  Article  Google Scholar 

  125. 125.

    Cone EJ. Marijuana effects and urinalysis after passive inhalation and oral ingestion. NIDA Res Monogr 1990; 99: 88–96

    PubMed  CAS  Google Scholar 

  126. 126.

    Cone EJ, Johnson RE. Contact highs and urinary cannabinoid excretion after passive exposure to marijuana smoke. Clin Pharmacol Ther 1986; 40: 247–56

    PubMed  CAS  Article  Google Scholar 

  127. 127.

    Cone EJ, Johnson RE, Darwin WD, et al. Passive inhalation of marijuana smoke: urinalysis and room air levels of delta-9-tetrahydrocannabinol. J Anal Toxicol 1987; 11: 89–96

    PubMed  CAS  Google Scholar 

  128. 128.

    Law B, Mason PA, Moffat AC, et al. Passive inhalation of cannabis smoke. J Pharm Pharmacol 1984; 36: 578–81

    PubMed  CAS  Article  Google Scholar 

  129. 129.

    Morland J, Bugge A, Skuterud B, et al. Cannabinoids in blood and urine after passive inhalation of cannabis smoke. J Forensic Sci 1985; 30: 997–1002

    PubMed  CAS  Google Scholar 

  130. 130.

    Perez-Reyes M, Di Guiseppi S, Mason AP, et al. Passive inhalation of marijuana smoke and urinary excretion of cannabinoids. Clin Pharmacol Ther 1983; 34: 36–41

    PubMed  CAS  Article  Google Scholar 

  131. 131.

    ElSohly MA. Practical challenges to positive drug tests for marijuana. Clin Chem 2003; 49: 1037–8

    Article  Google Scholar 

  132. 132.

    Pijlman FT, Rigter SM, Hoek J, et al. Strong increase in total delta-THC in cannabis preparations sold in Dutch coffee shops. Addict Biol 2005; 10: 171–80

    PubMed  CAS  Article  Google Scholar 

  133. 133.

    Office of National Drug Control Policy. 2001 National Household Survey on Drug Abuse (NHSDA) [online]. Available from URL: http://oas.samhsa.gov/nhsda/2k1nhsda/PDF/cover.pdf [Accessed 2011 Sep 7]

  134. 134.

    European School Survey Project on Alcohol and Other Drugs (ESPAD). Alcohol and drug use among European 17–18 year old students: data from the ESPAD Project. 2007 [online]. Available from URL: http://www.espad.org/documents/Espad/ESPAD_reports/ESPAD_17–18_Year_Old_2003.pdf [Accessed 2011 Sep 5]

    Google Scholar 

  135. 135.

    US Department of Health and Human Services. Substance Abuse and Mental Health Services Administration (SAMHSA): 2006 National Survey on Drug Use and Health [online]. Available from URL: http://oas.samhsa.gov/nhsda/2k1nhsda/PDF/cover.pdf [Accessed 2011 Sep 5]

Download references

Acknowledgements

We would like to thank Dr Patrick Schamasch (IOC) and Mr Thierry Boghosian (WADA) for providing statistics on AAFs on cannabinoids. We would also like to thank Ms Violet Maziar for her editing assistance. No funding was used to assist in the preparation of this review. The authors have no conflicts of interest to declare that are directly relevant to the content of this review.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Professor Marilyn A. Huestis.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Huestis, M.A., Mazzoni, I. & Rabin, O. Cannabis in Sport. Sports Med 41, 949–966 (2011). https://doi.org/10.2165/11591430-000000000-00000

Download citation

Keywords

  • Oral Fluid
  • Cannabis User
  • Glyceryl Ether
  • International Olympic Committee
  • Cannabis Smoking