Skip to main content

Carbohydrate Ingestion during Team Games Exercise

Current Knowledge and Areas for Future Investigation

Abstract

There is a growing body of research on the influence of ingesting carbohydrate-electrolyte solutions immediately prior to and during prolonged intermittent, high-intensity exercise (team games exercise) designed to replicate field-based team games. This review presents the current body of knowledge in this area, and identifies avenues of further research. Almost all early work supported the ingestion of carbohydrate-electrolyte solutions during prolonged intermittent exercise, but was subject to methodological limitations. A key concern was the use of exercise protocols characterized by prolonged periods at the same exercise intensity, the lack of maximal- or high-intensity work components and long periods of seated recovery, which failed to replicate the activity pattern or physiological demand of team games exercise. The advent of protocols specifically designed to replicate the demands of field-based team games enabled a more externally valid assessment of the influence of carbohydrate ingestion during this form of exercise. Once again, the research overwhelmingly supports carbohydrate ingestion immediately prior to and during team games exercise for improving time to exhaustion during intermittent running.

While the external validity of exhaustive exercise at fixed prescribed intensities as an assessment of exercise capacity during team games may appear questionable, these assessments should perhaps not be viewed as exhaustive exercise tests per se, but as indicators of the ability to maintain high-intensity exercise, which is a recognized marker of performance and fatigue during field-based team games. Possible mechanisms of exercise capacity enhancement include sparing of muscle glycogen, glycogen resynthesis during low-intensity exercise periods and attenuated effort perception during exercise. Most research fails to show improvements in sprint performance during team games exercise with carbohydrate ingestion, perhaps due to the lack of influence of carbohydrate on sprint performance when endogenous muscle glycogen concentration remains above a critical threshold of ∼200 mmol/kg dry weight. Despite the increasing number of publications in this area, few studies have attempted to drive the research base forward by investigating potential modulators of carbohydrate efficacy during team games exercise, preventing the formulation of optimal carbohydrate intake guidelines. Potential modulators may be different from those during prolonged steady-state exercise due to the constantly changing exercise intensity and frequency, duration and intensity of rest intervals, potential for team games exercise to slow the rate of gastric emptying and the restricted access to carbohydrate-electrolyte solutions during many team games.

This review highlights fluid volume, carbohydrate concentration, carbohydrate composition and solution osmolality; the glycaemic index of preexercise meals; fluid and carbohydrate ingestion patterns; fluid temperature; carbohydrate mouthwashes; carbohydrate supplementation in different ambient temperatures; and investigation of all of these areas in different subject populations as important avenues for future research to enable a more comprehensive understanding of carbohydrate ingestion during team games exercise.

This is a preview of subscription content, access via your institution.

Table I
Table II
Table III

References

  1. Jeukendrup AE. Carbohydrate intake during exercise and performance. Nutrition 2004; 20: 669–77

    PubMed  CAS  Google Scholar 

  2. Kent M, editor. Oxford dictionary of sports science and medicine. 3rd ed. Oxford: Oxford University Press, 2006

    Google Scholar 

  3. Coyle EF, Coggan AR, Hemmert MK, et al. Muscle glycogen utilization during prolonged strenuous exercise when fedcarbohydrate. J Appl Physiol 1986; 61 (1): 165–72

    PubMed  CAS  Google Scholar 

  4. Rollo I, Williams C. Influence of ingesting a carbohydrateelectrolyte solution before and during a 1-hr runningperformance test. Int J Sport Nutr Exerc Metab 2009; 19 (6): 645–58

    PubMed  CAS  Google Scholar 

  5. Tsintzas OK, Williams C, Wilson W, et al. Influence of carbohydrate supplementation early in exercise on endurancerunning capacity. Med Sci Sports Exerc 1996; 28: 1373–9

    PubMed  CAS  Google Scholar 

  6. Bangsbo J. The physiology of soccer with special reference to intense intermittent exercise. Acta Physiol Scand 1994; 619 Suppl.: 1–155

    CAS  Google Scholar 

  7. Balsom PD, Wood K, Olsson P, et al. Carbohydrate intake and multiple sprint sports: with special reference to football(soccer). Int J Sports Med 1999; 20 (1): 48–52

    PubMed  CAS  Google Scholar 

  8. Mohr M, Krustrup P, Bangsbo J. Fatigue in soccer: a brief review. J Sports Sci 2005; 23 (6): 593–9

    PubMed  Google Scholar 

  9. Saltin B. Metabolic fundamentals in exercise. Med Sci Sports Exerc 1973; 5 (3): 137–46

    CAS  Google Scholar 

  10. Shi X, Gisolfi CV. Fluid and carbohydrate replacement during intermittent exercise. Sports Med 1998; 25 (3): 157–72

    PubMed  CAS  Google Scholar 

  11. Murray R, Eddy DE, Murray TW, et al. The effect of fluid and carbohydrate feedings during intermittent cyclingexercise. Med Sci Sports Exerc 1987; 19 (6): 597–604

    PubMed  CAS  Google Scholar 

  12. Coggan AR, Coyle EF. Effect of carbohydrate feedings during high intensity exercise. J Appl Physiol 1988; 65 (4): 1703–9

    PubMed  CAS  Google Scholar 

  13. Murray R, Seifert JG, Eddy DE, et al. Carbohydrate feeding and exercise: effect of beverage carbohydratecontent. Eur J Appl Physiol 1989; 59: 152–8

    CAS  Google Scholar 

  14. Yaspelkis BB, Patterson JG, Anderla PA, et al. Carbohydrate supplementation spares muscle glycogen duringvariable-intensity exercise. J Appl Physiol 1993; 75 (4): 1477–85

    PubMed  CAS  Google Scholar 

  15. Nassis GP, Williams C, Chisnall P. Effect of a carbohydrate- electrolyte drink on endurance capacity duringprolonged intermittent high-intensity running. Br J Sports Med 1998; 32: 248–52

    PubMed  CAS  Google Scholar 

  16. Febbraio MA, Lambert DL, Starkie RL, et al. Effect of epinephrine on muscle glycogenolysis during exercise intrained men. J Appl Physiol 1998; 84: 465–70

    PubMed  CAS  Google Scholar 

  17. Jeukendrup AE. Modulation of carbohydrate and fat utilization by diet, exercise and environment. Biochem Soc Trans 2003; 31 (6): 1270–3

    PubMed  CAS  Google Scholar 

  18. Morris JG, Nevill ME, Thompson D, et al. The influence of a 6.5% carbohydrate-electrolyte solution on performance of prolonged intermittent high intensity running at 30°C. J Sports Sci 2003; 21: 371–81

    PubMed  Google Scholar 

  19. Jeukendrup AE, Jentjens R. Oxidation of carbohydrate feedings during prolonged exercise: current thoughts,guidelines and directions for future research. Sports Med 2000; 29 (6): 407–24

    PubMed  CAS  Google Scholar 

  20. Bogdanis GC, Nevill ME, Boobis LH, et al. Recovery of power output and muscle metabolites following 30 s ofmaximal sprint cycling inman. J Physiol 1995; 482: 467–80

    PubMed  CAS  Google Scholar 

  21. Gaitanos GC, Williams C, Boobis LH, et al. Human muscle metabolism during intermittent maximal exercise. J App Physiol 1993; 75 (2): 712–9

    CAS  Google Scholar 

  22. Leatt PB, Jacobs I. Effect of glucose polymer ingestion on glycogen depletion during a soccer match. Can J Sport Sci 1989; 14 (2): 112–6

    PubMed  CAS  Google Scholar 

  23. Nicholas CW, Williams C, Lakomy HKA, et al. Influence of ingesting a carbohydrate-electrolyte solution on endurancecapacity during intermittent, high-intensityshuttle running. J Sports Sci 1995; 13: 283–90

    PubMed  CAS  Google Scholar 

  24. Davis JM, Welsh RS, De Volve KL, et al. Effects of branched- chain amino acids and carbohydrate on fatigueduring intermittent, high-intensity running. Int J Sports Med 1999; 20: 309–14

    PubMed  CAS  Google Scholar 

  25. Nicholas CW, Tsintzas K, Boobis L, et al. Carbohydrateelectrolyte ingestion during intermittent high-intensityrunning. Med Sci Sports Exerc 1999; 31 (9): 1280–6

    PubMed  CAS  Google Scholar 

  26. Davis JM, Welsh RS, Alderson NA. Effects of carbohydrate and chromium ingestion during intermittent highintensityexercise to fatigue. Int J Sport Nutr Exerc Metab 2000; 10: 476–85

    PubMed  CAS  Google Scholar 

  27. Welsh RS, Davis JM, Burke JR, et al. Carbohydrates and physical/mental performance during intermittent exerciseto fatigue. Med Sci Sports Exerc 2002; 34 (4): 723–31

    PubMed  Google Scholar 

  28. Winnick JJ, Mark Davis J, Welsh RS, et al. Carbohydrate feedings during team sport exercise preserve physical andCNS function. Med Sci Sports Exerc 2005; 37 (2): 306–15

    PubMed  CAS  Google Scholar 

  29. Ali A, Williams C, Nicholas W, et al. The influence of carbohydrate-electrolyte ingestion on soccer skill performance. Med Sci Sports Exerc 2007; 39 (11): 1969–76

    PubMed  CAS  Google Scholar 

  30. Patterson SD, Gray SC. Carbohydrate-gel supplementation and endurance performance during intermittent highintensityshuttle running. Int J Sport Nutr Exerc Metab 2007; 17: 445–55

    PubMed  CAS  Google Scholar 

  31. Clarke ND, Drust B, Maclaren DPM, et al. Fluid provision and metabolic responses to soccer-specific exercise. EurJ Appl Physiol 2008; 104 (6): 1069–77

    CAS  Google Scholar 

  32. Davison GW, McClean C, Brown J, et al. The effects of ingesting a carbohydrate-electrolyte beverage 15 minutesprior to high-intensity exercise performance. Res Sports Med 2008; 16 (3): 155–66

    PubMed  CAS  Google Scholar 

  33. Foskett A, Williams C, Boobis L, et al. Carbohydrate availability and muscle energy metabolism during intermittentrunning. Med Sci Sports Exerc 2008; 40 (1): 96–103

    PubMed  CAS  Google Scholar 

  34. Abbey EL, Rankin JW. Effect of ingesting a honeysweetened beverage on soccer performance and exerciseinducedcytokine response. Int J Sport Nut Exerc Metab 2009; 19: 659–72

    CAS  Google Scholar 

  35. Ali A, Williams C. Carbohydrate ingestion and soccer skill performance during prolonged intermittent exercise. J Sports Sci 2009; 27 (14): 1499–508

    PubMed  Google Scholar 

  36. Roberts SP, Stokes KA, Trewartha G, et al. Effect of carbohydrate and caffeine ingestion on performance during a rugbyunion simulation protocol. J Sports Sci 2010; 28 (8): 833–42

    PubMed  Google Scholar 

  37. Carling C, Bloomfield J, Nelsen L, et al. The role of motion analysis in elite soccer: contemporary performance measurementtechniques and work rate data. Sports Med 2008; 38 (10): 839–62

    PubMed  Google Scholar 

  38. Tomlin DL, Wenger HA. The relationships between aerobic fitness, power maintenance and oxygen consumptionduring intense intermittent exercise. J Sci Med Sport 2002; 5 (3): 194–203

    PubMed  CAS  Google Scholar 

  39. Burke LM. Nutrition for post-exercise recovery. Aust J Sci Med Sport 1997; 29 (1): 3–10

    PubMed  CAS  Google Scholar 

  40. Pedersen DJ, Lessard SJ, Coffey VG, et al. High rates of muscle glycogen resynthesis after exhaustive exercisewhen carbohydrate is coingested with caffeine. J Appl Physiol 2008; 105 (1): 7–13

    PubMed  CAS  Google Scholar 

  41. Nicholas CW, Nuttall FE, Williams C. The Loughborough intermittent shuttle test: a field test that simulates the activitypattern of soccer. J Sports Sci 2000; 18: 97–104

    PubMed  CAS  Google Scholar 

  42. Ali A, Gant N, Foskett A, et al. The modified Loughborough Intermittent Shuttle Test (LIST): a performance toolfor use with games players [abstract]. 14th Annual Congressof the European College of Sports Science; 2009 Jun 24-27; Oslo, 608

    Google Scholar 

  43. Zeederberg C, Leach L, Lambert EV, et al. The effect of carbohydrate ingestion on the motor skill proficiency ofsoccer players. Int J Sport Nut 1996; 6: 348–55

    CAS  Google Scholar 

  44. Northcott S, Kenward M, Purnell K, et al. Effect of a carbohydrate solution on motor skill proficiency during simulatedsoccer performance. Appl Res Coach Athl Ann 1999; 14: 105–18

    Google Scholar 

  45. Ostojic SM, Mazic S. Effects of a carbohydrate-electrolyte drink on specific soccer tests and performance. J Sports Sci Med 2002; 1: 47–53

    Google Scholar 

  46. Backhouse SH, Ali A, Biddle SJH, et al. Carbohydrate ingestion during prolonged high-intensity intermittentexercise: impact on affect and perceived exertion. ScandJ Med Sci Sports 2007; 17: 605–10

    CAS  Google Scholar 

  47. Currell K, Conway S, Jeukendrup AE, et al. Carbohydrate ingestion improves performance of a new reliable test ofsoccer skill performance. Int J Sport Nut Exerc Metab 2009; 19 (1): 34–46

    Google Scholar 

  48. Ali A, Williams C, Hulse M, et al. Reliability and validity of two tests of soccer skill. J Sports Sci 2007; 25 (13): 1461–70

    PubMed  Google Scholar 

  49. McGregor SJ, Nicholas CW, Lakomy HKA, et al. The influence of intermittent high-intensity shuttle running andfluid ingestion on the performance of a soccer skill. JSports Sci 1999; 17: 895–903

    CAS  Google Scholar 

  50. Bishop NC, Blannin AK, Robson PJ, et al. The effects of carbohydrate supplementation on immune responses to asoccer-specific exercise protocol. J Sports Sci 1999; 17: 787–96

    PubMed  CAS  Google Scholar 

  51. Maughan RJ, Shirreffs SM, Leiper JB. Errors in the estimation of hydration status from changes in body mass. JSports Sci 2007; 25 (7): 797–804

    Google Scholar 

  52. Bishop NC, Gleeson M, Nicholas CW, et al. Influence of carbohydrate supplementation on plasma cytokine andneutrophil degranulation responses to high intensity intermittentexercise. Int J Sport Nut Exerc Metab 2002; 12 (2): 145–56

    CAS  Google Scholar 

  53. Bangsbo J, Nørregaard L, Thorsø F. Activity profile of competition soccer. Can J Sport Sci 1991; 16 (2): 110–6

    PubMed  CAS  Google Scholar 

  54. Krustrup P, Mohr M, Steensberg A, et al. Muscle and blood metabolites during a soccer game: implications for sprintperformance. Med Sci Sports Exerc 2006; 38: 1165–74

    PubMed  CAS  Google Scholar 

  55. Jeukendrup AE, Brouns F, Wagenmakers AJ, et al. Carbohydrate- electrolyte feedings improve 1 h time trial cyclingperformance. Int J Sports Med 1997; 18 (2): 125–9

    PubMed  CAS  Google Scholar 

  56. McConell GK, Canny BJ, Daddo MC, et al. Effect of carbohydrate ingestion on glucose kinetics and musclemetabolism during intense endurance exercise. J Appl Physiol 2000; 89: 1690–8

    PubMed  CAS  Google Scholar 

  57. Utter AC, Kang J, Nieman DC, et al. Carbohydrate attenuates perceived exertion during intermittent exerciseand recovery. Med Sci Sports Exerc 2007; 39 (5): 880–5

    PubMed  CAS  Google Scholar 

  58. Bangsbo J, Norregaard L, Thorsoe F. The effect of carbohydrate diet on intermittent exercise performance. Int JSports Med 1992; 13: 152–7

    CAS  Google Scholar 

  59. Bangsbo J, Mohr M, Krustrup P. Physical and metabolic demands of training and match-play in the elite footballplayer. J Sports Sci 2006; 24 (7): 665–74

    PubMed  Google Scholar 

  60. Greenhaff PL, Nevill ME, Soderlund K, et al. The metabolic response of human type I and II muscle fibres duringmaximal treadmill sprinting. J Physiol 1994; 478: 149–55

    PubMed  Google Scholar 

  61. Spencer M, Rechichi C, Lawrence S, et al. Time-motion analysis of elite field hockey during several games in succession: atournament scenario. J Sci Med Sport 2005; 8 (4): 382–91

    PubMed  CAS  Google Scholar 

  62. Davis JM, Jackson DA, Broadwell MS, et al. Carbohydrate drinks delay fatigue during intermittent, highintensitycycling in active men and women. Int J Sport Nut 1997; 7 (4): 261–73

    CAS  Google Scholar 

  63. Davis JM, Bailey SP, Woods JA, et al. Effect of carbohydrate feedings on plasma free tryptophan and branchchainamino acids during prolonged cycling. Eur J Appl Physiol Occup Physiol 1992; 65 (6): 513–9

    PubMed  CAS  Google Scholar 

  64. Nybo L. CNS fatigue and prolonged exercise: effect of glucose supplementation. Med Sci Sports Exerc 2003; 35 (4): 589–94

    PubMed  CAS  Google Scholar 

  65. Boyle PJ, Nagy RJ, O’Connor AM, et al. Adaptation in brain glucose uptake following recurrent hypoglycemia. Proc Natl Acad Sci USA 1994; 91: 9352–456

    PubMed  CAS  Google Scholar 

  66. Roelands B, Meeusen R. Alterations in central fatigue by pharmacological manipulations of neurotransmitters innormal and high ambient temperature. Sports Med 2010; 40 (3): 229–46

    PubMed  Google Scholar 

  67. Meeusen R, Watson P, Hasegawa H, et al. Central fatigue: the serotonin hypothesis and beyond. Sports Med 2006; 36 (10): 881–909

    PubMed  Google Scholar 

  68. Leiper JB, Prentice AS, Wrightson C, et al. Gastric emptying of a carbohydrate-electrolyte drink during a soccermatch. Med Sci Sports Exerc 2001; 33 (11): 1932–8

    PubMed  CAS  Google Scholar 

  69. Edwards AM, Mann ME, Marfell-Jones MJ, et al. Influence of moderate dehydration on soccer performance:physiological responses to 45 min of outdoor match-playand the immediate subsequent performance of sportspecificand mental concentration tests. Br J Sports Med 2007; 41: 385–91

    PubMed  Google Scholar 

  70. Maughan R, Shirreffs S. Dehydration and rehydration in competitive sport. Scand J Med Sci Sports 2010; 20 Suppl.3: 40–7

    Google Scholar 

  71. Grantham J, Cheung SS, Febbraio MA, et al. Current knowledge on playing football in hot environments. Scand J Med Sci Sports 2010; 20 Suppl.3: 161–7

    Google Scholar 

  72. Maughan RJ, Shirreffs S. Development of hydration strategies to optimize performance for athletes in highintensitysports and in sports with repeated intense efforts. Scand J Med Sci Sports 2010; 20 Suppl.2: 59–69

    Google Scholar 

  73. Sawka MN, Burke LM, Eicher ER, et al. American College of Sports Medicine position stand: exercise and fluidreplacement. Med Sci Sports Exerc 2007; 39 (2): 377–90

    PubMed  Google Scholar 

  74. Shirreffs S. Hydration: Special issues for playing football in warm and hot environments. Scand J Med Sci Sports 2010; 20 Suppl. 3: 90–4

    PubMed  Google Scholar 

  75. Shirreffs SM, Sawka MN, Stone M. Water and electrolyte needs for football training and match-play. J Sports Sci 2006; 24 (7): 699–707

    PubMed  Google Scholar 

  76. Leiper JB, Nicholas CW, Ali A, et al. The effect of intermittent high-intensity running on gastric emptying offluids in man. Med Sci Sports Exerc 2005; 37 (2): 240–7

    PubMed  Google Scholar 

  77. Shi X, Horn MK, Osterberg KL, et al. Gastrointestinal discomfort during intermittent high-intensity exercise:effect of carbohydrate-electrolyte beverage. Int J Sport Nut Exerc Metab 2004; 14 (6): 673–83

    Google Scholar 

  78. Jeukendrup AE, Moseley L. Multiple transportable carbohydrates enhance gastric emptying and fluid delivery. Scand J Med Sci Sports 2010; 20: 112–21

    PubMed  CAS  Google Scholar 

  79. Jentjens RLPG, Underwood K, Achten J, et al. Exogenous carbohydrate oxidation rates are elevated after combinedingestion of glucose and fructose during exercise in theheat. J Appl Physiol 2006; 100: 807–16

    PubMed  CAS  Google Scholar 

  80. Jeukendrup AE, Moseley L, Mainwaring GI, et al. Exogenous carbohydrate oxidation during ultraenduranceexercise. J Appl Physiol 2006; 100: 1134–41

    PubMed  CAS  Google Scholar 

  81. Jentjens R, Moseley L, Waring R, et al. Oxidation of combined ingestion of glucose and fructose during exercise. J Appl Physiol 2004; 96: 1277–84

    PubMed  CAS  Google Scholar 

  82. Rowlands D, Thorburn M, Thorp R, et al. Effect of graded fructose coingestion with maltodextrin on exogenous 14C-fructose and 13C-glucose oxidation efficiency andhigh-intensity cycling performance. J Appl Physiol 2008; 104: 1709–19

    PubMed  CAS  Google Scholar 

  83. Hulston CJ, Wallis GA, Jeukendrup AE. Exogenous CHO oxidation with glucose plus fructose intake during exercise. Med Sci Sports Exerc 2009; 41 (2): 357–63

    PubMed  CAS  Google Scholar 

  84. Pfeiffer B, Stellingwerff T, Zaltas E, et al. Carbohydrate oxidation from a carbohydrate gel compared to a drinkduring exercise. Med Sci Sports Exerc 2011 Feb; 43 (2): 327–34

    PubMed  CAS  Google Scholar 

  85. Murray R, Eddy DE, Bartoli WP, et al. Gastric emptying of water and isocaloric carbohydrate solutions consumedat rest. Med Sci Sports Exerc 1994; 26 (6): 725–32

    PubMed  CAS  Google Scholar 

  86. Gisolfi CV, Summers RW, Lambert GP, et al. Effect of beverage osmolality on intestinal fluid absorption duringexercise. J Appl Physiol 1998; 85 (5): 1941–8

    PubMed  CAS  Google Scholar 

  87. Little TJ, Gopinath A, Patel E, et al. Gastric emptying of hexose sugars: role of osmolality, molecular structure andthe CCK1 receptor. Neurogastroenterol Motil 2010; 22: 1183–e314

    PubMed  CAS  Google Scholar 

  88. Mitchell JB, Costill DL, Houmard JA, et al. Effects of carbohydrate ingestion on gastric emptying and exerciseperformance. Med Sci Sports Exerc 1988; 20 (2): 110–5

    PubMed  CAS  Google Scholar 

  89. Neufer PD, Costill DL, Fink WJ, et al. Effects of exercise and carbohydrate composition on gastric emptying. Med Sci Sports Exerc 1986; 18 (6): 658–62

    PubMed  CAS  Google Scholar 

  90. Vist GE, Maughan RJ. Gastric emptying of ingested solutions in man: effect of beverage glucose concentration. Med Sci Sports Exerc 1994; 26 (10): 1269–73

    PubMed  CAS  Google Scholar 

  91. Coyle EF, Costill DL, Fink WJ, et al. Gastric emptying rates for selected athletic drinks. Res Quart 1978; 49 (2): 119–24

    CAS  Google Scholar 

  92. Hunt JN, Pathak JO. The osmotic effect of some simple molecules and ions on gastric emptying. J Physiol 1960; 154: 254–69

    PubMed  CAS  Google Scholar 

  93. Murray R. The effects of consuming carbohydrateelectrolyte beverages on gastric emptying and fluid absorptionduring and following exercise. Sports Med 1987; 4: 322–51

    PubMed  CAS  Google Scholar 

  94. Brouns F, Senden J, Beckers EJ, et al. Osmolality does not affect the gastric emptying rate of oral rehydration solutions. J Parent Enter Nutr 1995; 19: 403–6

    CAS  Google Scholar 

  95. Calbet JA, MacLean DA. Role of caloric content on gastric emptying in humans. J Physiol 1997; 498 (2): 553–9

    PubMed  CAS  Google Scholar 

  96. Gisolfi CV, Lambert GP, Summers RW. Intestinal fluid absorption during exercise: role of sport drink osmolalityand [Na+]. Med Sci Sports Exerc 2001; 33 (6): 907–15

    PubMed  CAS  Google Scholar 

  97. Cunha Ferreira RMC, Elliott EJ, Watson AJM, et al. Dominant role for osmolality in the efficacy of glucoseand glycine-containing oral rehydration solutions: studiesin a rat model of secretory diarrhoea. Acta Paediatrica 1992; 81: 46–50

    PubMed  CAS  Google Scholar 

  98. Hunt JB, Carnaby S, Farthing MJG. Assessment of water and solute absorption from experimental hypotonic andestablished oral rehydration solutions in secreting rat intestine. Aliment Pharmacol Ther 1991; 5: 273–81

    PubMed  CAS  Google Scholar 

  99. Hunt JB, Elliott EJ, Fairclough PD, et al. Water and solute absorption from hypotonic glucose-electrolyte solutionsin human jejunum. Gut 1992; 33: 479–83

    PubMed  CAS  Google Scholar 

  100. Hunt JB, Thillainayagam AV, Salim AFM, et al. Water and solute absorption from a new hypotonic oral rehydrationsolution: evaluation in humans and animal perfusionmodels. Gut 1992; 33: 1652–9

    PubMed  CAS  Google Scholar 

  101. Wapnir RA, Litov RE, Zdanowicz MM, et al. Improved water and sodium absorption from oral rehydration solutionsbased on rice syrup in a rat model of osmoticdiarrhoea. J Pediatr 1991; 118: S53–61

    PubMed  CAS  Google Scholar 

  102. Gisolfi CV, Summers RW, Schedl HP, et al. Human intestinal water absorption: direct vs. indirect measurements. Am J Physiol 1990; 258: G216–22

    PubMed  CAS  Google Scholar 

  103. Gisolfi CV, Summers RW, Schedl HP, et al. Intestinal water absorption from select carbohydrate solutions inhumans. J Appl Physiol 1992; 73 (5): 2142–50

    PubMed  CAS  Google Scholar 

  104. Leiper JB, Maughan RJ. Absorption of water and electrolytes from hypotonic, isotonic, and hypertonic solutions [abstract]. J Physiol 1986; 373: 90P

    Google Scholar 

  105. Shi X, Summers RW, Schedl HP, et al. Effects of solution osmolality on absorption of select fluid replacement solutionsin human duodenojejunum. J Appl Physiol 1994; 77 (3): 1178–84

    PubMed  CAS  Google Scholar 

  106. Hallback DA, Jodal M, Mannischeff M, et al. Tissue osmolality in intestinal villi of four mammals in vivo andin vitro. Acta Physiol Scand 1991; 143: 271–7

    PubMed  CAS  Google Scholar 

  107. Lambert GP, Chang RT, Xia T, et al. Absorption from different intestinal segments during exercise. J Appl Physiol 1997; 83: 204–12

    PubMed  CAS  Google Scholar 

  108. Wapnir RA, Lifshitz F. Osmolality and solute concentration: their relationship with oral hydration solution effectiveness:an experimental assessment. Pediatr Res 1986; 19: 894–8

    Google Scholar 

  109. Shi X, Summers RW, Schedl HP, et al. Effects of carbohydrate type and concentration and solution osmolalityon water absorption. Med Sci Sports Exerc 1995; 27 (12): 1607–15

    PubMed  CAS  Google Scholar 

  110. Shi X, Passe DH. Water and solute absorption from carbohydrate-electrolyte solutions in the human proximalsmall intestine: a review and statistical analysis. Int JSport Nut Exerc Metab 2010; 20: 427–42

    Google Scholar 

  111. Coyle EF. Fluid and fuel intake during exercise. J Sports Sci 2004; 22: 39–55

    PubMed  Google Scholar 

  112. Schedl HP, Maughan RJ, Gisolfi CV. Intestinal absorption during rest and exercise: implications for formulating anoral rehydration solution (ORS). Proceedings of aroundtable discussion: April 21-22, 1993. Med Sci Sports Exerc 1994; 26 (3): 267–80

    PubMed  CAS  Google Scholar 

  113. Moodley D, Noakes TD, Bosch AN, et al. Oxidation of exogenous carbohydrate during prolonged exercise: theeffects of the carbohydrate type and its concentration. EurJ Appl Physiol 1992; 64: 328–34

    CAS  Google Scholar 

  114. O’Reilly J, Wong SHS, Chen Y. Glycaemic index, glycaemic load and exercise performance. Sports Med 2010; 40 (1): 27–39

    PubMed  Google Scholar 

  115. Erith S, Williams C, Stevenson E, et al. The effect of high carbohydrate meals with different glycemic indices on recoveryof performance during prolonged intermittenthigh-intensity shuttle running. Int J Sport Nut Exerc Metab 2006; 16 (4): 393–404

    CAS  Google Scholar 

  116. Little JP, Chilibeck PD, Chilibeck PD, et al. The effects of low- and high-glycemic index foods on high-intensity intermittent exercise. Int J Sports Physiol Perform 2009; 4 (3): 367–80

    PubMed  Google Scholar 

  117. Burke LM, Claassen A, Hawley JA, et al. Carbohydrate intake during prolonged cycling minimizes the effect ofglycemic index of preexercise meal. J Appl Physiol 1998; 85 (6): 2220–6

    PubMed  CAS  Google Scholar 

  118. Chen YJ, Wong SHS, Chan COW, et al. Effects of glycemic index mean and CHO-electrolyte drink on cytokine responseand run performance in endurance athletes. J Sci Med Sport 2009; 12: 697–703

    PubMed  CAS  Google Scholar 

  119. Chryssanthopoulos C, Williams C. Pre-exercise carbohydrate meal and endurance running capacity when carbohydratesare ingested during exercise. Int J Sports Med 1997; 18 (7): 543–8

    PubMed  CAS  Google Scholar 

  120. Sandick BL, Engell DB, Maller O. Perception of drinking water temperature and effects for humans after exercise. Physiol Behav 1984; 32: 851–5

    PubMed  CAS  Google Scholar 

  121. Mündel T, King J, Collacott E, et al. Drink temperature influences fluid intake and endurance capacity in menduring exercise in a hot, dry environment. Exp Physiol 2006; 91 (5): 925–33

    PubMed  Google Scholar 

  122. Burdon C, O’Connor H, Gifford J, et al. Effect of drink temperature on core temperature and endurance cyclingperformance in warm, humid conditions. J Sports Sci 2010; 28 (11): 1147–56

    PubMed  Google Scholar 

  123. Lee JK, Shirreffs SM, Maughan RJ. Cold drink ingestion improves exercise endurance capacity in the heat. Med Sci Sports Exerc 2008; 40 (9): 1637–44

    PubMed  Google Scholar 

  124. Lee JKW, Shirreffs SM. The influence of drink temperature on thermoregulatory responses during prolongedexercise in a moderate environment. J Sports Sci 2007; 25 (9): 975–85

    PubMed  Google Scholar 

  125. Wimer GS, Lamb DR, Sherman WM, et al. Temperature of ingested water and thermoregulation during moderateintensityexercise. Can J Appl Physiol 1997; 22: 479–93

    PubMed  CAS  Google Scholar 

  126. Lee JKW, Maughan RJ, Shirreffs SM. The influence of serial feeding of drinks at different temperatures on thermoregulatoryresponses during cycling. J Sports Sci 2008; 26 (6): 583–90

    PubMed  Google Scholar 

  127. Mora-Rodriguez R, Del Coso J, Estevez E. Thermoregulatory responses to constant versus variable-intensityexercise in the heat. Med Sci Sports Exerc 2008; 40 (11): 1945–52

    PubMed  Google Scholar 

  128. Edwards AM, Noakes TD. Dehydration: cause of fatigue or sign of pacing in elite soccer? Sports Med 2009; 39 (1)

    Google Scholar 

  129. Carter JM, Jeukendrup AE, Jones DA. The effect of carbohydrate mouth rinse on 1-h cycle time trial performance. Med Sci Sports Exerc 2004; 36 (12): 2107–11

    PubMed  CAS  Google Scholar 

  130. Rollo I, Williams C, Gant N, et al. The influence of carbohydrate mouth rinse on self-selected speeds during a 30-min treadmill run. Int J Sport Nut Exerc Metab 2008; 18 (6): 585–600

    CAS  Google Scholar 

  131. Chambers ES, Bridge MW, Jones DA. Carbohydrate sensing in the human mouth: effects on exercise performanceand brain activity. J Physiol 2009; 587 (8): 1779–94

    PubMed  CAS  Google Scholar 

  132. Pottier A, Bouckaert J, Gilis W, et al. Mouth rinse but not ingestion of a carbohydrate solution improves 1-h cycle timetrial performance. Scand J Med Sci Sports 2010; 20: 105–11

    PubMed  CAS  Google Scholar 

  133. Whitham M, McKinney J. Effect of a carbohydrate mouthwash on running time-trial performance. J Sports Sci 2007; 25 (12): 1385–92

    PubMed  Google Scholar 

  134. Beelen M, Berghuis J, Bonaparte B, et al. Carbohydrate mouth rinsing in the fed state: lack of enhancement oftime-trial performance. Int J Sport Nut Exerc Metab 2009; 19 (4): 400–9

    CAS  Google Scholar 

  135. González-Alonso J, Teller C, Andersen SL, et al. Influence of body temperature on the development of fatigue duringprolonged exercise in the heat. J Appl Physiol 1999; 86 (3): 1032–9

    PubMed  Google Scholar 

  136. Sawka MN, Young AJ, Latzka WA, et al. Human tolerance to heat strain during exercise: influence of hydration. J Appl Physiol 1992; 73 (1): 368–75

    PubMed  CAS  Google Scholar 

  137. Ely BR, Ely MR, Cheuvront SN, et al. Evidence against a 40°C core temperature threshold for fatigue in humans. J Appl Physiol 2009; 107: 1519–25

    PubMed  Google Scholar 

  138. Cheung SS, Sleivert GG. Multiple triggers for hyperthermic fatigue and exhaustion. Exerc Sport Sci Rev 2004; 32: 100–6

    PubMed  Google Scholar 

  139. González-Alonso J, Crandall CG, Johnson JM. The cardiovascular challenge of exercising in the heat. J Physiol 2008; 586: 45–53

    PubMed  Google Scholar 

  140. Fritzsche RG, Switzer TW, Hodgkinson BJ, et al. Water and carbohydrate ingestion during prolonged exerciseincrease maximal neuromuscular power. J Appl Physiol 2000; 88: 730–7

    PubMed  CAS  Google Scholar 

  141. Febbraio MA, Murton P, Selig SE, et al. Effect of CHO ingestion on exercise metabolism and performance in different ambient temperatures. Med Sci Sports Exerc 1996; 28 (11): 1380–7

    PubMed  CAS  Google Scholar 

  142. Tarnopolsky MA, Ruby BC. Sex differences in carbohydrate metabolism. Curr Opin Clin Nutr Metab Care 2001; 4: 521–6

    PubMed  CAS  Google Scholar 

  143. Tarnopolsky MA. Sex differences in exercise and the role of 17-beta estradiol. Med Sci Sports Exerc 2008; 40 (4): 648–54

    PubMed  CAS  Google Scholar 

  144. Tarnopolsky LJ, MacDougall JD, Atkinson SA, et al. Gender differences in substrate for endurance exercise. J Appl Physiol 1990; 68 (1): 302–8

    PubMed  CAS  Google Scholar 

  145. Roepstorff C, Steffensen CH, Madsen M, et al. Gender differences in substrate utilization during submaximalexercise in endurance-trained subjects. Am J Physiol Endocrinol Metab 2002; 282 (2): E435–47

    PubMed  CAS  Google Scholar 

  146. Malina RM. Youth football players: number of participants, growth and maturity status. In: Reilly T, Cabri J, Araújo D, editors. Science and Football V. New York: Routledge, 2005

    Google Scholar 

  147. Sport Scotland. Sports participation in Scotland 2007. Edinburgh: Sport Scotland, 2008

    Google Scholar 

  148. Jago R, Bailey R. Ethics and paediatric exercise science: issues and making a submission to a local ethics and researchcommittee. J Sports Sci 2001; 19: 527–35

    PubMed  CAS  Google Scholar 

  149. Nevill M. Young people as participants in exercise physiology research: practical issues [letter]. J Sports Sci 2003; 21: 881

    PubMed  Google Scholar 

  150. Wickel EE, Eisenmann JC, Welk GJ. Maturity-related variation in moderate-to-vigorous physical activityamong 9-14 year olds. J Phys Act Health 2009; 6: 597–605

    PubMed  Google Scholar 

  151. Aucouturier J, Baker JS, Duché P. Fat and carbohydrate metabolism during submaximal exercise in children. Sports Med 2008; 38: 213–38

    PubMed  Google Scholar 

  152. Dotan R, Berthoin S, Barker A, et al. Commentaries on viewpoint: do oxidative and anaerobic energy productionin exercising muscle change throughout growth and maturation? J Appl Physiol 2010; 109: 1565–6

    PubMed  Google Scholar 

  153. Ratel S, Tonson A, Cozzone PJ, et al. Do oxidative and anaerobic energy production in exercising muscle changethroughout growth and maturation? J Appl Physiol 2010; 109: 1562–4

    PubMed  CAS  Google Scholar 

  154. Timmons BW, Bar-Or O, Riddell MC. Influence of age and pubertal status on substrate utilization during exercisewith and without carbohydrate intake in healthy boys. Appl Physiol Nutr Metab 2007; 32: 416–25

    PubMed  CAS  Google Scholar 

  155. Riddell MC, Bar-Or O, Wilk B, et al. Substrate utilization during exercise with glucose and glucose plus fructoseingestion in boys ages 10-14 yr. J Appl Physiol 2001; 90: 903–11

    PubMed  CAS  Google Scholar 

  156. Phillips SM, Turner AP, Gray S, et al. Ingesting a 6% carbohydrate- electrolyte solution improves endurance capacity,but not sprint performance, during intermittent, highintensityshuttle running in adolescent team games playersaged 12-14 years. Eur J Appl Physiol 2010; 109 (5): 811–21

    PubMed  Google Scholar 

Download references

Acknowledgements

No funding was provided for the preparation of this review. All authors declare that they have no conflicts of interest regarding the content of this paper.

The authors wish to thank Dr Shirley Gray and Mr Mark Sanderson for their valued assistance in the preparation of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaun M. Phillips.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Phillips, S.M., Sproule, J. & Turner, A.P. Carbohydrate Ingestion during Team Games Exercise. Sports Med 41, 559–585 (2011). https://doi.org/10.2165/11589150-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11589150-000000000-00000

Keywords

  • Muscle Glycogen
  • Carbohydrate Ingestion
  • Glycaemic Index
  • Intermittent Exercise
  • Sprint Performance