Skip to main content
Log in

Pharmacological Treatment of Diabetic Neuropathic Pain

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Neuropathic pain continues to be a difficult and challenging clinical issue to deal with effectively. Painful diabetic polyneuropathy is a complex pain condition that occurs with reasonable frequency in the population and it may be extremely difficult for clinicians to provide patients with effective analgesia. Chronic neuropathic pain may occur in approximately one of every four diabetic patients. The pain may be described as burning or a deep-seated ache with sporadic paroxysms of lacinating painful exacerbations. The pain is often constant, moderate to severe in intensity, usually primarily involves the feet and generally tends to worsen at night. Treatment may be multimodal but largely involves pharmacological approaches. Pharmacological therapeutic options include antidepressants (tricyclic antidepressants, serotoninnorepinephrine reuptake inhibitors), α2δ ligands and topical (5%) lidocaine patch. Other agents may be different antiepileptic drugs (carbamazepine, lamotrigine, topiramate), topical capsaicin, tramadol and other opioids.

Progress continues with respect to understanding various mechanisms that may contribute to painful diabetic neuropathy. Agents that may hold some promise include neurotrophic factors, growth factors, immunomdoulators, gene therapy and poly (adenosine diphosphate-ribose) polymerase inhibitors. It is hoped that in the future clinicians will be able to assess patient pathophysiology, which may help them to match optimal therapeutic agents to target individual patient aberrant mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II
Table III

Similar content being viewed by others

References

  1. Able SL, Robinson RL, Sterling K, et al. Utilization and costs of pain medications by patients with diabetic neuropathy [poster]. Annual Meeting of the Academy of Managed Care Pharmacy; 2005 Apr 20–25; Denver (CO)

  2. Berger A, Dukes EM, Oster G. Clinical characteristics and economic costs of patients with painful neuropathic disorders. J Pain 2004 Apr; 5(3): 143–9

    Article  PubMed  Google Scholar 

  3. Kastenbauer T, Irsigler P, Sauseng S, et al. The prevalence of symptoms of sensorimotor and autonomic neuropathy in type 1 and type 2 diabetic subjects. J Diabetes Complications 2004 Jan–Feb; 18(1): 27–31

    Article  PubMed  Google Scholar 

  4. Gregg EW, Sorlie P, Paulose-Ram R, et al. Prevalence of lower-extremity disease in the US adult population ≥40 years of age with and without diabetes: 1999–2000 national health and nutrition examination survey. Diabetes Care 2004 Jul; 27(7): 1591–7

    Article  PubMed  Google Scholar 

  5. Boulton AJM. Management of diabetic peripheral neuropathy. Clin Diabetes 2005; 23: 9–15

    Article  Google Scholar 

  6. Partanen J, Niskanen L, Lehtinen J, et al. Natural history of peripheral neuropathy in patients with non-insulin-dependent diabetes mellitus. N Engl J Med 1995 Jul 13; 333(2): 89–94

    Article  PubMed  CAS  Google Scholar 

  7. National Diabetes Information Clearinghouse. Diabetic neuropathies: the nerve damage of diabetes [online]. Available from URL: http://diabetes.niddk.nih.gov/dm/pubs/neuropathies [Accessed 2006 Feb 7]

  8. Schmader KE. Epidemiology and impact on quality of life of postherpetic neuralgia and painful diabetic neuropathy. Clin J Pain 2002 Nov–Dec; 18(6): 350–4

    Article  PubMed  Google Scholar 

  9. Dyck PJ, Kratz KM, Karnes JL, et al. The prevalence by staged severity of various types of diabetic neuropathy, retinopathy, and nephropathy in a population-based cohort: the Rochester Diabetic Neuropathy Study [published erratum appears in Neurology 1993 Nov; 43 (11): 2345]. Neurology 1993 Apr; 43(4): 817–24

    Article  PubMed  CAS  Google Scholar 

  10. Boulton AJ, Knight G, Drury J, et al. The prevalence of symptomatic, diabetic neuropathy in an insulin-treated population. Diabetes Care 1985 Mar–Apr; 8(2): 125–8

    Article  PubMed  CAS  Google Scholar 

  11. Polydefkis M, Griffin JW, McArthur J. New insights into diabetic polyneuropathy. JAMA 2003 Sep 10; 290(10): 1371–6

    Article  PubMed  CAS  Google Scholar 

  12. Sumner CJ, Sheth S, Griffin JW, et al. The spectrum of neuropathy in diabetes and impaired glucose tolerance. Neurology 2003 Jan 14; 60(1): 108–11

    Article  PubMed  CAS  Google Scholar 

  13. Polydefkis M, Hauer P, Griffin JW, et al. Skin biopsy as a tool to assess distal small fiber innervation in diabetic neuropathy. Diabetes Technol Ther 2001; 3(1): 23–8

    Article  PubMed  CAS  Google Scholar 

  14. Tesfaye S, Chaturvedi N, Eaton SE, et al., EURODIAB Prospective Complications Study Group. Vascular risk factors and diabetic neuropathy. N Engl J Med 2005 Jan 27; 352(4): 341–50

    Article  PubMed  CAS  Google Scholar 

  15. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33) [published erratum appears in Lancet 1999; 354: 602]. Lancet 1998; 352: 837–53

    Article  Google Scholar 

  16. Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of longterm complications in insulin-dependent diabetes mellitus. N Engl J Med 1993; 329: 977–86

    Article  Google Scholar 

  17. Diabetes Control and Complications Trial Research Group. The effect of intensive diabetes therapy on the development and progression of neuropathy. Ann Intern Med 1995; 122: 561–8

    Google Scholar 

  18. Harris M, Eastman R, Cowie C. Symptoms of sensory neuropathy in adults with NIDDM in the U.S. population. Diabetes Care 1993 Nov; 16(11): 1446–52

    Article  CAS  Google Scholar 

  19. Wiggin TD, Sullivan KA, Pop-Busui R, et al. Elevated triglycerides correlate with progression of diabetic neuropathy. Diabetes 2009; 58(7): 1634–40

    Article  PubMed  CAS  Google Scholar 

  20. Van Acker K, Bouhassira D, De Bacquer D, et al. Prevalence and impact on quality of life of peripheral neuropathy with or without neuropathic pain in type 1 and type 2 diabetic patients attending hospital outpatients clinics. Diabetes Metab 2009 Jun; 35(3): 206–13

    Article  PubMed  Google Scholar 

  21. England JD, Gronseth GS, Franklin G, et al. Distal symmetric polyneuropathy: a definition for clinical research: report of the American Academy of Neurology, the American Association of Electrodiagnostic Medicine, and the American Academy of Physical Medicine and Rehabilitation. Neurology 2005; 64(2): 199–207

    Article  PubMed  CAS  Google Scholar 

  22. Boulton AJ, Vinik AI, Arezzo JC, et al. Diabetic neuropathies: a statement by the American Diabetes Association. Diabetes Care 2005; 28(4): 956–62

    Article  PubMed  Google Scholar 

  23. Edwards JL, Vincent AM, Cheng HT, et al. Diabetic neuropathy: mechanisms to management. Pharmacol Ther 2008 Oct; 120(1): 1–34

    Article  PubMed  CAS  Google Scholar 

  24. Ziegler D, Rathmann W, Dickhaus T, et al. Neuropathic pain in diabetes, prediabetes and normal glucose tolerance: the MONICA/KORA Augsburg Surveys S2 and S 3. Pain Med 2009 Mar; 10(2): 393–400

    Article  PubMed  Google Scholar 

  25. Rathmann W, Haastert B, Icks A, et al. High prevalence of undiagnosed diabetes mellitus in Southern Germany: target populations for efficient screening. The KORA survey 2000. Diabetologia 2003 Feb; 46(2): 182–9

    CAS  Google Scholar 

  26. The Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Follow-up report on the diagnosis of diabetes mellitus. Diabetes Care 2003; 26: 3160–7

    Article  Google Scholar 

  27. Benbow SJ, Wallymahmed ME, MacFarlane IA. Diabetic peripheral neuropathy and quality of life. QJM 1998 Nov; 91(11): 733–7

    Article  PubMed  CAS  Google Scholar 

  28. Galer BS, Gianas A, Jensen MP. Painful diabetic polyneuropathy: epidemiology, pain description, and quality of life. Diabetes Res Clin Pract 2000 Feb; 47(2): 123–8

    Article  PubMed  CAS  Google Scholar 

  29. Backonja MM, Stacey B. Neuropathic pain symptoms relative to overall pain rating. J Pain 2004 Nov; 5(9): 491–7

    Article  PubMed  Google Scholar 

  30. Bennett M. The LANSS Pain Scale: the Leeds assessment of neuropathic symptoms and signs. Pain 2001; 92: 147–57

    Article  PubMed  CAS  Google Scholar 

  31. Krause SJ, Backonja MM. Development of a neuropathic pain questionnaire. Clin J Pain 2003 Sep–Oct; 19(5): 306–14

    Article  PubMed  Google Scholar 

  32. Galer BS, Jensen MP. Development and preliminary validation of a pain measure specific to neuropathic pain: the Neuropathic Pain Scale. Neurology 1997 Feb; 48(2): 332–8

    Article  PubMed  CAS  Google Scholar 

  33. Cleeland CS, Ryan KM. Pain assessment: global use of the Brief Pain Inventory. Ann Acad Med Singapore 1994 Mar; 23(2): 129–38

    PubMed  CAS  Google Scholar 

  34. Feldman EL, Stevens MJ, Thomas PK, et al. A practical two-step quantitative clinical and electrophysiological assessment for the diagnosis and staging of diabetic neuropathy. Diabetes Care 1994 Nov; 17(11): 1281–9

    Article  PubMed  CAS  Google Scholar 

  35. Moghtaderi A, Bakhshipour A, Rashidi H. Validation of Michigan neuropathy screening instrument for diabetic peripheral neuropathy. Clin Neurol Neurosurg 2006 Jul; 108(5): 477–81

    Article  PubMed  Google Scholar 

  36. Zelman DC, Gore M, Dukes E, et al. Validation of a modified version of the brief pain inventory for painful diabetic peripheral neuropathy. J Pain Symptom Manage 2005 Apr; 29(4): 401–10

    Article  PubMed  Google Scholar 

  37. Zelman DC, Dukes E, Brandenburg N, et al. Identification of cut-points for mild, moderate and severe pain due to diabetic peripheral neuropathy. Pain 2005 May; 115(1–2): 29–36

    Article  PubMed  Google Scholar 

  38. Boulton AJ, Malik RA, Arezzo JC, et al. Diabetic somatic neuropathies. Diabetes Care 2004 Jun; 27(6): 1458–86

    Article  PubMed  Google Scholar 

  39. Barbano R, Hart-Gouleau S, Pennella-Vaughan J, et al. Pharmacotherapy of painful diabetic neuropathy. Curr Pain Headache Rep 2003 Jun; 7(3): 169–77

    Article  PubMed  Google Scholar 

  40. England JD, Gronseth GS, Franklin G, et al. Evaluation of distal symmetric polyneuropathy: the role of laboratory and genetic testing (an evidence-based review). Muscle Nerve 2009 Jan; 39(1): 116–25

    Article  PubMed  CAS  Google Scholar 

  41. Staud R, Bovee CE, Robinson ME, et al. Cutaneous C-fiber pain abnormalities of fibromyalgia patients are specifically related to temporal summation. Pain 2008; 139(2): 315–23

    Article  PubMed  CAS  Google Scholar 

  42. Chao CC, Hsieh SC, Tseng MT, et al. Patterns of contact heat evoked potentials (CHEP) in neuropathy with skin denervation: correlation of CHEP amplitude with intraepidermal nerve fiber density. Clin Neurophysiol 2008 Mar; 119(3): 653–61

    Article  PubMed  Google Scholar 

  43. Granovsky Y, Matre D, Sokolik A, et al. Thermoreceptive innervation of human glabrous and hairy skin: a contact heat evoked potential analysis. Pain 2005 Jun; 115(3): 238–47

    Article  PubMed  Google Scholar 

  44. Report and recommendations of the San Antonio Conference on Diabetic Neuropathy. American Diabetes Association. Muscle Nerve 1998; 11: 661–7

    Google Scholar 

  45. Vinik AI, Mehrabyan A. Diabetic neuropathies. Med Clin North Am 2004 Jul; 88(4): 947–99, xi

    Article  PubMed  CAS  Google Scholar 

  46. England JD, Gronseth GS, Franklin G, et al. Practice parameter: evaluation of distal symmetric polyneuropathy: role of autonomic testing, nerve biopsy, and skin biopsy (an evidence-based review). Report of the American Academy of Neurology, American Association of Neuromuscular and Electrodiagnostic Medicine, and American Academy of Physical Medicine and Rehabilitation. Neurology 2009 Jan 13; 72(2): 177–84

    CAS  Google Scholar 

  47. Devigili G, Tugnoli V, Penza P, et al. The diagnostic criteria for small fibre neuropathy: from symptoms to neuropathology. Brain 2008 Jul; 131 (Pt 7): 1912–25

    Article  PubMed  Google Scholar 

  48. Pittenger GL, Ray M, Burcus NI, et al. Intraepidermal nerve fibers are indicators of small-fiber neuropathy in both diabetic and nondiabetic patients. Diabetes Care 2004 Aug; 27(8): 1974–9

    Article  PubMed  Google Scholar 

  49. McArthur JC, Stocks EA, Hauer P, et al. Epidermal nerve fiber density: normative reference range and diagnostic efficiency. Arch Neurol 1998 Dec; 55(12): 1513–20

    Article  PubMed  CAS  Google Scholar 

  50. Polydefkis M, Yiannoutsos CT, Cohen BA, et al. Reduced intraepidermal nerve fiber density in HIV-associated sensory neuropathy. Neurology 2002 Jan 8; 58(1): 115–9

    Article  PubMed  CAS  Google Scholar 

  51. Herrmann DN, Griffin JW, Hauer P, et al. Epidermal nerve fiber density and sural nerve morphometry in peripheral neuropathies. Neurology 1999 Nov 10; 53(8): 1634–40

    Article  PubMed  CAS  Google Scholar 

  52. Ørstavik K, Namer B, Schmidt R, et al. Abnormal function of C-fibers in patients with diabetic neuropathy. J Neurosci 2006 Nov 1; 26(44): 11287–94

    Article  PubMed  CAS  Google Scholar 

  53. Kuhad A, Chopra K. Tocotrienol attenuates oxidative-nitrosative stress and inflammatory cascade in experimental model of diabetic neuropathy. Neuropharmacology 2009 Sep; 57(4): 456–62

    Article  PubMed  CAS  Google Scholar 

  54. Pop-Busui R, Sima A, Stevens M. Diabetic neuropathy and oxidative stress. Diabetes Metab Res Rev 2006 Jul–Aug; 22(4): 257–73

    Article  PubMed  CAS  Google Scholar 

  55. Kong MF, Horowitz M, Jones KL, et al. Natural history of diabetic gastroparesis. Diabetes Care 1999 Mar; 22(3): 503–7

    Article  PubMed  CAS  Google Scholar 

  56. Vinik AI, Maser RE, Mitchell BD, et al. Diabetic autonomic neuropathy. Diabetes Care 2003 May; 26(5): 1553–79

    Article  PubMed  Google Scholar 

  57. Nakamura J, Kato K, Hamada Y, et al. A protein kinase C-beta-selective inhibitor ameliorates neural dysfunction in streptozotocin-induced diabetic rats. Diabetes 1999 Oct; 48(10): 2090–5

    Article  PubMed  CAS  Google Scholar 

  58. Vincent AM, Russell JW, Low P, et al. Oxidative stress in the pathogenesis of diabetic neuropathy. Endocr Rev 2004 Aug; 25(4): 612–28

    Article  PubMed  CAS  Google Scholar 

  59. Feldman EL, Stevens MJ, Greene DA. Pathogenesis of diabetic neuropathy. Clin Neurosci 1997; 4(6): 365–70

    PubMed  CAS  Google Scholar 

  60. Yamagishi S, Uehara K, Otsuki S, et al. Differential influence of increased polyol pathway on protein kinase C expressions between endoneurial and epineurial tissues in diabetic mice. J Neurochem 2003 Oct; 87(2): 497–507

    Article  PubMed  CAS  Google Scholar 

  61. Uehara K, Yamagishi S, Otsuki S, et al. Effects of polyol pathway hyperactivity on protein kinase C activity, nociceptive peptide expression, and neuronal structure in dorsal root ganglia in diabetic mice. Diabetes 2004 Dec; 53(12): 3239–47

    Article  PubMed  CAS  Google Scholar 

  62. Thornalley PJ. The potential role of thiamine (vitamin B(1)) in diabetic complications. Curr Diabetes Rev 2005; 1(3): 287–98

    Article  PubMed  CAS  Google Scholar 

  63. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001; 414(6865): 813–20

    Article  PubMed  CAS  Google Scholar 

  64. Sayeski PP, Kudlow JE. Glucose metabolism to glucosamine is necessary for glucose stimulation of transforming growth factor-alpha gene transcription. J Biol Chem 1996 Jun 21; 271(25): 15237–43

    Article  PubMed  CAS  Google Scholar 

  65. Kolm-Litty V, Sauer U, Nerlich A, et al. High glucose-induced transforming growth factor beta1 production is mediated by the hexosamine pathway in porcine glomerular mesangial cells. J Clin Invest 1998 Jan 1; 101(1): 160–9

    Article  PubMed  CAS  Google Scholar 

  66. Du XL, Edelstein D, Rossetti L, et al. Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation. Proc Nat Acad Sci U S A 2000 Oct 24; 97(22): 12222–6

    Article  CAS  Google Scholar 

  67. Hirakata Y, Kitamura S. Elevated serum transforming growth factor beta 1 level in primary lung cancer patients with finger clubbing. Eur J Clin Investig 1996 Sep; 26(9): 820–3

    Article  CAS  Google Scholar 

  68. Obrosova IG, Drel VR, Pacher P, et al. Oxidative-nitrosative stress and poly(ADP-ribose) polymerase (PARP) activation in experimental diabetic neuropathy: the relation is revisited. Diabetes 2005 Dec; 54(12): 3435–41

    Article  PubMed  CAS  Google Scholar 

  69. Southan GJ, Szabo C. Poly(ADP-ribose) polymerase inhibitors. Curr Med Chem 2003 Feb; 10(4): 321–40

    Article  PubMed  CAS  Google Scholar 

  70. Lukic IK, Humpert PM, Nawroth PP, et al. The RAGE pathway: activation and perpetuation in the pathogenesis of diabetic neuropathy. Ann N Y Acad Sci 2008 Apr; 1126: 76–80

    Article  PubMed  CAS  Google Scholar 

  71. Bierhaus A, Haslbeck K-M, Humpert PM, et al. Loss of pain perception in diabetes is dependent on a receptor of the immunoglobulin superfamily. J Clin Invest 2004 Dec; 114(12): 1741–51

    PubMed  CAS  Google Scholar 

  72. Haslbeck KM, Neundörfer B, Schlötzer-Schrehardtt U, et al. Activation of the RAGE pathway: a general mechanism in the pathogenesis of polyneuropathies? Neurol Res 2007 Jan; 29(1): 103–10

    Article  PubMed  CAS  Google Scholar 

  73. Wada R, Yagihashi S. Role of advanced glycation end products and their receptors in the development of diabetic neuropathy. Ann N Y Acad Sci 2005 Jun; 1043: 598–604

    Article  PubMed  CAS  Google Scholar 

  74. Misur I, Zarkovic K, Barada A, et al. Advanced glycation endproducts in peripheral nerve in type 2 diabetes with neuropathy. Acta Diabetol 2004 Dec; 41(4): 158–66

    Article  PubMed  CAS  Google Scholar 

  75. Bierhaus A, Humpert PM, Morcos M, et al. Understanding RAGE, the receptor for advanced glycation end products. J Mol Med 2005 Nov; 83(11): 876–86

    Article  PubMed  CAS  Google Scholar 

  76. Moser B, Herold KC, Schmidt AM. Receptor for advanced glycation endproducts and its ligands: initiators or amplifiers of joint inflammation — a bit of both? Arthritis Rheum 2006 Jan; 54(1): 14–8

    Article  PubMed  CAS  Google Scholar 

  77. Yan SF, Barile GR, D’Agati V, et al. The biology of RAGE and its ligands: uncovering mechanisms at the heart of diabetes and its complications. Curr Diab Rep 2007 Apr; 7(2): 146–53

    Article  PubMed  CAS  Google Scholar 

  78. Schmidt AM, Stern DM. RAGE: a new target for the prevention and treatment of the vascular and inflammatory complications of diabetes. Trends Endocrinol Metab 2000 Nov; 11(9): 368–75

    Article  PubMed  CAS  Google Scholar 

  79. Quehenberger P, Bierhaus A, Fasching P, et al. Endothelin 1 transcription is controlled by nuclear factor kappaB in AGE-stimulated cultured endothelial cells. 2000 Sep; 49(9): 1561–70

    CAS  Google Scholar 

  80. Bierhaus A, Illmer T, Kasper M, et al. Advanced glycation end product (AGE)-mediated induction of tissue factor in cultured endothelial cells is dependent on RAGE. Circulation 1997 Oct 7; 96(7): 2262–71

    Article  PubMed  CAS  Google Scholar 

  81. Vincent AM, Perrone L, Sullivan KA, et al. Receptor for advanced glycation end products activation injures primary sensory neurons via oxidative stress. Endocrinology 2007 Feb; 148(2): 548–58

    Article  PubMed  CAS  Google Scholar 

  82. Hellweg R, Hartung HD. Endogenous levels of nerve growth factor (NGF) are altered in experimental diabetes mellitus: a possible role for NGF in the pathogenesis of diabetic neuropathy. J Neurosci Res 1990 Jun; 26(2): 258–67

    Article  PubMed  CAS  Google Scholar 

  83. Fernyhough P, Diemel LT, Tomlinson DR. Target tissue production and axonal transport of neurotrophin-3 are reduced in streptozocin-diabetic rats. Diabetologia 1998 Mar; 41(3): 300–6

    Article  PubMed  CAS  Google Scholar 

  84. Fernyhough P, Diemel LT, Hardy J, et al. Human recombinant nerve growth factor replaces deficient neurotrophic support in the diabetic rat. Eur J Neurosci 1995 May 1; 7(5): 1107–10

    Article  PubMed  CAS  Google Scholar 

  85. Whitworth IH, Terenghi G, Green CJ, et al. Targeted delivery of nerve growth factor via fibronectin conduits assists nerve regeneration in control and diabetic rats. Eur J Neurosci 1995 Nov 1; 7(11): 2220–5

    Article  PubMed  CAS  Google Scholar 

  86. Malcangio M, Garrett NE, Bowery NG, et al. Effect of 14-day treatment with nerve growth factor (NGF) on the release of substance P-like immunoreactivity from rat isolated spinal cord [abstract]. Br J Pharmacol 1996; 118: 48P

    Google Scholar 

  87. Bennett GS, Garrett NE, Diemel LT, et al. Neurogenic cutaneous vasodilatation and plasma extravasation in diabetic rats: effect of insulin and nerve growth factor. Br J Pharmacol 1998 Aug; 124(7): 1573–9

    Article  PubMed  CAS  Google Scholar 

  88. Mizisin AP, Calcutt NA, Tomlinson DR, et al. Neurotrophin-3 reverses nerve conduction velocity deficits in streptozotocin-diabetic rats. J Peripher Nerv Syst 1999; 4(3–4): 211–21

    PubMed  CAS  Google Scholar 

  89. Huang TJ, Sayers NM, Fernyhough P, et al. Diabetes-induced alterations in calcium homeostasis in sensory neurones of streptozotocin-diabetic rats are restricted to lumbar ganglia and are prevented by neurotrophin-3. Diabetologia 2002 Apr; 45(4): 560–70

    Article  PubMed  CAS  Google Scholar 

  90. Sayers NM, Beswick LJ, Middlemas A, et al. Neurotrophin-3 prevents the proximal accumulation of neurofilament proteins in sensory neurons of streptozocin-induced diabetic rats. Diabetes 2003 Sep; 52(9): 2372–80

    Article  PubMed  CAS  Google Scholar 

  91. Huang TJ, Sayers NM, Verkhratsky A, et al. Neurotrophin-3 prevents mitochondrial dysfunction in sensory neurons of streptozotocin-diabetic rats. Exp Neurol 2005 Jul; 194(1): 279–83

    Article  PubMed  CAS  Google Scholar 

  92. Tomlinson DR, Gardiner NJ. Diabetic neuropathies: components of etiology. JPeripher Nerv Syst 2008 Jun; 13(2): 112–21

    Article  CAS  Google Scholar 

  93. Price SA, Agthong S, Middlemas AB, et al. Mitogen-activated protein kinase p38 mediates reduced nerve conduction velocity in experimental diabetic neuropathy: interactions with aldose reductase. Diabetes 2004 Jul; 53(7): 1851–6

    Article  PubMed  CAS  Google Scholar 

  94. Wittmack EK, Rush AM, Hudmon A, et al. Voltage-gated sodium channel Nav1.6 is modulated by p38 mitogen-activated protein kinase. J Neurosci 2005 Jul 13; 25(28): 6621–30

    Article  PubMed  CAS  Google Scholar 

  95. Ahlgren SC, White DM, Levine JD. Increased responsiveness of sensory neurons in the saphenous nerve of the streptozotocin-diabetic rat. J Neurophysiol 1992 Dec; 68(6): 2077–85

    PubMed  CAS  Google Scholar 

  96. Burchiel KJ, Russell LC, Lee RP, et al. Spontaneous activity of primary afferent neurons in diabetic BB/Wistar rats: a possible mechanism of chronic diabetic neuropathic pain. Diabetes 1985 Nov; 34(11): 1210–3

    Article  PubMed  CAS  Google Scholar 

  97. Craner MJ, Klein JP, Renganathan M, et al. Changes of sodium channel expression in experimental painful diabetic neuropathy. Ann Neurol 2002 Dec; 52(6): 786–92

    Article  PubMed  CAS  Google Scholar 

  98. Hong S, Morrow TJ, Paulson PE, et al. Early painful diabetic neuropathy is associated with differential changes in tetrodotoxin-sensitive and -resistant sodium channels in dorsal root ganglion neurons in the rat. J Biol Chem 2004 Jul 9; 279(28): 29341–50

    Article  PubMed  CAS  Google Scholar 

  99. Hoybergs YM, Meert TF. The effect of low-dose insulin on mechanical sensitivity and allodynia in type I diabetes neuropathy. Neurosci Lett 2007 May 1; 417(2): 149–54

    Article  PubMed  CAS  Google Scholar 

  100. Smith HS, Sima AAF. Keeping the insulin-like growth factor system in harmony. J Neuropathic Pain Symptom Palliation 2005; 1: 3–6

    Google Scholar 

  101. Smith HS. Analgesic Actions of Insulin. J Neuropathic Pain Symptom Palliation 2006; 1: 23–8

    Google Scholar 

  102. Kamiya H, Zhang W, Sima AAF. C-peptide prevents nociceptive sensory neuropathy in type 1 diabetes. Ann Neurol 2004 Dec; 56(6): 827–35

    Article  PubMed  CAS  Google Scholar 

  103. Ekberg K, Brismar T, Johansson BL, et al. Amelioration of sensory nerve dysfunction by C-peptide in patients with type 1 diabetes. Diabetes 2003 Feb; 52(2): 536–41

    Article  PubMed  CAS  Google Scholar 

  104. Hills CE, Brunskill NJ. Cellular and physiological effects of C-peptide. Clin Sci (Lond) 2009 Apr; 116(7): 565–74

    Article  CAS  Google Scholar 

  105. Sima AAF, Ristic H, Merry A, et al. The primary preventional and secondary interventative effects of acetyl-L-carnitine on diabetic neuropathy in the BB/W-rat. J Clin Invest 1996 Apr 15; 97(8): 1900–7

    Article  PubMed  CAS  Google Scholar 

  106. Stevens MJ, Lattimer SA, Feldman EL, et al. Acetyl-L-carnitine deficiency as a course of altered nerve myoinositol content, Na+ K+-ATPase activity and motor conduction velocity in the streptozotocin diabetic rat. Metabolism 1996 Jul; 45(7): 865–72

    Article  PubMed  CAS  Google Scholar 

  107. Sima AA, Calvani M, Mehra M, et al. Acetyl-L-carnitine improves pain, vibratory perception and nerve morphology in patients with chronic diabetic peripheral neuropathy: an analysis of two randomized, placebo-controlled trials. Diabetes Care 2005 Jan; 28(1): 89–94

    Article  PubMed  CAS  Google Scholar 

  108. Amato A, Sima AA. The protective effect of acetyl-L-carnitine on symptoms, particularly pain, in diabetic neuropathy [abstract]. Diabetes 2006; 55: A506

    Article  Google Scholar 

  109. De Grandis D, Minardi C. Acetyl-L-carnitine (levace-carnine) in the treatment of diabetic neuropathy: a long-term, randomised, double-blind, placebo-controlled study. Drugs R D 2002; 3(4): 223–31

    Article  PubMed  Google Scholar 

  110. Sima AA. Acetyl-L-carnitine in diabetic polyneuropathy: experimental and clinical data. CNS Drugs 2007; 21 Suppl. 1: 13–23

    Article  Google Scholar 

  111. Sima AA. Pathological mechanisms involved in diabetic neuropathy: can we slow the process? Curr Opin Investig Drugs 2006; 7(4): 324–37

    PubMed  CAS  Google Scholar 

  112. Kinoshita JH, Dvornik D, Kraml M, et al. The effect of an aldose reductase inhibitor on the galactose-exposed rabbit lens. Biochim Biophys Acta 1968 Jun 24; 158(3): 472–5

    Article  PubMed  CAS  Google Scholar 

  113. Chylack Jr LT, Henriques 3rd HF, Cheng HM, et al. Efficacy of Alrestatin, an aldose reductase inhibitor, in human diabetic and nondiabetic lenses. Ophthalmology 1979 Sep; 86(9): 1579–85

    PubMed  Google Scholar 

  114. Demaine AG. Polymorphisms of the aldose reductase gene and susceptibility to diabetic microvascular complications. Curr Med Chem 2003; 10(15): 1389–98

    Article  PubMed  CAS  Google Scholar 

  115. Donaghue KC, Margan SH, Chan AK, et al. The association of aldose reductase gene (AKR1B1) polymorphisms with diabetic neuropathy in adolescents. Diabet Med 2005 Oct; 22(10): 1315–20

    Article  PubMed  CAS  Google Scholar 

  116. Thamotharampillai K, Chan AK, Bennetts B, et al. Decline in neurophysiological function after 7 years in an adolescent diabetic cohort and the role of aldose reductase gene polymorphisms. Diabetes Care 2006 Sep; 29(9): 2053–7

    Article  PubMed  CAS  Google Scholar 

  117. Cameron NE, Leonard MB, Ross IS, et al. The effects of sorbinil on peripheral nerve conduction velocity, polyol concentrations and morphology in the streptozotocin-diabetic rat. Diabetologia 1986 Mar; 29(3): 168–74

    Article  PubMed  CAS  Google Scholar 

  118. Yagihashi S, Kamijo M, Ido Y, et al. Effects of long-term aldose reductase inhibition on development of experimental diabetic neuropathy: ultrastructural and morphometric studies of sural nerve in streptozocin-induced diabetic rats. Diabetes 1990 Jun; 39(6): 690–6

    Article  PubMed  CAS  Google Scholar 

  119. Kato N, Mizuno K, Makino M, et al. Effects of 15-month aldose reductase inhibition with fidarestat on the experimental diabetic neuropathy in rats. Diabetes Res Clin Pract 2000 Oct; 50(2): 77–85

    Article  PubMed  CAS  Google Scholar 

  120. Oates PJ. Aldose reductase, still a compelling target for diabetic neuropathy. Curr Drug Targets 2008; 9(1): 14–36

    Article  PubMed  CAS  Google Scholar 

  121. Hammes HP, Du X, Edelstein D, et al. Benfotiamine blocks three major pathways of hyperglycemic damage and prevents experimental diabetic retinopathy. Nat Med 2003 Mar; 9(3): 294–9

    Article  PubMed  CAS  Google Scholar 

  122. Haupt E, Ledermann H, Kopcke W. Benfotiamine in the treatment of diabetic polyneuropathy: a three-week randomized, controlled pilot study (BEDIP study). Int J Clin Pharmacol Ther 2005 Feb; 43(2): 71–7

    PubMed  CAS  Google Scholar 

  123. Stracke H, Lindemann A, Federlin K. A benfotiamine-vitamin B combination in treatment of diabetic polyneuropathy. Exp Clin Endocrinol Diabetes 1996; 104(4): 311–6

    Article  PubMed  CAS  Google Scholar 

  124. Winkler G, Pal B, Nagybeganyi E, et al. Effectiveness of different benfotiamine dosage regimens in the treatment of painful diabetic neuropathy. Arzneimittelforschung 1999 Mar; 49(3): 220–4

    PubMed  CAS  Google Scholar 

  125. Stracke H, Gaus W, Achenbach U, et al. Benfotiamine in diabetic polyneuropathy (BENDIP): results of a randomised, double blind, placebo-controlled clinical study. Exp Clin Endocrinol Diabetes 2008 Nov; 116(10): 600–5

    Article  PubMed  CAS  Google Scholar 

  126. Blakytny R, Harding JJ. Prevention of cataract in diabetic rats by aspirin, paracetamol (acetaminophen) and ibuprofen. Exp Eye Res 1992 Apr; 54(4): 509–18

    Article  PubMed  CAS  Google Scholar 

  127. Fu MX, Thorpe SR, Baynes JW. Effects of aspirin on glycation, glycoxidation and cross-linking of collagen. In: Labuza TP, Reneccius GA, Monnier VM, et al., editors. Maillard reaction in chemistry, food, and health. Cambridge: The Royal Society of Chemistry, 1994: 95–100

    Chapter  Google Scholar 

  128. Thornalley PJ. Use of aminoguanidine (Pimagedine) to prevent the formation of advanced glycation endproducts. Arch Biochem Biophys 2003; 419(1): 31–40

    Article  PubMed  CAS  Google Scholar 

  129. Cooper ME, Thallas V, Forbes J, et al. The cross-link breaker, N-phenacylthiazolium bromide prevents vascular advanced glycation end-product accumulation. Diabetologia 2000 May; 43(5): 660–4

    Article  PubMed  CAS  Google Scholar 

  130. Li F, Drel VR, Szabo C, et al. Low-dose poly(ADPribose) polymerase inhibitor-containing combination therapies reverse early peripheral diabetic neuropathy. Diabetes 2005 May; 54(5): 1514–22

    Article  PubMed  CAS  Google Scholar 

  131. Ilnytska O, Lyzogubov VV, Stevens MJ, et al. Poly(ADP-ribose) polymerase inhibition alleviates experimental diabetic sensory neuropathy. Diabetes 2006 Jun; 55(6): 1686–94

    Article  PubMed  CAS  Google Scholar 

  132. Stevens MJ, Li F, Drel VR, et al. Nicotinamide reverses neurological and neurovascular deficits in streptozotocin diabetic rats. J Pharmacol Exp Ther 2007 Jan; 320(1): 458–64

    Article  PubMed  CAS  Google Scholar 

  133. Ziegler D. Thioctic acid for patients with symptomatic diabetic polyneuropathy: a critical review. Treat Endocrinol 2004; 3(3): 173–89

    Article  PubMed  CAS  Google Scholar 

  134. Ziegler D, Nowak H, Kempler P, et al. Treatment of symptomatic diabetic polyneuropathy with the anti-oxidant alpha-lipoic acid: a meta-analysis. Diabet Med 2004 Feb; 21(2): 114–21

    Article  PubMed  CAS  Google Scholar 

  135. Ziegler D, Hanefeld M, Ruhnau KJ, et al. Treatment of symptomatic diabetic peripheral neuropathy with the anti-oxidant α-lipoic acid: a 3-week multicenter randomized controlled trial (ALADIN study). Diabetologia 1995 Dec; 38(12): 1425–33

    Article  PubMed  CAS  Google Scholar 

  136. Ziegler D, Hanefeld M, Ruhnau KJ, et al. Treatment of symptomatic diabetic polyneuropathy with the anti-oxidant α-lipoic acid: a 7-month multicenter randomized controlled trial (ALADIN III study). Diabetes Care 1999 Aug; 22(8): 1296–301

    Article  PubMed  CAS  Google Scholar 

  137. Ametov A, Barinov A, O’Brien P, et al. The sensory symptoms of diabetic polyneuropathy are improved with α-lipoic acid: the SYDNEY trial. Diabetes Care 2003 Mar; 26(3): 770–6

    Article  PubMed  CAS  Google Scholar 

  138. NATHAN II study. Frankfurt: VIATRIS GmbH, 2003. (Data on file)

  139. Sharma S, Kulkarni SK, Chopra K. Resveratrol, a polyphenolic phytoalexin attenuates thermal hyperalgesia and cold allodynia in STZ-induced diabetic rats. Indian J Exp Biol 2006 Jul; 44(7): 566–9

    PubMed  CAS  Google Scholar 

  140. Kumar A, Kaundal RK, Iyer S, et al. Effects of resveratrol on nerve functions, oxidative stress and DNA fragmentation in experimental diabetic neuropathy. Life Sci 2007 Mar 6; 80(13): 1236–44

    Article  PubMed  CAS  Google Scholar 

  141. Sharma S, Kulkarni SK, Chopra K. Effect of resveratrol, a polyphenolic phytoalexin, on thermal hyperalgesia in a mouse model of diabetic neuropathic pain. Fundam Clin Pharmacol 2007 Feb; 21(1): 89–94

    Article  PubMed  CAS  Google Scholar 

  142. Kuhad A, Sharma S, Chopra K. Lycopene attenuates thermal hyperalgesia in a diabetic mouse model of neuropathic pain. Eur J Pain 2008 Jul; 12(5): 624–32

    Article  PubMed  CAS  Google Scholar 

  143. Berti-Mattera LN, Kern TS, Siegel RE, et al. Sulfasalazine blocks the development of tactile allodynia in diabetic rats. Diabetes 2008 Oct; 57(10): 2801–8

    Article  PubMed  CAS  Google Scholar 

  144. Gidal BE. New and emerging treatment options for neuropathic pain. Am J Manag 2006 Jun; 12 (9 Suppl.): S269–78

    Google Scholar 

  145. Saarto T, Wiffen PJ. Antidepressants for neuropathic pain. Cochrane Database Syst Rev 2007; (4): CD005454?

  146. Max MB, Culnane M, Schafer SC, et al. Amitriptyline relieves diabetic neuropathy pain in patients with normal or depressed mood. Neurology 1987 Apr; 37(4): 589–96

    Article  PubMed  CAS  Google Scholar 

  147. Max MB, Kishore-Kumar R, Schafer SC, et al. Efficacy of desipramine in painful diabetic neuropathy: a placebo-controlled trial. Pain 1991 Apr; 45(1): 3–9

    Article  PubMed  CAS  Google Scholar 

  148. Max MB, Lynch SA, Muir J, et al. Effects of desipramine, amitriptyline, and fluoxetine on pain in diabetic neuropathy. N Engl J Med 1992 May 7; 326(19): 1250–6

    Article  PubMed  CAS  Google Scholar 

  149. Cymbalta [prescribing information]. Indianapolis (IN): Eli Lilly and Company, 2005 Jan

  150. Goldstein DJ, Lu Y, Detke MJ, et al. Duloxetine vs. placebo in patients with painful diabetic neuropathy. Pain 2005 Jul; 116(1–2): 109–18

    Article  PubMed  CAS  Google Scholar 

  151. Raskin J, Pritchett YL, Wang F, et al. A double-blind, randomized multicenter trial comparing duloxetine with placebo in the management of diabetic peripheral neuropathic pain. Pain Med 2005 Sep–Oct; 6(5): 346–56

    Article  PubMed  Google Scholar 

  152. Robinson MJ, Rosen A, Hardy TA, et al. Duloxetine for the management of diabetic peripheral neuropathic pain: comparison of safety data in older (age ≥65) and younger (age <65) patients [abstract]. 2005 Annual Scientific Meeting of the American Geriatrics Society; 2005 May 12; Orlando (FL)

  153. Rowbotham MC, Goli V, Kunz NR, et al. Venlafaxine extended release in the treatment of painful diabetic neuropathy: a double-blind, placebo-controlled study [published erratum appears in Pain 2005 Jan; 113 (1–2): 248]. Pain 2004 Aug; 110(3): 697–706

    Article  PubMed  CAS  Google Scholar 

  154. Sindrup SH, Bach FW, Madsen C, et al. Venlafaxine versus imipramine in painful polyneuropathy: a randomized, controlled trial. Neurology 2003 Apr 22; 60(8): 1284–9

    Article  PubMed  CAS  Google Scholar 

  155. Kadiroglu AK, Sit D, Kayabasi H, et al. The effect of venlafaxine HCl on painful peripheral diabetic neuropathy in patients with type 2 diabetes mellitus. J Diabetes Complications 2008 Jul–Aug; 22(4): 241–5

    Article  PubMed  Google Scholar 

  156. Striano P, Striano S. Gabapentin: a Ca2+ channel alpha s-delta ligand far beyond epilepsy therapy. Drugs Today 2008 May; 44(5): 353–68

    Article  PubMed  CAS  Google Scholar 

  157. Wodarski R, Clark AK, Grist J, et al. Gabapentin reverses microglial activation in the spinal cord of streptozotocin-induced diabetic rats. Eur J Pain 2009 Sep; 13(8): 807–11

    Article  PubMed  CAS  Google Scholar 

  158. Tsuda M, Inoue K, Salter MW. Neuropathic pain and spinal microglia: a big problem from molecules in “small” glia. Trends Neurosci 2005; 28: 101–7

    Article  PubMed  CAS  Google Scholar 

  159. Tsuda M, Ueno H, Kataoka A, et al. Activation of dorsal horn microglia contributes to diabetes-induced tactile allodynia via extracellular signal-regulated protein kinase signaling. Glia 2008 Mar; 56(4): 378–86

    Article  PubMed  Google Scholar 

  160. Colburn RW, DeLeo JA, Rickman AJ, et al. Dissociation of microglial activation and neuropathic pain behaviors following peripheral nerve injury in the rat. J Neuro-immunol 1997 Nov; 79(2): 163–75

    CAS  Google Scholar 

  161. Backonja M, Beydoun A, Edwards KR, et al. Gabapentin for the symptomatic treatment of painful neuropathy in patients with diabetes mellitus: a randomized controlled trial. JAMA 1998 Dec 2; 280(21): 1831–6

    Article  PubMed  CAS  Google Scholar 

  162. Sandercock D, Cramer M, Wu J, et al. Gabapentin extended release for the treatment of painful diabetic peripheral neuropathy: efficacy and tolerability in a double-blind, randomized, controlled clinical trial [letter]. Diabetes Care 2009 Feb; 32(2): e20

    Article  PubMed  Google Scholar 

  163. Richter RW, Portenoy R, Sharma U, et al. Relief of painful diabetic peripheral neuropathy with pregabalin: a randomized, placebo-controlled trial. J Pain 2005 Apr; 6(4): 253–60

    Article  PubMed  CAS  Google Scholar 

  164. Lesser H, Sharma U, LaMoreaux L, et al. Pregabalin relieves symptoms of painful diabetic neuropathy: a randomized controlled trial. Neurology 2004 Dec 14; 63(11): 2104–10

    Article  PubMed  CAS  Google Scholar 

  165. Rosenstock J, Tuchman M, LaMoreaux L, et al. Pregabalin for the treatment of painful diabetic peripheral neuropathy: a double-blind, placebo-controlled trial. Pain 2004 Aug; 110(3): 628–38

    Article  PubMed  CAS  Google Scholar 

  166. Arezzo JC, Rosenstock J, Lamoreaux L, et al. Efficacy and safety of pregabalin 600 mg/d for treating painful diabetic peripheral neuropathy: a double-blind placebo-controlled trial. BMC Neurol 2008 Sep 16; 8: 33

    Article  PubMed  CAS  Google Scholar 

  167. Rull JA, Quibrera R, Gonzalez-Millan H, et al. Symptomatic treatment of peripheral diabetic neuropathy with carbamazepine (Tegretol): double blind crossover trial. Diabetologia 1969 Aug; 5(4): 215–8

    Article  PubMed  CAS  Google Scholar 

  168. Wilton TD. Tegretol in the treatment of diabetic neuropathy. S Afr Med J 1974; 48: 869–72

    PubMed  CAS  Google Scholar 

  169. Eisenberg E, Lurie Y, Braker C, et al. Lamotrigine reduced painful diabetic neuropathy: a randomized, controlled study. Neurology 2001 Aug 14; 57(3): 505–9

    Article  PubMed  CAS  Google Scholar 

  170. Arnone D. Review of the use of topiramate for treatment of psychiatric disorders. Ann Gen Psychiatry 2005; 4(5): 2–14

    Google Scholar 

  171. Lopes LS, Pereira SS, Silva LL, et al. Antinociceptive effect of topiramate in models of acute pain and diabetic neuropathy in rodents. Life Sci 2009 Jan 16; 84(3–4): 105–10

    Article  PubMed  CAS  Google Scholar 

  172. Raskin P, Donofrio PD, Rosenthal NR, et al., CAPSS-141 Study Group. Topiramate vs placebo in painful diabetic neuropathy: analgesic and metabolic effects. Neurology 2004 Sep 14; 63(5): 865–73

    Article  PubMed  CAS  Google Scholar 

  173. Thienel U, Neto W, Schwabe SK, et al. Topiramate in painful diabetic polyneuropathy: findings from three double-blind placebo-controlled trials. Acta Neurol Scand 2004 Oct; 110(4): 221–31

    Article  PubMed  CAS  Google Scholar 

  174. Gimbel JS, Richards P, Portenoy RK. Controlled-release oxycodone for pain in diabetic neuropathy: a randomized controlled trial. Neurology 2003 Mar 25; 60(6): 927–34

    Article  PubMed  CAS  Google Scholar 

  175. Watson CP, Moulin D, Watt-Watson J, et al. Controlled-release oxycodone relieves neuropathic pain: a randomized controlled trial in painful diabetic neuropathy. Pain 2003 Sep; 105(1–2): 71–8

    Article  PubMed  CAS  Google Scholar 

  176. Harati Y, Gooch C, Swenson M, et al. Double-blind randomized trial of tramadol for the treatment of the pain of diabetic neuropathy. Neurology 1998 Jun; 50(6): 1842–6

    Article  PubMed  CAS  Google Scholar 

  177. Daulhac L, Mallet C, Courteix C, et al. Diabetes-induced mechanical hyperalgesia involves spinal mitogen-activated protein kinase activation in neurons and microglia via N-methyl-D-aspartate-dependent mechanisms. Mol Pharmacol 2006 Oct; 70(4): 1246–54

    Article  PubMed  CAS  Google Scholar 

  178. Wang XL, Zhang HM, Chen SR, et al. Altered synaptic input and GABAB receptor function in spinal superficial dorsal horn neurons in rats with diabetic neuropathy. J Physiol 2007 Mar 15; 579 (Pt 3): 849–61

    Article  PubMed  CAS  Google Scholar 

  179. Amin P, Sturrock ND. A pilot study of the beneficial effects of amantadine in the treatment of painful diabetic peripheral neuropathy. Diabet Med 2003 Feb; 20(2): 114–8

    Article  PubMed  CAS  Google Scholar 

  180. Begon S, Pickering G, Eschalier A, et al. Magnesium and MK-801 have a similar effect in two experimental models of neuropathic pain. Brain Res 2000 Dec 29; 887(2): 436–9

    Article  PubMed  CAS  Google Scholar 

  181. Calcutt NA, Chaplan SR. Spinal pharmacology of tactile allodynia in diabetic rats. Br J Pharmacol 1997 Dec; 122(7): 1478–82

    Article  PubMed  CAS  Google Scholar 

  182. Carlsson KC, Hoem NO, Moberg ER, et al. Analgesic effect of dextromethorphan in neuropathic pain. Acta Anaesthesiol Scand 2004 Mar; 48(3): 328–36

    Article  PubMed  CAS  Google Scholar 

  183. Chen S-R, Samoriski G, Pan H-L. Antinociceptive effects of chronic administration of uncompetitive NMDA receptor antagonists in a rat model of diabetic neuropathic pain. Neuropharmacology 2009 Aug; 57(2): 121–6

    Article  PubMed  CAS  Google Scholar 

  184. Sang CN, Booher S, Gilron I, et al. Dextromethorphan and memantine in painful diabetic neuropathy and post-herpetic neuralgia: efficacy and dose-response trials. Anesthesiology 2002 May; 96(5): 1053–61

    Article  PubMed  CAS  Google Scholar 

  185. Capsaicin Study Group. Effect of treatment with capsaicin on daily activities of patients with painful diabetic neuropathy. Diabetes Care 1992; 15: 159–65

    Article  Google Scholar 

  186. Capsaicin Study Group. Treatment of painful diabetic neuropathy with topical capsaicin: a multicenter, double-blind, vehicle-controlled study. Arch Intern Med 1991; 151: 2225–9

    Article  Google Scholar 

  187. Tandan R, Lewis GA, Krusinski PB, et al. Topical capsaicin in painful diabetic neuropathy: controlled study with long-term follow-up. Diabetes Care 1992 Jan; 15(1): 8–14

    Article  PubMed  CAS  Google Scholar 

  188. Meier T, Wasner G, Faust M, et al. Efficacy of lidocaine patch 5% in the treatment of focal peripheral neuropathic pain syndromes: a randomized, double-blind, placebo-controlled study. Pain 2003 Nov; 106(1–2): 151–8

    Article  PubMed  CAS  Google Scholar 

  189. Argoff CE, Galer BS, Jensen MP, et al. Effectiveness of the lidocaine patch 5% on pain qualities in three chronic pain states: assessment with the Neuropathic Pain Scale. Curr Med Res Opin 2004; 20 Suppl. 2: S21–8

    Article  PubMed  CAS  Google Scholar 

  190. Barbano RL, Herrmann DN, Hart-Gouleau S, et al. Effectiveness, tolerability, and impact on quality of life of the 5% lidocaine patch in diabetic polyneuropathy. Arch Neurol 2004 Jun; 61(6): 914–8

    Article  PubMed  Google Scholar 

  191. Baron R, Mayoral V, Leijon G, et al. Efficacy and safety of 5% lidocaine (lignocaine) medicated plaster in comparison with pregabalin in patients with postherpetic neuralgia and diabetic polyneuropathy: interim analysis from an open-label, two-stage adaptive, randomized, controlled trial. Clin Drug Investig 2009; 29(4): 231–41

    Article  PubMed  CAS  Google Scholar 

  192. Argoff CE, Backonja MM, Belgrade MJ, et al. Consensus guidelines: treatment planning and options. Diabetic peripheral neuropathic pain. Mayo Clin Proc 2006; 81 (4 Suppl.): S12–25

    Article  PubMed  CAS  Google Scholar 

  193. Collins SL, Moore RA, McQuay HJ, et al. Antidepressants and anticonvulsants for diabetic neuropathy and postherpetic neuralgia: a quantitative systematic review. J Pain Symptom Manage 2000; 20: 449–58

    Article  PubMed  CAS  Google Scholar 

  194. Sindrup SH, Jensen TS. Efficacy of pharmacological treatments of neuropathic pain: an update and effect related to mechanism of drug action. Pain 1999 Dec; 83(3): 389–400

    Article  PubMed  CAS  Google Scholar 

  195. Morello CM, Leckband SG, Stoner CP, et al. Randomized double-blind study comparing the efficacy of gabapentin with amitriptyline on diabetic peripheral neuropathy pain. Arch Intern Med 1999 Sep 13; 159(16): 1931–7

    Article  PubMed  CAS  Google Scholar 

  196. Agrawal RP, Goswami J, Jain S, et al. Management of diabetic neuropathy by sodium valproate and glyceryl trinitrate spray: a prospective double-blind randomized placebo-controlled study. Diabetes Res Clin Pract 2009 Mar; 83(3): 371–8

    Article  PubMed  CAS  Google Scholar 

  197. Chou R, Carson S, Chan BK. Gabapentin versus tricyclic antidepressants for diabetic neuropathy and post-herpetic neuralgia: discrepancies between direct and indirect meta-analyses of randomized controlled trials. J Gen Intern Med 2009 Feb; 24(2): 178–88

    Article  PubMed  Google Scholar 

  198. O’Connor AB, Noyes K, Holloway RG. A cost-utility comparison of four first-line medications in painful diabetic neuropathy. Pharmacoeconomics 2008; 26(12): 1045–64

    Article  PubMed  Google Scholar 

  199. Ruessmann HJ, German Society of out patient diabetes centres AND (Arbeitsgemeinschaft niedergelassener diabetologisch tätiger Arzte e.V.). Switching from pathogenetic treatment with alpha-lipoic acid to gabapentin and other analgesics in painful diabetic neuropathy: a real-world study in outpatients. J Diabetes Complications 2009 May–Jun; 23(3): 174–7

    Article  PubMed  Google Scholar 

  200. Shaibani A, Fares S, Selam JL, et al. Lacosamide in painful diabetic neuropathy: an 18-week double-blind placebo-controlled trial. J Pain 2009 Aug; 10(8): 818–28

    Article  PubMed  CAS  Google Scholar 

  201. Gilron I, Bailey JM, Tu D, et al. Nortriptyline and gabapentin, alone and in combination for neuropathic pain: a double-blind, randomised controlled crossover trial. Lancet 2009 Oct; 374(9697): 1252–61

    Article  PubMed  CAS  Google Scholar 

  202. Talaei A, Siavash M, Majidi H, et al. Vitamin B(12) may be more effective than nortriptyline in improving painful diabetic neuropathy. Int J Food Sci Nutr 2009; 12: 1–6

    Google Scholar 

  203. Errington AC, Stohr T, Heers C, et al. The investigational anticonvulsant lacosamide selectively enhances slow inactivation of voltage-gated sodium channels. Mol Pharmacol 2008 Jan; 73(1): 157–69

    Article  PubMed  CAS  Google Scholar 

  204. Beyreuther BK, Freitag J, Heers C, et al. Lacosamide: a review of preclinical properties. CNS Drug Rev 2007 Spring; 13(1): 21–42

    Article  PubMed  CAS  Google Scholar 

  205. Stohr T, Beyreuther B, Freitag J. Lacosamide modulates collapsin response mediator protein 2 (CRMP-2) [poster]. American Epilepsy Society Annual Meeting; 2006 Dec 1–5; San Diego (CA)

  206. Wymer JP, Simpson J, Sen D, et al. Efficacy and safety of lacosamide in diabetic neuropathic pain: an 18-week double-blind placebo-controlled trial of fixed-dose regimens. Clin J Pain 2009 Jun; 25(5): 376–85

    Article  PubMed  Google Scholar 

  207. Rowbotham MC, Duan WR, Thomas J, et al. A randomized, double-blind, placebo-controlled trial evaluating the efficacy and safety of ABT-594 in patients with diabetic peripheral neuropathic pain. Pain 2009 Dec; 146(3): 245–52

    Article  PubMed  CAS  Google Scholar 

  208. Noto C, Pappagallo M, Szallasi A. NGX-4010, a high-concentration capsaicin dermal patch for lasting relief of peripheral neuropathic pain. Curr Opin Investig Drugs 2009 Jul; 10(7): 702–10

    PubMed  CAS  Google Scholar 

  209. Messinger RB, Naik AK, Jagodic MM, et al. In vivo silencing of the Cav3.2 T-type calcium channels in sensory neurons alleviates hyperalgesia in rats with streptozocin-induced diabetic neuropathy. Pain 2009 Sep; 145(1–2): 184–95

    Article  PubMed  CAS  Google Scholar 

  210. Jagodic MM, Pathirathna S, Joksovic PM, et al. Up-regulation of the T-type calcium current in small rat sensory neurons after chronic constrictive injury of the sciatic nerve. J Neurophysiol 2008 Jun; 99(6): 3151–6

    Article  PubMed  CAS  Google Scholar 

  211. Wei H, Hämäläinen MM, Saarnilehto M, et al. Attenuation of mechanical hypersensitivity by an antagonist of the TRPA1 ion channel in diabetic animals. Anesthesiology 2009 Jul; 111(1): 147–54

    Article  PubMed  CAS  Google Scholar 

  212. Migita K, Moriyama T, Koguchi M, et al. Modulation of P2X receptors in dorsal root ganglion neurons of streptozotocin-induced diabetic neuropathy. Neurosci Lett 2009 Mar 13; 452(2): 200–3

    Article  PubMed  CAS  Google Scholar 

  213. Balasubramanyan S, Sharma SS. Protective effect of adenosine in diabetic neuropathic pain is mediated through adenosine A1-receptors. Indian J Physiol Pharmacol 2008 Jul–Sep; 52(3): 233–42

    PubMed  CAS  Google Scholar 

  214. Kuhad A, Bishnoi M, Chopra K. Anti-nociceptive effect of duloxetine in mouse model of diabetic neuropathic pain. Indian J Exp Biol 2009 Mar; 47(3): 193–7

    PubMed  CAS  Google Scholar 

  215. Hasanein P, Soltani N. Effects of the endocannabinoid transport inhibitors AM404 and UCM707 on an experimental model of diabetic neuropathy. Clin Exp Pharmacol Physiol 2009 Nov; 36(11): 1127–31

    Article  PubMed  CAS  Google Scholar 

  216. Comelli F, Bettoni I, Colleoni M, et al. Beneficial effects of a Cannabis sativa extract treatment on diabetes-induced neuropathy and oxidative stress. Phytother Res 2009 Dec; 23(12): 1678–84

    Article  PubMed  Google Scholar 

  217. Low PA, Nickander KK, Tritschler HJ. The roles of oxidative stress and antioxidant treatment in experimental diabetic neuropathy. Diabetes 1997 Sep; 46 Suppl. 2: S38–42

    PubMed  CAS  Google Scholar 

  218. Tomlinson DR, Fernyhough P, Diemel LT. Role of neurotrophins in diabetic neuropathy and treatment with nerve growth factors. Diabetes 1997 Sep; 46 Suppl. 2: S43–9

    PubMed  CAS  Google Scholar 

  219. Comelli F, Giagnoni G, Bettoni I, et al. Antihyperalgesic effect of a Cannabis sativa extract in a rat model of neuropathic pain: mechanisms involved. Phytother Res 2008 Aug; 22(8): 1017–24

    Article  PubMed  Google Scholar 

  220. Hasanein P, Parviz M, Keshavarz M, et al. URB597, an inhibitor of fatty acid amide hydrolase, reduces hyperalgesia in diabetic rats. Can J Physiol Pharmacol 2009 Jun; 87(6): 432–9

    Article  PubMed  CAS  Google Scholar 

  221. Sen CK, Khanna S, Roy S. Tocotrienols in health and disease: the other half of the natural vitamin E family. Mol Aspects Med 2007 Oct–Dec; 28(5–6): 692–728

    Article  PubMed  CAS  Google Scholar 

  222. Serbinova E, Kagan V, Han D, et al. Free radical recycling and intramembrane mobility in the antioxidant properties of alpha-tocopherol and alpha-tocotrienol. Free Radic Biol Med 1991; 10(5): 263–75

    Article  PubMed  CAS  Google Scholar 

  223. Serbinova EA, Packer L. Antioxidant properties of alpha-tocopherol and alpha-tocotrienol. Methods Enzymol 1994; 234: 354–66

    Article  PubMed  CAS  Google Scholar 

  224. Suzuki YJ, Tsuchiya M, Wassall SR, et al. Structural and dynamic membrane properties of alpha-tocopherol and alpha-tocotrienol: implication to the molecular mechanism of their antioxidant potency. Biochemistry 1993 Oct 12; 32(40): 10692–9

    Article  PubMed  CAS  Google Scholar 

  225. Adderley SR, Fitzgerald DJ. Oxidative damage of cardiomyocytes is limited by extracellular regulated kinases 1/2-mediated induction of cyclooxygenase-2. J Biol Chem 1999 Feb 19; 274(8): 5038–46

    Article  PubMed  CAS  Google Scholar 

  226. Faux SP, Howden PJ. Possible role of lipid peroxidation in the induction of NF-kappa B and AP-1 in RFL-6 cells by crocidolite asbestos: evidence following protection by vitamin E. Environ. Health Perspect 1997 Sep; 105 Suppl. 5: 1127–30

    Google Scholar 

  227. Anjaneyulu M, Berent-Spillson A, Inoue T, et al. Transforming growth factor-beta induces cellular injury in experimental diabetic neuropathy. Exp Neurol 2008 Jun; 211(2): 469–79

    Article  PubMed  CAS  Google Scholar 

  228. Ignatowski TA, Covey WC, Knight PR, et al. Brain-derived TNFa mediates neuropathic pain. Brain Res 1999 Sep 11; 841(1–2): 70–7

    Article  PubMed  CAS  Google Scholar 

  229. Cosentino F, Eto M, De Paolis P, et al. High glucose causes upregulation of cyclooxygenase-2 and alters prostanoid profile in human endothelial cells: role of protein kinase C and reactive oxygen species. Circulation 2003 Feb 25; 107(7): 1017–23

    Article  PubMed  CAS  Google Scholar 

  230. Kiritoshi S, Nishikawa T, Sonoda K, et al. Reactive oxygen species from mitochondria induce cyclooxygenase-2 gene expression in human mesangial cells: potential role in diabetic nephropathy. Diabetes 2003 Oct; 52(10): 2570–7

    Article  PubMed  CAS  Google Scholar 

  231. Pop-Busui R, Marinescu V, Van Huysen C, et al. Dissection of metabolic, vascular, and nerve conduction interrelationships in experimental diabetic neuropathy by cyclooxygenase inhibition and acetyl-L-carnitine administration. Diabetes 2002 Aug; 51(8): 2619–28

    Article  PubMed  CAS  Google Scholar 

  232. Zochodne DW, Levy D. Nitric oxide in damage, disease and repair of the peripheral nervous system. Cell Mol Biol (Noisy-le-grand) 2005 Sep 5; 51(3): 255–67

    CAS  Google Scholar 

  233. Kim JE, Kim AR, Chung HY, et al. In vitro peroxynitrite scavenging activity of diarylheptanoids from Curcuma longa. Phytother Res 2003 May; 17(5): 481–4

    Article  PubMed  CAS  Google Scholar 

  234. Ropper AH, Gorson KC, Gooch CL, et al. Vascular endothelial growth factor gene transfer for diabetic polyneuropathy: a randomized, double-blinded trial. Ann Neurol 2009 Apr; 65(4): 386–93

    Article  PubMed  Google Scholar 

  235. Ranoux D, Attal N, Morain F, et al. Botulinum toxin type A induces direct analgesic effects in chronic neuropathic pain. Ann Neurol 2008 Sep; 64(3): 274–83

    Article  PubMed  Google Scholar 

  236. Yuan RY, Sheu JJ, Yu JM, et al. Botulinum toxin for diabetic neuropathic pain: a randomized double-blind crossover trial. Neurology 2009 Apr 28; 72(17): 1473–8

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

There was no funding or help from any sources for anything related to the submission of this paper.

The authors have no relevant conflicts of interest that affected the content of manuscript. Disclosures: Pfizer and Lilly: advisory board/speakers bureau; Endo: grant received; Lilly: grant received; Pfizer: grant pending.

The authors would like to acknowledge Pya Seidner for her help in the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard S. Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, H.S., Argoff, C.E. Pharmacological Treatment of Diabetic Neuropathic Pain. Drugs 71, 557–589 (2011). https://doi.org/10.2165/11588940-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11588940-000000000-00000

Keywords

Navigation