Skip to main content
Log in

Targeting Airway Inflammation in Cystic Fibrosis in Children

Past, Present, and Future

  • Review Article
  • Published:
Pediatric Drugs Aims and scope Submit manuscript

Abstract

Inflammation is a major component of the vicious cycle characterizing cystic fibrosis (CF) pulmonary disease. If untreated, this inflammatory process irreversibly damages the airways, leading to bronchiectasis and ultimately respiratory failure. Anti-inflammatory drugs for CF lung disease appear to have beneficial effects on disease progression. These agents include oral corticosteroids and ibuprofen, as well as azithromycin, which, in addition to its antimicrobial effects, also possess anti-inflammatory properties. Inhaled corticosteroids, antioxidants, nutritional supplements, and protease inhibitors have a limited impact on the disease. Adverse effects limit therapy with oral corticosteroids and ibuprofen. Azithromycin appears to be safe and effective, and is thus the most promising anti-inflammatory therapy available for patients with CF. Pharmacologic therapy with anti-inflammatory agents should be started early in the disease course, before extensive irreversible lung damage has occurred. To optimize anti-inflammatory therapy, it is necessary to understand the mechanism of action of these agents in the CF lung, to determine which of these agents would provide the most benefit to patients with CF, and to determine which therapies should be initiated at what age or stage of lung disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zuelzer WW, Newton Jr WA. The pathogenesis of fibrocystic disease of the pancreas: a study of 36 cases with special reference to the pulmonary lesions. Pediatrics 1949; 4(1): 53–69

    PubMed  CAS  Google Scholar 

  2. Kirchner KK, Wagener JS, Khan TZ, et al. Increased DNA levels in bronchoalveolar lavage fluid obtained from infants with cystic fibrosis. Am J Respir Crit Care Med 1996; 154(5): 1426–9

    PubMed  CAS  Google Scholar 

  3. Konstan MW, Hilliard KA, Norvell TM, et al., Bronchoalveolar lavage findings in cystic fibrosis patients with stable, clinically mild lung disease suggest ongoing infection and inflammation. Am J Respir Crit Care Med 1994; 150(2): 448–54

    PubMed  CAS  Google Scholar 

  4. Armstrong DS, Grimwood K, Carlin JB, et al. Lower airway inflammation in infants and young children with cystic fibrosis. Am J Respir Crit Care Med 1997; 156 (4 Pt 1): 1197–204

    PubMed  CAS  Google Scholar 

  5. Sagel SD, Kapsner R, Osberg I, et al. Airway inflammation in children with cystic fibrosis and healthy children assessed by sputum induction. Am J Respir Crit Care Med 2001; 164(1): 1425–31

    PubMed  CAS  Google Scholar 

  6. Rosenfeld M, Gibson RL, McNamara S, et al. Early pulmonary infection, inflammation, and clinical outcomes in infants with cystic fibrosis. Pediatr Pulmonol 2001; 32(5): 356–66

    Article  PubMed  CAS  Google Scholar 

  7. Bonfield TL, Panuska JR, Konstan MW, et al. Inflammatory cytokines in cystic fibrosis lungs. Am J Respir Crit Care Med 1995; 152 (6 Pt 1): 2111–8

    PubMed  CAS  Google Scholar 

  8. Dechecchi MC, Nicolis E, Norez C, et al. Anti-inflammatory effect of miglustat in bronchial epithelial cells. J Cyst Fibros 2008; 7(6): 555–65

    Article  PubMed  CAS  Google Scholar 

  9. Balough K, McCubbin M, Weinberger M, et al. The relationship between infection and inflammation in the early stages of lung disease from cystic fibrosis. Pediatr Pulmonol 1995; 20(2): 63–70

    Article  PubMed  CAS  Google Scholar 

  10. Konstan MW, Berger M. Current understanding of the inflammatory process in cystic fibrosis: onset and etiology. Pediatr Pulmonol 1997; 24(2): 137–42; discussion 159-61

    Article  PubMed  CAS  Google Scholar 

  11. Doring G, Worlitzsch D. Inflammation in cystic fibrosis and its management. Paediatr Respir Rev 2000; 1(2): 101–6

    Article  PubMed  CAS  Google Scholar 

  12. Khan TZ, Wagener JS, Bost T, et al. Early pulmonary inflammation in infants with cystic fibrosis. Am J Respir Crit Care Med 1995; 151(4): 1075–82

    PubMed  CAS  Google Scholar 

  13. Macfarlane M, Leavy A, McCaughan J, et al. Successful decolonization of methicillin-resistant Staphylococcus aureus in paediatric patients with cystic fibrosis (CF) using a three-step protocol. J Hosp Infect 2007; 65(3): 231–6

    Article  PubMed  CAS  Google Scholar 

  14. Worlitzsch D, Herberth G, Ulrich M, et al. Catalase, myeloperoxidase and hydrogen peroxide in cystic fibrosis. Eur Respir J 1998; 11(2): 377–83

    Article  PubMed  CAS  Google Scholar 

  15. Dudez TS, Chanson M, Schlegel-Haueter SE, et al. Characterization ofa novel chemotactic factor for neutrophils in the bronchial secretions of patients with cystic fibrosis. J Infect Dis 2002; 186(6): 774–81

    Article  PubMed  CAS  Google Scholar 

  16. Douglas TA, Brennan S, Gard S, et al. Acquisition and eradication of P. aeruginosa in young children with cystic fibrosis. Eur Respir J 2009; 33(2): 305–11

    Article  PubMed  CAS  Google Scholar 

  17. Doring G. Cystic fibrosis respiratory infections: interactions between bacteria and host defence. Monaldi Arch Chest Dis 1997; 52(4): 363–6

    PubMed  CAS  Google Scholar 

  18. Armstrong DS, Hook SM, Jamsen KM, et al., Lower airway inflammation in infants with cystic fibrosis detected by newborn screening. Pediatr Pulmonol 2005; 40(6): 500–10

    Article  PubMed  Google Scholar 

  19. Doring G, Hoiby N. Early intervention and prevention of lung disease in cystic fibrosis: a European consensus. J Cyst Fibros 2004; 3(2): 67–91

    Article  PubMed  Google Scholar 

  20. Koyama S, Sato E, Nomura H, et al. The potential ofvarious lipopolysaccharides to release IL-8 and G-CSF. Am J Physiol Lung Cell Mol Physiol 2000; 278(4): L658–66

    PubMed  CAS  Google Scholar 

  21. Jaffe A, Francis J, Rosenthal M, et al. Long-term azithromycin may improve lung function in children with cystic fibrosis [letter]. Lancet 1998; 351(9100): 420

    Article  PubMed  CAS  Google Scholar 

  22. Saiman L, Siegel J. Infection control recommendations for patients with cystic fibrosis: microbiology, important pathogens, and infection control practices to prevent patient-to-patient transmission. Infect Control Hosp Epidemiol 2003; 24(5): 1–93

    Article  Google Scholar 

  23. Southern KW, Barker PM, Solis A. Macrolide antibiotics for cystic fibrosis. Cochrane Database Syst Rev 2004; (2): CD002203

    Google Scholar 

  24. Hansen CR, Pressler T, Koch C, et al. Long-term azitromycin treatment of cystic fibrosis patients with chronic Pseudomonas aeruginosa infection; an observational cohort study. J Cyst Fibros 2005; 4(1): 35–40

    Article  PubMed  CAS  Google Scholar 

  25. Clement A, Tamalet A, Leroux E, et al. Long term effects of azithromycin in patients with cystic fibrosis: a double blind, placebo controlled trial. Thorax 2006; 61(10): 895–902

    Article  PubMed  CAS  Google Scholar 

  26. Molinari G, Guzman CA, Pesce A, et al. Inhibition of Pseudomonas aeruginosa virulence factors by subinhibitory concentrations of azithromycin and other macrolide antibiotics. J Antimicrob Chemother 1993; 31(5): 681–8

    Article  PubMed  CAS  Google Scholar 

  27. Hoffmann N, Lee B, Hentzer M, et al. Azithromycin blocks quorum sensing and alginate polymer formation and increases the sensitivity to serum and stationary-growth-phase killing of Pseudomonas aeruginosa and attenuates chronic P. aeruginosa lung infection in Cftr(-/-) mice. Antimicrob Agents Chemother 2007; 51(10): 3677–87

    Article  PubMed  CAS  Google Scholar 

  28. Ianaro A, Ialenti A, Maffia P, et al. Anti-inflammatory activity of macrolide antibiotics. J Pharmacol Exp Ther 2000; 292(1): 156–63

    PubMed  CAS  Google Scholar 

  29. Amsden GW. Anti-inflammatory effects of macrolides: an underappreciated benefit in the treatment of community-acquired respiratory tract infections and chronic inflammatory pulmonary conditions? J Antimicrob Chemother 2005; 55(1): 10–21

    Article  PubMed  CAS  Google Scholar 

  30. Tsai WC, Hershenson MB, Zhou Y, et al. Azithromycin increases survival and reduces lung inflammation in cystic fibrosis mice. Inflamm Res 2009; 58(8): 491–501

    Article  PubMed  CAS  Google Scholar 

  31. Takeshita K, Yamagishi I, Harada M, et al. Immunological and anti-inflammatory effects of clarithromycin: inhibition of interleukin 1 production of murine peritoneal macrophages. Drugs Exp Clin Res 1989; 15(11–12): 527–33

    PubMed  CAS  Google Scholar 

  32. Cystic Fibrosis Foundation. Patient registry: annual data report 2008. Bethesda (MD): Cystic Fibrosis Foundation, 2008

    Google Scholar 

  33. Auerbach H, Kirkpatrick J, Williams M, et al. Alternate-day prednisone reduces morbidity and improves pulmonary function in cystic fibrosis. Lancet 1985; 326(8457): 686–8

    Article  Google Scholar 

  34. Eggleston PA, Rosenstein BJ, Stackhouse CM, et al. A controlled trial of long-term bronchodilator therapy in cystic fibrosis. Chest 1991; 99(5): 1088–92

    Article  PubMed  CAS  Google Scholar 

  35. Dovey M, Aitken ML, Emerson J, et al. Oral corticosteroid therapy in cystic fibrosis patients hospitalized for pulmonary exacerbation: a pilot study. Chest 2007; 132(4): 1212–8

    Article  PubMed  CAS  Google Scholar 

  36. Bisgaard H, Pedersen SS, Nielsen KG, et al. Controlled trial of inhaled budesonide in patients with cystic fibrosis and chronic bronchopulmonary Psuedomonas aeruginosa infection. Am J Respir Crit Care Med 1997; 156 (4 Pt 1): 1190–6

    PubMed  CAS  Google Scholar 

  37. Ren CL, Pasta DJ, Rasouliyan L, et al. Relationship between inhaled corticosteroid therapy and rate of lung function decline in children with cystic fibrosis. J Pediatr 2008; 153(6): 746–51

    Article  PubMed  CAS  Google Scholar 

  38. Balfour-Lynn IM, Lees B, Hall P, et al. Multicenter randomized controlled trial of withdrawal of inhaled corticosteroids in cystic fibrosis. Am J Respir Crit Care Med 2006; 173(12): 1356–62

    Article  PubMed  CAS  Google Scholar 

  39. Balfour-Lynn IM, Welch K. Inhaled corticosteroids for cystic fibrosis. Cochrane Database Syst Rev 2009; (1): CD001915

    Google Scholar 

  40. Ross KR, Chmiel JF, Konstan MW. The role of inhaled corticosteroids in the management of cystic fibrosis. Paediatr Drugs 2009; 11(2): 101–13

    Article  PubMed  Google Scholar 

  41. Guran T, Ersu R, Karadag B, et al. Withdrawal of inhaled steroids in children with non-cystic fibrosis bronchiectasis. J Clin Pharm Ther 2008; 33(6): 603–11

    Article  PubMed  CAS  Google Scholar 

  42. Konstan MW, Byard PJ, Hoppel CL, et al. Effect of high-dose ibuprofen in patients with cystic fibrosis. N Engl J Med 1995; 332(13): 848–54

    Article  PubMed  CAS  Google Scholar 

  43. Lands LC, Milner R, Cantin AM, et al. High-dose ibuprofen in cystic fibrosis: Canadian safety and effectiveness trial. J Pediatr 2007; 151(3): 249–54

    Article  PubMed  CAS  Google Scholar 

  44. Konstan MW, Schluchter MD, Xue W, et al. Clinical use of ibuprofen is associated with slower FEV1 decline in children with cystic fibrosis. Am J Respir Crit Care Med 2007; 176(11): 1084–9

    Article  PubMed  Google Scholar 

  45. Rosenstein B, Eigen H. Risks ofalternate-day prednisone in patients with cystic fibrosis. Pediatrics 1991; 87(2): 245–6

    PubMed  CAS  Google Scholar 

  46. Dezateux C, Walters S, Balfour-Lynn I. Inhaled corticosteroids for cystic fibrosis. Cochrane Database Syst Rev 2000; (2): CD001915

    Google Scholar 

  47. Lands LC, Stanojevic S. Oral non-steroidal anti-inflammatory drug therapy for cystic fibrosis. Cochrane Database Syst Rev 2007; (4): CD001505

    Google Scholar 

  48. Chernick W. Comparison of tracheobronchial secretion in cystic fibrosis of the pancreas and bronchiectasis. Pediatrics 1959; 24: 739–45

    PubMed  CAS  Google Scholar 

  49. Smith AL, Redding G, Doershuk C, et al. Sputum changes associated with therapy for endobronchial exacerbation in cystic fibrosis. J Pediatr 1988; 112(4): 547–54

    Article  PubMed  CAS  Google Scholar 

  50. Koch C, Høxiby N. Pathogenesis of cystic fibrosis. Lancet 1993; 341(8852): 1065–9

    Article  PubMed  CAS  Google Scholar 

  51. Houtmeyers E, Gosselink R, Gayan-Ramirez G, et al. Effects of drugs on mucus clearance. Eur Respir J 1999; 14(2): 452–67

    Article  PubMed  CAS  Google Scholar 

  52. Ratjen F, Paul K, van Koningsbruggen S, et al. DNA concentrations in BAL fluid of cystic fibrosis patients with early lung disease: influence of treatment with dornase alpha. Pediatr Pulmonol 2005; 39(1): 1–4

    Article  PubMed  CAS  Google Scholar 

  53. Shah PL, Scott SF, Knight RA, et al. The effects of recombinant human DNase on neutrophil elastase activity and interleukin-8 levels in the sputum of patients with cystic fibrosis. Eur Respir J 1996; 9(3): 531–4

    Article  PubMed  CAS  Google Scholar 

  54. Paul K, Rietschel E, Ballmann M, et al. Effect of treatment with dornase alpha on airway inflammation in patients with cystic fibrosis. Am J Respir Crit Care Med 2004; 169(6): 719–25

    Article  PubMed  Google Scholar 

  55. Costello CM, O’Connor CM, Finlay GA, et al. Effect of nebulised recombinant DNase on neutrophil elastase load in cystic fibrosis. Thorax 1996; 51(6): 619–23

    Article  PubMed  CAS  Google Scholar 

  56. Rochat T, Pastore FD, Schlegel_Haueter SE, et al. Aerosolized rhDNase in cystic fibrosis: effect on leucocyte proteases in sputum. Eur Respir J 1996; 9(11): 2200–6

    Article  PubMed  CAS  Google Scholar 

  57. McGrath LT, Mallon P, Dowey L, et al. Oxidative stress during acute respiratory exacerbations in cystic fibrosis. Thorax 1999; 54(6): 518–23

    Article  PubMed  CAS  Google Scholar 

  58. Ciofu O, Riis B, Pressler T, et al. Occurrence of hypermutable Pseudomonas aeruginosa in cystic fibrosis patients is associated with the oxidative stress caused by chronic lung inflammation. Antimicrob Agents Chemother 2005; 49(6): 2276–82

    Article  PubMed  CAS  Google Scholar 

  59. Gao L, Kim KJ, Yankaskas JR, et al. Abnormal glutathione transport in cystic fibrosis airway epithelia. Am J Physiol 1999; 277 (1 Pt 1): L113–8

    PubMed  CAS  Google Scholar 

  60. van der Vliet A, Eiserich JP, Marelich GP, et al. Oxidative stress in cystic fibrosis: does it occur and does it matter? Adv Pharmacol 1997; 38: 491–513

    Article  PubMed  Google Scholar 

  61. Rahman I, Kelly F. Biomarkers in breath condensate: a promising new non-invasive technique in free radical research. Free Radic Res 2003; 37(12): 1253–66

    Article  PubMed  CAS  Google Scholar 

  62. Roum JH, Borok Z, McElvaney NG, et al. Glutathione aerosol suppresses lung epithelial surface inflammatory cell-derived oxidants in cystic fibrosis. J Appl Physiol 1999; 87(1): 438–43

    PubMed  CAS  Google Scholar 

  63. Morcillo EJ, Estrela J, Cortijo J. Oxidative stress and pulmonary inflammation: pharmacological intervention with antioxidants. Pharmacol Res 1999; 40(5): 393–404

    Article  PubMed  CAS  Google Scholar 

  64. Haddad JJ. Glutathione depletion is associated with augmenting a pro-inflammatory signal: evidence for an antioxidant/pro-oxidant mechanism regulating cytokines in the alveolar epithelium. Cytokines Cell Mol Ther 2000; 6(4): 177–87

    PubMed  CAS  Google Scholar 

  65. Gao L, Broughman JR, Iwamoto T, et al. Synthetic chloride channel restores glutathione secretion in cystic fibrosis airway epithelia. Am J Physiol Lung Cell Mol Physiol 2001; 281(1): L24–30

    PubMed  CAS  Google Scholar 

  66. Hudson VM. New insights into the pathogenesis of cystic fibrosis: pivotal role of glutathione system dysfunction and implications for therapy. Treat Respir Med 2004; 3(6): 353–63

    Article  PubMed  CAS  Google Scholar 

  67. Griese M, Ramakers J, Krasselt A, et al. Improvement of alveolar glutathione and lung function but not oxidative state in cystic fibrosis. Am J Respir Crit Care Med 2004; 169(7): 822–8

    Article  PubMed  Google Scholar 

  68. Bishop C, Hudson VM, Hilton SC, et al. A pilot study of the effect of inhaled buffered reduced glutathione on the clinical status of patients with cystic fibrosis. Chest 2005; 127(1): 308–17

    Article  PubMed  CAS  Google Scholar 

  69. Hartl D, Starosta V, Maier K, et al. Inhaled glutathione decreases PGE2 and increases lymphocytes in cystic fibrosis lungs. Free Radic Biol Med 2005; 39(4): 463–72

    Article  PubMed  CAS  Google Scholar 

  70. Tirouvanziam R, Conrad CK, Bottiglieri T, et al. High-dose oral N-acetylcysteine, a glutathione prodrug, modulates inflammation in cystic fibrosis. Proc Natl Acad Sci U S A 2006; 103(12): 4628–33

    Article  PubMed  CAS  Google Scholar 

  71. Visca A, Bishop CT, Hilton SC, et al. Improvement in clinical markers in CF patients using a reduced glutathione regimen: an uncontrolled, observational study. J Cyst Fibros 2008; 7(5): 433–6

    Article  PubMed  CAS  Google Scholar 

  72. Lee TW, Brownlee KG, Conway SP, et al. Evaluation of a new definition for chronic Pseudomonas aeruginosa infection in cystic fibrosis patients. J Cyst Fibros 2003; 2(1): 29–34

    Article  PubMed  Google Scholar 

  73. Cantin AM. Potential for antioxidant therapy of cystic fibrosis. Curr Opin Pulm Med 2004; 10(6): 531–6

    Article  PubMed  CAS  Google Scholar 

  74. Doring G, Goldstein W, Botzenhart K, et al. Elastase from polymorphonuclear leucocytes: a regulatory enzyme in immune complex disease. Clin Exp Immunol 1986; 64(3): 597–605

    PubMed  CAS  Google Scholar 

  75. Doring G. Polymorphonuclear leukocyte elastase: its effects on the pathogenesis of Pseudomonas aeruginosa infection in cystic fibrosis. Antibiot Chemother 1989; 42: 169–76

    PubMed  CAS  Google Scholar 

  76. Richman-Eisenstat JB, Jorens PG, Hebert CA, et al. Interleukin-8: an important chemoattractant in sputum of patients with chronic inflammatory airway diseases. Am J Physiol 1993; 264 (4 Pt 1): L413–8

    PubMed  CAS  Google Scholar 

  77. Hartl D, Latzin P, Hordijk P, et al. Cleavage of CXCR1 on neutrophils disables bacterial killing in cystic fibrosis lung disease. Nat Med 2007; 13(12): 1423–30

    Article  PubMed  CAS  Google Scholar 

  78. Doring G. The role of neutrophil elastase in chronic inflammation. Am J Respir Crit Care Med 1994; 150 (6 Pt 2): S114–7

    PubMed  CAS  Google Scholar 

  79. Doring G, Frank F, Boudier C, et al. Cleavage of lymphocyte surface antigens CD2, CD4, and CD8 by polymorphonuclear leukocyte elastase and cathepsin G in patients with cystic fibrosis. J Immunol 1995; 154(9): 4842–50

    PubMed  CAS  Google Scholar 

  80. O’Connor CM, Gaffney K, Keane J, et al. Alpha 1-proteinase inhibitor, elastase activity, and lung disease severity in cystic fibrosis. Am Rev Respir Dis 1993; 148 (6 Pt 1): 1665–70

    Article  PubMed  Google Scholar 

  81. Birrer P, McElvaney NG, Rudeberg A, et al. Protease-antiprotease imbalance in the lungs of children with cystic fibrosis. Am J Respir Crit Care Med 1994; 150(1): 207–13

    PubMed  CAS  Google Scholar 

  82. Hubbard R, McElvaney NG, Birrer P, et al. A preliminary study of aerosolised recombinant human deoxyribonuclease in treatment of cystic fibrosis. N Engl J Med 1992; 326: 812–5

    Article  PubMed  CAS  Google Scholar 

  83. Birrer P. Proteases and antiproteases in cystic fibrosis: pathogenetic considerations and therapeutic strategies. Respiration 1995; 62Suppl. 1: 25–8

    Article  PubMed  Google Scholar 

  84. Moraes TJ, Plumb J, Martin R, et al. Abnormalities in the pulmonary innate immune system in cystic fibrosis. Am J Respir Cell Mol Biol 2006; 34(3): 364–74

    Article  PubMed  CAS  Google Scholar 

  85. Griese M, Kappler M, Gaggar A, et al. Inhibition of airway proteases in cystic fibrosis lung disease. Eur Respir J 2008; 32(3): 783–95

    Article  PubMed  CAS  Google Scholar 

  86. Doring G, Elborn JS, Johannesson M, et al. Clinical trials in cystic fibrosis. J Cyst Fibros 2007; 6(2): 85–99

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to prepare this manuscript. The author has no conflicts of interest to declare that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tacjana Pressler MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pressler, T. Targeting Airway Inflammation in Cystic Fibrosis in Children. Pediatr-Drugs 13, 141–147 (2011). https://doi.org/10.2165/11588150-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11588150-000000000-00000

Keywords

Navigation