Danaei G, Ding Eric L, Mozaffarian D, et al. The preventable causes of death in the United States: comparativerisk assessment of dietary, lifestyle, and metabolic riskfactors. PloS Med 2009; 6 (4): 1–23
Article
Google Scholar
Blair SN, Kohl III HW, Barlow CE, et al. Changes in physical fitness and all-cause mortality: a prospectivestudy of healthy and unhealthy men. JAMA 1995; 273: 1093–8
PubMed
CAS
Article
Google Scholar
Sun Q, Townsend MK, Okereke OI, et al. Physical activity at midlife in relation to successful survival inwomen at age 70 years or older. Arch Intern Med 2010; 170: 194–201
PubMed
Article
Google Scholar
Wolfe RR. The underappreciated role of muscle in health and disease. Am J Clin Nutr 2006; 84: 475–82
PubMed
CAS
Google Scholar
Cawthon PM, Fox KM, Gandra SR, et al. Do muscle mass, muscle density, strength, and physical function similarly influence risk of hospitalization in older adults? J Am Geriatr Soc 2009; 57: 1411–9
PubMed
Article
Google Scholar
Suetta C, Magnusson SP, Beyer N, et al. Effect of strength training on muscle function in elderly hospitalized patients. Scand J Med Sci Sports 2007; 17: 464–72
PubMed
CAS
Article
Google Scholar
Tanasescu M, Leitzmann MF, Rimm EB, et al. Exercise type and intensity in relation to coronary heart disease in men. 2002; 288 (16): 1994–2000
Kadar L, Albertsson M, Areberg J, et al. The prognostic value of body protein in patients with lung cancer. Ann NY Acad Sci 2000; 904: 584–91
PubMed
CAS
Article
Google Scholar
Anker SD, Steinborn W, Strassburg S. Cardiac cachexia. Ann Med 2004; 36: 518–29
PubMed
Article
Google Scholar
Metter EJ, Talbot LA, Schrager M, et al. Skeletal muscle strength as a predictor of all-cause mortality in healthymen. J Gerontol A Biol Sci Med Sci 2002; 57: B359–65
PubMed
Article
Google Scholar
Morley JE, Anker SD, Evans WJ. Cachexia and aging: an update based on the Fourth International Cachexia Meeting. J Nutr Health Aging 2009; 13: 47–55
PubMed
CAS
Article
Google Scholar
Phillips SM. Resistance exercise: good for more than just Grandma and Grandpa’smuscles. Appl Physiol Nutr Metab 2007; 32: 1198–205
PubMed
Article
Google Scholar
Hurley BF, Roth SM. Strength training in the elderly: effects on risk factors for age-related diseases. Sports Med 2000; 30: 249–68
PubMed
CAS
Article
Google Scholar
Braith RW, Stewart KJ. Resistance exercise training: its role in the prevention of cardiovascular disease. Circulation 2006; 113: 2642–50
PubMed
Article
Google Scholar
Pendergast DR, Fisher NM, Calkins E. Cardiovascular, neuromuscular, and metabolic alterations with age leadingto frailty. J Gerontol 1993; 48 (SpecNo): 61–7
PubMed
Article
Google Scholar
Evans WJ. Skeletal muscle loss: cachexia, sarcopenia, and inactivity. Am J Clin Nutr 2010; 91: 1123–7S
Article
CAS
Google Scholar
Muller F. The nature and mechanism of superoxide production by the electron transport chain: its relevance toaging. J Am Aging Assoc 2000; 23: 227–53
CAS
Google Scholar
Parise G, Kaczor JJ, Mahoney DJ, et al. Oxidative stress and the mitochondrial theory of aging in human skeletalmuscle. Exp Geront 2004; 39: 1391–400
Article
CAS
Google Scholar
Melov S, Tarnopolsky MA, Beckman K, et al. Resistance exercise reverses aging in human skeletal muscle. PLo S One 2007; 2: (5) E465
Article
CAS
Google Scholar
Li Y, Li HZ, Hu P, et al. Generation and bioenergetic analysis of cybrids containing mitochondrial DNA frommouse skeletal muscle during aging. Nucleic Acids Res 2010; 38 (6) 1913–21
PubMed
CAS
Article
Google Scholar
Parise G, Phillips SM, Kaczor JJ, et al. Antioxidant enzyme activity is up-regulated after unilateral resistance exercisetraining in older adults. Free Radic Biol Med 2005; 39: 289–95
PubMed
CAS
Article
Google Scholar
Parise G, Brose AN, Tarnopolsky MA. Resistance exercise training decreases oxidative damage to DNA and increasescytochrome oxidase activity in older adults. Exp Gerontol 2005; 40: 173–80
PubMed
CAS
Article
Google Scholar
Vincent KR, Vincent HK, Braith RW, et al. Resistance exercise training attenuates exercise-induced lipid peroxidationin the elderly. Eur J Appl Physiol 2002; 87: 416–23
PubMed
CAS
Article
Google Scholar
Kyriakouli DS, Boesch P, Taylor RW, et al. Progress and prospects: gene therapy for mitochondrial DNA disease. Gene Ther 2008; 15: 1017–23
PubMed
CAS
Article
Google Scholar
DiPenta JM, Green-Johnson JM, Murphy RJ. Type 2 diabetes mellitus, resistance training, and innate immunity:is there a common link? Appl Physiol Nutr Metab 2007; 32: 1025–35
Article
Google Scholar
Murphy JL, Blakely EL, Schaefer AM, et al. Resistance training in patients with single, large-scale deletions ofmitochondrial DNA. Brain 2008; 131: 2832–40
PubMed
Article
Google Scholar
Johnston AP, De LM, Parise G. Resistance training, sarcopenia, and the mitochondrial theory of aging. Appl Physiol Nutr Metab 2008; 33: 191–9
PubMed
CAS
Article
Google Scholar
Petersen KF, Befroy D, Dufour S, et al. Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science 2003; 300: 1140–2
PubMed
CAS
Article
Google Scholar
Befroy DE, Petersen KF, Dufour S, et al. Impaired mitochondrial substrate oxidation in muscle of insulinresistantoffspring of type 2 diabetic patients. Diabetes 2007; 56: 1376–81
PubMed
CAS
Article
Google Scholar
Rotig A, Bonnefont JP, Munnich A. Mitochondrial diabetes mellitus. Diabetes Metab 1996; 22: 291–8
PubMed
CAS
Google Scholar
Grundy SM, Cleeman JI, Daniels SR, et al. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 2005; 112: 2735–52
PubMed
Article
Google Scholar
Alberti KG, Zimmet P, Shaw J. Metabolic syndrome: a new world-wide definition. A Consensus Statement fromthe International Diabetes Federation Diabet Med 2006; 23: 469–80
CAS
Google Scholar
Reaven G. The metabolic syndrome or the insulin resistance syndrome? Different names, different concepts, anddifferent goals. Endocrinol Metab Clin North Am 2004; 33: 283–303
PubMed
Article
Google Scholar
Despres JP. Abdominal obesity and the metabolic syndrome. In: Bray G, Ryan D, editors. Overweight andmetabolic syndrome. New York: Springer, 2006: 137–52
Chapter
Google Scholar
Libby P. Prevention and treatment of atherosclerosis. In: Kasper DL, Braunwald E, Fauci AS, et al., editors. Harrison’s principles of internal medicine. New York: McGraw-Hill, 2005: 1430–2
Google Scholar
Jurca R, Lamonte MJ, Church TS, et al. Associations of muscle strength and fitness with metabolic syndrome inmen. Med Sci Sports Exerc 2004; 36: 1301–7
PubMed
Article
Google Scholar
Jurca R, Lamonte MJ, Barlow CE, et al. Association of muscular strength with incidence of metabolic syndromein men. Med Sci Sports Exerc 2005; 37: 1849–55
PubMed
Article
Google Scholar
Ruiz JR, Sui X, Lobelo F, et al. Muscular strength and adiposity as predictors of adulthood cancer mortality inmen. Cancer Epidemiol Biomarkers Prev 2009; 18: 1468–76
PubMed
Article
Google Scholar
Atlantis E, Martin SA, Haren MT, et al. Inverse associations between muscle mass, strength, and the metabolicsyndrome. Metabolism 2009; 58: 1013–22
PubMed
CAS
Article
Google Scholar
Rader DJ. Effect of insulin resistance, dyslipidemia, and intra-abdominal adiposity on the development of cardiovasculardisease and diabetes mellitus. Am J Med 2007; 120 (3): S12–8
PubMed
CAS
Article
Google Scholar
Powers AC. Diabetes mellitus. In: Kasper DL, Braunwald E, Fauci AS, et al., editors. Harrison’s principles of internal medicine. New York: McGraw-Hill, 2005: 2152–8
Google Scholar
Ford ES, Giles WH, Dietz WH. Prevalence of the metabolic syndrome among US adults: findings from the thirdNational Health and Nutrition Examination Survey. JAMA 2002; 287: 356–9
PubMed
Article
Google Scholar
Narayan KM, Boyle JP, Thompson TJ, et al. Lifetime risk for diabetes mellitus in the United States. JAMA 2003; 290: 1884–90
PubMed
CAS
Article
Google Scholar
Colberg SR, Sigal RJ, Fernhall B, et al. Exercise and type 2 diabetes. The American College of Sports Medicine andthe American Diabetes Association joint position statementexecutive summary Diabetes Care 2010; 33: 2692–6
Google Scholar
Selvin E, Steffes MW, Zhu H, et al. Glycated hemoglobin, diabetes, and cardiovascular risk in nondiabetic adults. N Engl J Med 2010; 362: 800–11
PubMed
CAS
Article
Google Scholar
Nathan D. International Expert Committee report on the role of the A1C assay in the diagnosis of diabetes. Diabetes Care 2009; 32: 1327–34
CAS
Article
Google Scholar
Park SW, Goodpaster BH, Strotmeyer ES, et al. Decreased muscle strength and quality in older adults with type 2diabetes: the health, aging, and body composition study. Diabetes 2006; 55: 1813–8
PubMed
CAS
Article
Google Scholar
Park SW, Goodpaster BH, Strotmeyer ES, et al. Accelerated loss of skeletal muscle strength in older adultswith type 2 diabetes: the health, aging, and body compositionstudy. Diabetes Care 2007; 30: 1507–12
PubMed
Article
Google Scholar
Park SW, Goodpaster BH, Lee JS, et al. Excessive loss of skeletal muscle mass in older adults with type 2 diabetes. Diabetes Care 2009; 32: 1993–7
PubMed
Article
Google Scholar
Castaneda C, Layne JE, Munoz-Orians L, et al. A randomized controlled trial of resistance exercise training toimprove glycemic control in older adults with type 2 diabetes. Diabetes Care 2002; 25: 2335–41
PubMed
Article
Google Scholar
Khaw KT, Wareham N, Luben R, et al. Glycated haemoglobin, diabetes, and mortality in men in Norfolk cohortof European Prospective Investigation of Cancer and Nutrition(EPIC-Norfolk). BMJ 2001 Jun 1; 322 (7277): 1–6
Article
Google Scholar
Manley S. Haemoglobin A1c — marker for complications of type 2 diabetes: the experience from the UK Prospective Diabetes Study (UKPDS). Clin Chem Lab Med 2003; 41: 1182–90
PubMed
CAS
Article
Google Scholar
Calles-Escandon J, Lovato LC, Simons-Morton DG, et al. Effect of intensive compared with standard glycemiatreatment strategies on mortality by baseline subgroupcharacteristics: the Action to Control Cardiovascular Riskin Diabetes (ACCORD) trial. Diabetes Care 2010; 33: 721–7
PubMed
Article
Google Scholar
Cauza E, Hanusch-Enserer U, Strasser B, et al. The relative benefits of endurance and strength training on the metabolicfactors and muscle function of people with type 2diabetes mellitus. Arch Phys Med Rehabil 2005; 86: 1527–33
PubMed
Article
Google Scholar
Brooks N, Layne JE, Gordon PL, et al. Strength training improves muscle quality and insulin sensitivity in Hispanicolder adults with type 2 diabetes. Int J Med Sci 2007; 4: 19–27
CAS
Article
Google Scholar
Dunstan DW, Daly RM, Owen N, et al. High-intensity resistance training improves glycemic control in olderpatientswith type 2 diabetes. Diabetes Care 2002; 25: 1729–36
PubMed
Article
Google Scholar
Gordon PL, Vannier E, Hamada K, et al. Resistance training alters cytokine gene expression in skeletal muscleof adults with type 2 diabetes. Int J Immunopathol Pharmacol 2006; 19: 739–49
PubMed
CAS
Google Scholar
Baldi JC, Snowling N. Resistance training improves glycaemic control in obese type 2 diabetic men. Int J Sports Med 2003; 24: 419–23
PubMed
CAS
Article
Google Scholar
Snowling NJ, Hopkins WG. Effects of different modes of exercise training on glucose control and risk factors forcomplications in type 2 diabetic patients: a meta-analysis. Diabetes Care 2006; 29: 2518–27
PubMed
Article
Google Scholar
Balducci S, Alessi E, Cardelli P, et al. Effects of different modes of exercise training on glucose control and risk factors for complications in type 2 diabetic patients: ameta-analysis: response to Snowling and Hopkins [letter]. Diabetes Care 2007; 30: E25
PubMed
Article
Google Scholar
Sigal RJ, Kenny GP, Boule NG, et al. Effects of aerobic training, resistance training, or both on glycemic controlin type 2 diabetes: a randomized trial. Ann Intern Med 2007; 147: 357–69
PubMed
Google Scholar
Weeks DL. Exercise interventions for diabetes control: do we really know that strength training is better than endurancetraining? Arch Phys Med Rehabil 2007; 88: 397–8
PubMed
Article
Google Scholar
Bweir S, Al-Jarrah M, Almalty AM, et al. Resistance exercise training lowers HbA1c more than aerobic trainingin adults with type 2 diabetes. Diabetol Metab Syndr 2009; 1: 27
PubMed
Article
CAS
Google Scholar
Smutok MA, Reece C, Kokkinos PF, et al. Effects of exercise training modality on glucose tolerance in men withabnormal glucose regulation. Int J Sports Med 1994; 15: 283–9
PubMed
CAS
Article
Google Scholar
Miller JP, Pratley RE, Goldberg AP, et al. Strength training increases insulin action in healthy 50- to 65-yr-oldmen. J Appl Physiol 1994; 77: 1122–7
PubMed
CAS
Google Scholar
Misra A, Alappan NK, Vikram NK, et al. Effect of supervised progressive resistance-exercise training protocolon insulin sensitivity, glycemia, lipids, and body compositionin Asian Indians with type 2 diabetes. Diabetes Care 2008; 31: 1282–7
PubMed
CAS
Article
Google Scholar
Miller W, Sherman W, Ivy J. Effect of strength training on glucose tolerance and post-glucose insulin response. Med Sci Sports Exerc 1984; 16: 539–43
PubMed
CAS
Google Scholar
Close GL, Kayani A, Vasilaki A, et al. Skeletal muscle damage with exercise and aging. Sports Med 2005; 35: 413–27
PubMed
Article
Google Scholar
Ryan AS, Pratley RE, Goldberg AP, et al. Resistive training increases insulin action in postmenopausal women. J Gerontol A Biol Sci Med Sci 1996; 51: M199–205
PubMed
CAS
Article
Google Scholar
Ibanez J, Izquierdo M, Arguelles I, et al. Twice-weekly progressive resistance training decreases abdominal fatand improves insulin sensitivity in older men with type 2diabetes. Diabetes Care 2005; 28: 662–7
PubMed
Article
Google Scholar
Ryan AS, Hurlbut DE, Lott ME, et al. Insulin action after resistive training in insulin resistant older men andwomen. J Am Geriatr Soc 2001; 49: 247–53
PubMed
CAS
Article
Google Scholar
Ishii T, Yamakita T, Sato T, et al. Resistance training improves insulin sensitivity in NIDDM subjects withoutaltering maximal oxygen uptake. Diabetes Care 1998; 21: 1353–5
PubMed
CAS
Article
Google Scholar
Holten MK, Zacho M, Gaster M, et al. Strength training increases insulin-mediated glucose uptake, GLUT4 content,and insulin signaling in skeletal muscle in patientswith type 2 diabetes. Diabetes 2004; 53: 294–305
PubMed
CAS
Article
Google Scholar
Davidson LE, Hudson R, Kilpatrick K, et al. Effects of exercise modality on insulin resistance and functionallimitation in older adults: a randomized controlled trial. Arch Intern Med 2009; 169: 122–31
PubMed
Article
Google Scholar
Tresierras MA, Balady GJ. Resistance training in the treatment of diabetes and obesity: mechanisms and outcomes. J Cardiopulm Rehabil Prev 2009; 29: 67–75
PubMed
Google Scholar
Kuk JL, Kilpatrick K, Davidson LE, et al. Whole-body skeletal muscle mass is not related to glucose tolerance orinsulin sensitivity in overweight and obese men andwomen. Appl Physiol Nutr Metab 2008; 33: 769–74
PubMed
CAS
Article
Google Scholar
Klimcakova E, Polak J, Moro C, et al. Dynamic strength training improves insulin sensitivity without alteringplasma levels and gene expression of adipokines in subcutaneousadipose tissue in obese men. J Clin Endocrinol Metab 2006; 91: 5107–12
PubMed
CAS
Article
Google Scholar
Reynolds TH 4th, Supiano MA, Dengel DR. Resistance training enhances insulin-mediated glucose disposal withminimal effect on the tumor necrosis factor-alpha systemin older hypertensives. Metabolism 2004; 53: 397–402
PubMed
CAS
Article
Google Scholar
Smith Jr SC. Multiple risk factors for cardiovascular disease and diabetes mellitus. Am J Med 2007; 120: S3–11
PubMed
Article
Google Scholar
Li C, Ford ES, McGuire LC, et al. Increasing trends in waist circumference and abdominal obesity among USadults. Obesity (Silver Spring) 2007; 15: 216–24
Article
Google Scholar
Treuth M, Hunter G, Kekes-szabo T, et al. Reduction in intra-abdominal adipose tissue after strength training inolder women. J Appl Physiol 1995; 78: 1425–31
PubMed
CAS
Google Scholar
Hunter GR, Bryan DR, Wetzstein CJ, et al. Resistance training and intra-abdominal adipose tissue in older menand women. Med Sci Sports Exerc 2002; 34: 1023–8
PubMed
Article
Google Scholar
Hunter GR, Brock DW, Byrne NM, et al. Exercise training prevents regain of visceral fat for 1 year following weightloss. Obesity (Silver Spring) 2010; 18 (4): 690–5
Article
Google Scholar
Schmitz KH, Hannan PJ, Stovitz SD, et al. Strength training and adiposity in premenopausal women: strong, healthy,and empowered study. Am J Clin Nutr 2007; 86: 566–72
PubMed
CAS
Google Scholar
Borkan G, Hults D, Gerzof S, et al. Comparison of body composition in middle-aged and elderly males usingcomputed tomography. Am J Phy Anthropol 1984; 66: 289–95
Article
Google Scholar
Taaffe DR, Henwood TR, Nalls MA, et al. Alterations in muscle attenuation following detraining and retraining inresistance-trained older adults. Gerontology 2009; 55: 217–23
PubMed
Article
Google Scholar
Dyck DJ, Bonen A. Muscle contraction increases palmitate esterification and oxidation and triacylglycerol oxidation. Am J Physiol 1998; 275: E888–96
PubMed
CAS
Google Scholar
Sacchetti M, Saltin B, Osada T, et al. Intramuscular fatty acid metabolism in contracting and non-contractinghuman skeletal muscle. J Physiol 2002; 540: 387–95
PubMed
CAS
Article
Google Scholar
Yao L, Delmonico MJ, Roth SM, et al. Adrenergic receptor genotype influence on midthigh intermuscular fatresponse to strength training in middle-aged and olderadults. J Gerontol A Biol Sci Med Sci 2007; 62: 658–63
PubMed
Article
Google Scholar
Pighon A, Paquette A, Barsalani R, et al. Substituting food restriction by resistance training prevents liver and bodyfat regain in ovariectomized rats. Climacteric 2009; 12: 153–64
PubMed
CAS
Article
Google Scholar
Kotronen A, Yki-Jarvinen H. Fatty liver: a novel component of the metabolic syndrome. Arterioscler Thromb Vasc Biol 2008; 28: 27–38
PubMed
CAS
Article
Google Scholar
Samuel VT, Liu ZX, Qu X, et al. Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease. J Biol Chem 2004; 279: 32345–53
PubMed
CAS
Article
Google Scholar
Pratley R, Nicklas B, Rubin M, et al. Strength training increases resting metabolic rate and norepinephrine levelsin healthy 50- to 65-yr-old men. J Appl Physiol 1994; 76: 133–7
PubMed
CAS
Article
Google Scholar
Lemmer JT, Ivey FM, Ryan AS, et al. Effect of strength training on resting metabolic rate and physical activity:age and gender comparisons. Med Sci Sports Exerc 2001; 33: 532–41
PubMed
CAS
Google Scholar
Hurley B, Seals D, Ehsani A, et al. Effects of high intensity strength training on cardiovascular function. Med Sci Sports Exerc 1984; 16: 483–8
PubMed
CAS
Article
Google Scholar
Lloyd-Jones D, Adams R, Carnethon M, et al. Heart disease and stroke statistics: 2009 update. A report from theAmerican Heart Association Statistics Committee andStroke Statistics Subcommittee Circulation 2009; 119: 480–6
Google Scholar
Williams MA, Haskell WL, Ades PA, et al. Resistance exercise in individuals with and without cardiovasculardisease: 2007 update. A scientific statement from theAmerican Heart Association Council on Clinical Cardiologyand Council on Nutrition, Physical Activity, andMetabolism Circulation 2007; 116: 572–84
Google Scholar
Kelley GA, Kelley KS. Impact of progressive resistance training on lipids and lipoproteins in adults: a meta-analysisof randomized controlled trials. Prev Med 2009; 48: 9–19
PubMed
CAS
Article
Google Scholar
Kelley GA, Kelley KS. Impact of progressive resistance training on lipids and lipoproteins in adults: another lookat a meta-analysis using prediction intervals. Prev Med 2009; 49: 473–5
PubMed
CAS
Article
Google Scholar
Fahlman MM, Boardley D, Lambert CP, et al. Effects of endurance training and resistance training on plasmalipoprotein profiles in elderly women. J Gerontol A Biol Sci Med Sci 2002; 57: B54–60
PubMed
Article
Google Scholar
Halverstadt A, Phares DA, Ferrell RE, et al. High-density lipoprotein-cholesterol, its subfractions, and responses toexercise training are dependent on endothelial lipase genotype. Metabolism 2003; 52: 1505–11
PubMed
CAS
Article
Google Scholar
Wilund KR, Ferrell RE, Phares DA, et al. Changes in highdensity lipoprotein-cholesterol subfractions with exercisetraining may be dependent on cholesteryl ester transferprotein (CETP) genotype. Metabolism 2002; 51: 774–8
PubMed
CAS
Article
Google Scholar
Chobanian AV, Bakris GL, Black HR, et al. The seventh report of the joint national committee on prevention, detection,evaluation, and treatment of high blood pressure:the JNC 7 report. JAMA 2003; 289: 2560–72
PubMed
CAS
Article
Google Scholar
Vasan RS, Larson MG, Leip EP, et al. Assessment of frequency of progression to hypertension in nonhypertensiveparticipants in the Framingham Heart Study:a cohort study. Lancet 2001; 358: 1682–6
PubMed
CAS
Article
Google Scholar
Kannel WB. Blood pressure as a cardiovascular risk factor: prevention and treatment. JAMA 1996; 275: 1571–6
PubMed
CAS
Article
Google Scholar
Cook NR, Cohen J, Hebert PR, et al. Implications of small reductions in diastolic blood pressure for primary prevention. Arch Intern Med 1995; 155: 701–9
PubMed
CAS
Article
Google Scholar
Martel GF, Hurlbut DE, Lott ME, et al. Strength training normalizes resting blood pressure in 65- to 73-year-oldmen and women with high normal blood pressure. J Am Geriatr Soc 1999; 47: 1215–21
PubMed
CAS
Google Scholar
Pescatello LS, Franklin BA, Fagard R, et al. American College of Sports Medicine position stand: exercise andhypertension. Med Sci Sports Exerc 2004; 36: 533–53
PubMed
Article
Google Scholar
Cornelissen VA, Fagard RH. Effect of resistance training on resting blood pressure: a meta-analysis of randomizedcontrolled trials. J Hypertens 2005; 23: 251–9
PubMed
CAS
Article
Google Scholar
Cononie CC, Graves J. Effect of exercise training on blood pressure in 70- to 79-yr-old men and women. Med Sci Sports and Exerc 1991; 23: 505–11
CAS
Google Scholar
Smutok MA, Reece C, Kokkinos PF, et al. Aerobic versus strength training for risk factor intervention in middleagedmen at high risk for coronary heart disease. Metabolism 1993; 42: 177–84
PubMed
CAS
Article
Google Scholar
Lovell DI, Cuneo R, Gass GC. Resistance training reduces the blood pressure response of older men during submaximumaerobic exercise. Blood Press Monit 2009; 14: 137–44
PubMed
Article
Google Scholar
Maquet D, Croisier JL, Renard C, et al. Muscle performance in patients with fibromyalgia. Joint Bone Spine 2002; 69: 293–9
PubMed
Article
Google Scholar
Gilliland BC. Fibromyalgia, arthritis associated with systemic diseases and other arthritides. In: Kasper DL, Braunwald E, Fauci AS, et al., editors. Harrison’s principlesof internal medicine. New York: McGraw-Hill, 2005: 2055–6
Google Scholar
Wolfe F, Ross K, Anderson J, et al. The prevalence and characteristics of fibromyalgia in the general population. Arthritis Rheum 1995; 38: 19–28
PubMed
CAS
Article
Google Scholar
Lowe JC, Yellin J, Honeyman-Lowe G. Female fibromyalgia patients: lower resting metabolic rates thanmatched healthycontrols. Med Sci Monit 2006; 12: CR282–9
Google Scholar
Bennett R. Growth hormone in musculoskeletal pain states. Curr Pain Headache Rep 2005; 9: 331–8
PubMed
Article
Google Scholar
Jensen B, Wittrup IH, Bliddal H, et al. Bone mineral density in fibromyalgia patients: correlation to disease activity. Scand J Rheumatol 2003; 32: 146–50
PubMed
CAS
Article
Google Scholar
Triadafilopoulos G, Simms RW, Goldenberg DL. Bowel dysfunction in fibromyalgia syndrome. Dig Dis Sci 1991; 36: 59–64
PubMed
CAS
Article
Google Scholar
Jacobsen S, Gam A, Egsmose C, et al. Bone mass and turnover in fibromyalgia. J Rheumatol 1993; 20: 856–9
PubMed
CAS
Google Scholar
Brach JS, Simonsick EM, Kritchevsky S, et al. The association between physical function and lifestyle activityand exercise in the health, aging and body compositionstudy. J Am Geriatr Soc 2004; 52: 502–9
PubMed
Article
Google Scholar
Henriksson C, Gundmark I, Bengtsson A, et al. Living with fibromyalgia: consequences for everyday life. Clin J Pain 1992; 8: 138–44
PubMed
CAS
Article
Google Scholar
Roth SM, Ferrell RF, Hurley BF. Strength training for the prevention and treatment of sarcopenia. J Nutr Health Aging 2000; 4: 143–55
PubMed
CAS
Google Scholar
Lemmer JT, Hurlbut DE, Martel GF, et al. Age and gender responses to strength training and detraining. Med Sci Sports Exerc 2000; 32: 1505–12
PubMed
CAS
Article
Google Scholar
Marcinik E, Potts J, Schlabach G, et al. Effects of strength training on lactate threshold and endurance performance. Med Sci Sports Exerc 1991; 23: 739–43
PubMed
CAS
Google Scholar
Ades P, Ballor D, Ashikaga T, et al. Weight training improves walking endurance in healthy elderly persons. Ann Intern Med 1996; 124: 568–72
PubMed
CAS
Google Scholar
Nicklas BJ, Ryan AS, Trueth MS, et al. Anabolic hormone and IGF-1 responses to acute and chronic resistive trainingin men aged 55-70 years. Int J Sports Med 1995; 16: 445–50
PubMed
CAS
Article
Google Scholar
Ryan AS, Ivey FM, Hurlbut DE, et al. Regional bone mineral density after resistive training in young and oldermen and women. Scand J Med Sci Sports 2004; 14: 16–23
PubMed
Article
Google Scholar
Nelson ME, Fiatarone MA, Morganti CM, et al. Effects of high-intensity strength training on multiple risk factorsfor osteoporotic fractures: a randomized controlled trial. JAMA 1994; 272: 1909–14
PubMed
CAS
Article
Google Scholar
Koffler K, Menkes A, Redmond R, et al. Strength training accelerates gastrointestinal transit in middle-aged andolder men. Med Sci Sports Exerc 1992; 24: 415–9
PubMed
CAS
Google Scholar
Hurley B, Redmond R, Pratley R, et al. Effects of strength training on muscle hypertrophy andmuscle cell disruptionin older men. Int J Sports Med 1995; 16: 380–6
Article
Google Scholar
Delmonico MJ, Kostek MC, Doldo NA, et al. Effects of moderate-velocity strength training on peak muscle powerand movement velocity: do women respond differentlythan men? J Appl Physiol 2005; 99: 1712–8
PubMed
Article
Google Scholar
Tracy BL, Ivey FM, Hurlbut D, et al. Muscle quality II: effects of strength training in 65-75 year old men andwomen. J Appl Physiol 1999; 86: 195–201
PubMed
CAS
Google Scholar
Ivey FM, Tracy BL, Lemmer JT, et al. Effects of strength training and detraining on muscle quality: age and gendercomparisons. J Gerontol a Biol Sci Med Sci 2000; 55 (3): B152–7
PubMed
CAS
Article
Google Scholar
Treuth MS, Ryan AS, Pratley RE, et al. Effects of strength training on total and regional body composition in oldermen. J Appl Physiol 1994; 77: 614–20
PubMed
CAS
Google Scholar
Hanson ED, Srivatsan SR, Agrawal S, et al. Does strength training improve function: strength, power, and body compositionrelationships. J Strength Cond Res 2009; 23: 2627–37
PubMed
Article
Google Scholar
Herman S, Kiely DK, Leveille S, et al. Upper and lower limb muscle power relationships in mobility-limited olderadults. J Gerontol A Biol Sci Med Sci 2005; 60: 476–80
PubMed
Article
Google Scholar
Mannerkorpi K. Exercise in fibromyalgia. Curr Opin Rheumatol 2005; 17: 190–4
PubMed
Article
Google Scholar
Jones KD, Burckhardt CS, Clark SR, et al. A randomized controlled trial of muscle strengthening versus flexibilitytraining in fibromyalgia. J Rheumatol 2002; 29: 1041–8
PubMed
Google Scholar
Kingsley JD, Panton LB, Toole T, et al. The effects of a 12-week strength-training program on strength and functionalityin women with fibromyalgia. Arch Phys Med Rehabil 2005; 86: 1713–21
PubMed
Article
Google Scholar
Valkeinen H, Hakkinen A, Hannonen P, et al. Acute heavy-resistance exercise-induced pain and neuromuscularfatigue in elderly women with fibromyalgia and inhealthy controls: effects of strength training. Arthritis Rheum 2006; 54: 1334–9
PubMed
Article
Google Scholar
Hakkinen A, Hakkinen K, Hannonen P, et al. Strength training induced adaptations in neuromuscular functionof premenopausal women with fibromyalgia: comparisonwith healthy women. Ann Rheum Dis 2001; 60: 21–6
PubMed
CAS
Article
Google Scholar
Valkeinen H, Hakkinen K, Pakarinen A, et al. Muscle hypertrophy, strength development, and serum hormonesduring strength training in elderly women with fibromyalgia. Scand J Rheumatol 2005; 34: 309–14
PubMed
CAS
Article
Google Scholar
Hakkinen K, Pakarinen A, Hannonen P, et al. Effects of strength training on muscle strength, cross-sectional area,maximal electromyographic activity, and serum hormonesin premenopausal women with fibromyalgia. J Rheumatol 2002; 29: 1287–95
PubMed
Google Scholar
Valkeinen H, Alen M, Hannonen P, et al. Changes in knee extension and flexion force, EMG and functional capacityduring strength training in older females with fibromyalgiaand healthy controls. Rheumatology (Oxford) 2004; 43: 225–8
CAS
Article
Google Scholar
Bircan C, Karasel SA, Akgun B, et al. Effects of muscle strengthening versus aerobic exercise program in fibromyalgia. Rheumatol Int 2008; 28: 527–32
PubMed
Article
Google Scholar
Busch AJ, Schachter CL, Overend TJ, et al. Exercise for fibromyalgia: a systematic review. J Rheumatol 2008; 35: 1130–44
PubMed
Google Scholar
Brosseau L, Wells GA, Tugwell P, et al. Ottawa panel evidence-based clinical practice guidelines for strengtheningexercises in themanagement of fibromyalgia: part 2. Phys Ther 2008; 88: 873–86
PubMed
Article
Google Scholar
Lipsky PE. Rheumatoid arthritis. In: Kasper DL, Braunwald E, Fauci AS, et al., editors. Harrison’s principles of internal medicine. New York: McGraw-Hill, 2005: 1968–74
Google Scholar
Iversen MD, Fossel AH, Daltroy LH. Rheumatologistpatient communication about exercise and physical therapyin the management of rheumatoid arthritis. Arthritis Care Res 1999; 12: 180–92
PubMed
CAS
Article
Google Scholar
Cairns AP, McVeigh JG. A systematic review of the effects of dynamic exercise in rheumatoid arthritis. Rheumatol Int. Epub 2009 Aug 22
Google Scholar
Hakkinen A, Sokka T, Kotaniemi A, et al. Dynamic strength training in patients with early rheumatoid arthritisincreases muscle strength but not bone mineraldensity. J Rheumatol 1999; 26: 1257–63
PubMed
CAS
Google Scholar
Hakkinen A, Sokka T, Kotaniemi A, et al. A randomized two-year study of the effects of dynamic strength trainingon muscle strength, disease activity, functional capacity,and bone mineral density in early rheumatoid arthritis. Arthritis Rheum 2001; 44: 515–22
PubMed
CAS
Article
Google Scholar
Hakkinen A, Sokka T, Kautiainen H, et al. Sustained maintenance of exercise induced muscle strength gainsand normal bone mineral density in patients with earlyrheumatoid arthritis: a 5 year follow up. Ann Rheum Dis 2004; 63: 910–6
PubMed
CAS
Article
Google Scholar
McMeekin J, Stillman B, Story I, et al. The effects of knee extensor and flexor muscle training on the timed-up andgotest in individuals with rheumatoid arthritis. Physiother Res Int 1999; 4: 55–67
Google Scholar
Flint-Wagner HG, Lisse J, Lohman TG, et al. Assessment of a sixteen-week training program on strength, pain, andfunction in rheumatoid arthritis patients. J Clin Rheumatol 2009; 15: 165–71
PubMed
Article
Google Scholar
Bird TD, Miller BL. Alzheimer’s disease and other dementias. In: Kasper DL, Braunwald E, Fauci AS, et al., editors. Harrison’s principles of internal medicine. New York: McGraw-Hill, 2005: 2393–8
Google Scholar
Alzheimer’s Association. 2009 Alzheimer’s disease facts and figures. Alzheimers Dement 2009; 5: 234–70
Article
Google Scholar
Alzheimer’s Association. 2010 Alzheimer’s disease facts and figures. Alzheimer’s Dement 2010 Mar; 6 (2): 158–94
Article
Google Scholar
Buchman AS, Wilson RS, Bienias JL, et al. Change in body mass index and risk of incident Alzheimer disease. Neurology 2005; 65: 892–7
PubMed
CAS
Article
Google Scholar
Alfaro-Acha A, Al SS, Raji MA, et al. Handgrip strength and cognitive decline in older Mexican Americans. J Gerontol A Biol Sci Med Sci 2006; 61: 859–65
PubMed
Article
Google Scholar
Gustafson D, Rothenberg E, Blennow K, et al. An 18-year follow-up of overweight and risk of Alzheimer disease. Arch Intern Med 2003; 163: 1524–8
PubMed
Article
Google Scholar
Boyle PA, Buchman AS, Wilson RS, et al. Association of muscle strength with the risk of Alzheimer disease and therate of cognitive decline in community-dwelling olderpersons. Arch Neurol 2009; 66: 1339–44
PubMed
Article
Google Scholar
Buchman AS, Schneider JA, Leurgans S, et al. Physical frailty in older persons is associated with Alzheimer diseasepathology. Neurology 2008; 71: 499–504
PubMed
Article
Google Scholar
Lachman ME, Neupert SD, Bertrand R, et al. The effects of strength training on memory in older adults. J Aging Phys Act 2006; 14: 59–73
PubMed
Google Scholar
Cassilhas RC, Viana VA, Grassmann V, et al. The impact of resistance exercise on the cognitive function of the elderly. Med Sci Sports Exerc 2007; 39: 1401–7
PubMed
Article
Google Scholar
Liu-Ambrose T, Donaldson MG. Exercise and cognition in older adults: is there a role for resistance trainingprogrammes? Br J Sports Med 2009; 43: 25–7
PubMed
CAS
Article
Google Scholar
Liu-Ambrose T, Nagamatsu LS, Graf P, et al. Resistance training and executive functions: a 12-month randomizedcontrolled trial. Arch Intern Med 2010; 170: 170–8
PubMed
Article
Google Scholar
Davis JC, Marra CA, Beattie BL, et al. Sustained cognitive and economic benefits of resistance training amongcommunity-dwelling senior women: a 1-year follow-upstudy of the Brain Power study. Arch Intern Med 2010; 170: 2036–8
PubMed
Article
Google Scholar
Krogh J, Saltin B, Gluud C, et al. The DEMO trial:a randomized, parallel-group, observer-blinded clinicaltrial of strength versus aerobic versus relaxation trainingfor patients with mild to moderate depression. J Clin Psychiatry 2009; 70: 790–800
PubMed
Article
Google Scholar