Role of Cannabinoids in the Treatment of Pain and (Painful) Spasticity

Abstract

Both the discovery of the endocannabinoid system (ECS) and its role in the control of pain and habituation to stress, as well as the significant analgesic and antihyperalgesic effects in animal studies, suggest the usefulness of cannabinoids in pain conditions. However, in human experimental or clinical trials, no convincing reduction of acute pain, which may be caused by a pronociceptive, ECS-triggered mechanism on the level of the spinal cord, has been demonstrated. In contrast, in chronic pain and (painful) spasticity, an increasing number of randomized, double-blind, placebo-controlled studies have shown the efficacy of cannabinoids, which is combined with a narrow therapeutic index. Patients with unsatisfactory response to other methods of pain therapy and who were characterized by failed stress adaptation particularly benefited from treatment with cannabinoids. None of the attempts to overcome the disadvantage of the narrow therapeutic index, either by changing the route of application or by formulating balanced cannabinoid preparations, have resulted in a major breakthrough. Therefore, different methods of administration and other types of cannabinoids, such as endocannabinoid modulators, should be tested in future trials.

This is a preview of subscription content, access via your institution.

Table I
Table I
Table II
Table II
Table III
Table III
Table III
Table III
Table IV
Table IV
Table IV
Table V

References

  1. 1.

    Matsuda LA, Lolait SJ, Brownstein MJ, et al. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 1990; 346: 561–4

    PubMed  CAS  Google Scholar 

  2. 2.

    Munro S, Thomas KL, Abu-Shaar M. Molecular characterization of a peripheral receptor for cannabinoids. Nature 1993; 365: 61–5

    PubMed  CAS  Google Scholar 

  3. 3.

    Jhaveri MD, Sagar DR, Elmes SJR, et al. Cannabinoid CB2 receptor-mediated anti-nociception in models of acute and chronic pain. Mol Neurobiol 2007; 36: 26–35

    PubMed  CAS  Google Scholar 

  4. 4.

    Devane WA, Hanus L, Breuer R, et al. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 1992; 2581: 946–9

    Google Scholar 

  5. 5.

    Mechoulam R, Ben-Shabat S, Hanus L, et al. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol 1995; 50: 83–90

    PubMed  CAS  Google Scholar 

  6. 6.

    Jonsson K-O, Holt S, Fowler CJ. The endocannabinoid system: current pharmacological research and therapeutic possibilities. Basic Clin Pharmacol Toxicol 2006; 98: 124–34

    PubMed  CAS  Google Scholar 

  7. 7.

    Hohmann AG, Suplita II RL. Endocannabinoid mechanisms of pain modulation. AAPS J 2006; 8: 693–708

    Google Scholar 

  8. 8.

    DiMarzo V, De Petrocellis L. Plant, synthetic, and endogenous cannabinoids in medicine. Annu Rev Med 2006; 57: 553–74

    CAS  Google Scholar 

  9. 9.

    Maejima T, Ohno-shosaku T, Kano M. Endogenous cannabinoid as a retrograde messenger from postsynaptic neurons to presynaptic terminals. Neurosci Res 2001; 40: 205–10

    PubMed  CAS  Google Scholar 

  10. 10.

    Staton PC, Hatcher JP, Walker DJ, et al. The putative cannabinoid receptor GPR55 plays a role in mechanical hyperalgesia associated with inflammatory and neuropathic pain. Pain 2008; 139(1): 225–36

    PubMed  CAS  Google Scholar 

  11. 11.

    Schneider U, Seifert J, Karst M, et al. Das endogene Cannabinoidsystem. Nervenarzt 2005; 76: 1062–76

    PubMed  CAS  Google Scholar 

  12. 12.

    Russo EB, Burnett A, Hall B, et al. Agonistic properties of cannabidiol at 5-HT-1A receptors. Neurochem Res 2005; 30(8): 1037–43

    PubMed  CAS  Google Scholar 

  13. 13.

    Sun Y, Bennett A. Cannabinoids: a new group of agonists of PPARs. PPAR Res 2007; 2007: 23513

    PubMed  Google Scholar 

  14. 14.

    Burstein S. PPAR-gamma: a nuclear receptor with affinity for cannabinoids. Life Sci 2005; 77(14): 1674–84

    PubMed  CAS  Google Scholar 

  15. 15.

    Cravatt BF, Demarest K, Patricelli MH, et al. Supersensitivity to anandamide and enhanced endogenous cannabinoid signaling in mice lacking fatty acid amide hydrolase. Proc Natl Acad Sci U S A 2001; 98: 9371–6

    PubMed  CAS  Google Scholar 

  16. 16.

    Jhaveri MD, Richardson D, Chapman V. Endocannabinoid metabolism and uptake: novel targets for neuropathic and inflammatory pain. Br J Pharmacol 2007; 152: 624–32

    PubMed  CAS  Google Scholar 

  17. 17.

    Fowler CJ. The pharmacology of the cannabinoid system: a question of efficacy and selectivity. Mol Neurobiol 2007; 36: 15–25

    PubMed  CAS  Google Scholar 

  18. 18.

    Fowler CJ, Holt S, Tiger G. Acidic non-steroidal antiinflammatory drugs inhibit rat brain fatty acid amide hydrolase in a ph-dependent manner. J Enzym Inhib Med Chem 2003; 18: 55–8

    CAS  Google Scholar 

  19. 19.

    Agarwal N, Pacher P, Tegeder I, et al. Cannabinoids mediate analgesia largely via peripheral type 1 cannabinoid receptors in nociceptors. Nat Neurosci 2007; 10: 870–9

    PubMed  CAS  Google Scholar 

  20. 20.

    Wotherspoon GA, Fox P, McIntyre S, et al. Peripheral nerve injury induces cannabinoid receptor 2 protein expression in rat sensory neurons. Neuroscience 2005; 35: 235–45

    Google Scholar 

  21. 21.

    Romero-Sandoval A, Eisenach JC. Spinal cannabinoid receptor type 2 activation reduces hypersensitivity and spinal cord glial activation after paw incision. Anesthesiology 2007; 106: 787–94

    PubMed  CAS  Google Scholar 

  22. 22.

    Hohmann AG, Suplita RL, Bolton NM, et al. An endocannabinoid mechanism for stress-induced analgesia. Nature 2005; 435: 1108–12

    PubMed  CAS  Google Scholar 

  23. 23.

    Finn DP. Endocannabinoid-mediated modulation of stress responses: physiological and pathophysiological signif-icance. Immunobiology 2010; 215(8): 629–46

    PubMed  CAS  Google Scholar 

  24. 24.

    Schlosburg JE, Kinsey SG, Lichtman AH. Targeting fatty acid amide hydrolase (FAAH) to treat pain and inflammation. AAPS J 2009; 11(1): 39–44

    PubMed  CAS  Google Scholar 

  25. 25.

    Naidu PS, Kinsey SG, Guo TL, et al. Regulation of inflammatory pain by inhibition of fatty acid amide hydrolase. J Pharmacol Exp Ther 2010; 334(1): 182–90

    PubMed  CAS  Google Scholar 

  26. 26.

    Hohmann AG. Inhibitors of monoacylglycerol lipase as novel analgesics. Br J Pharmacol 2007; 150(6): 673–5

    PubMed  CAS  Google Scholar 

  27. 27.

    Gaoni Y, Mechoulam R. Isolation, structure, and partial synthesis of an active constituent of hashish. J Am Chem Soc 1964; 86: 1646–7

    CAS  Google Scholar 

  28. 28.

    Rahn EJ, Hohmann AG. Cannabinoids as pharmacotherapies for neuropathic pain: from the bench to the bedside. Neurotherapeutics 2009; 6(4): 713–37

    PubMed  CAS  Google Scholar 

  29. 29.

    Hosking RD, Zajicek JP. Therapeutic potential of cannabis in pain medicine. Br J Anaesth 2008; 101: 59–68

    PubMed  CAS  Google Scholar 

  30. 30.

    Killestein J, Uitdehaag BMJ, Polman CH. Cannabinoids in multiple sclerosis. Drugs 2004; 64(1): 1–11

    PubMed  CAS  Google Scholar 

  31. 31.

    Product monograph Sativex® [online]. Available from URL: http://www.ukcia.org/research/SativexMonograph.pdf [Accessed 2010 Nov 20]

  32. 32.

    Jadad AR, Moore RA, Carroll D, et al. Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials 1996; 17(1): 1–12

    PubMed  CAS  Google Scholar 

  33. 33.

    Dixon WE. The pharmacology of cannabis indica. BMJ 1899; 2: 1354–7

    Google Scholar 

  34. 34.

    Sanudo-Pena MC, Romero J, Seale GE, et al. Activational role of cannabinoids on movement. Eur J Pharmacol 2000; 391: 269–74

    PubMed  CAS  Google Scholar 

  35. 35.

    Smith PB, Welch SP, Martin BR. Interactions between delta 9-tetrahydrocannabinol and kappa opioids in mice. J Pharmacol Exp Ther 1994; 268: 1381–7

    PubMed  CAS  Google Scholar 

  36. 36.

    Burstein SH, Friderichs E, Kogel B, et al. Analgesic effects of 1′,1′ dimethylheptyl-delta8-THC-11-oic acid (CT3) in mice. Life Sci 1998; 63: 161–8

    PubMed  CAS  Google Scholar 

  37. 37.

    Smith FL, Fujimori K, Lowe J, et al. Characterization of delta9-tetrahydrocannabinol and anandamide antinociception in nonarthritic and arthritic rats. Pharmacol Biochem Behav 1998; 60: 183–91

    PubMed  CAS  Google Scholar 

  38. 38.

    Pertwee RG. Pharmacology of cannabinoid CB1 and CB2 receptors. Pharmacol Ther 1997; 74: 129–80

    PubMed  CAS  Google Scholar 

  39. 39.

    Ibrahim MM, Rude ML, Stagg NJ, et al. CB2 cannabinoid receptor mediation of antinociception. Pain 2006; 122: 36–42

    PubMed  CAS  Google Scholar 

  40. 40.

    Costa B, Colleoni M, Conti S, et al. Oral anti-inflammatory activity of cannabidiol, a non-psychoactive constituent of cannabis, in acute carrageenan-induced inflammation in the rat paw. Naunyn Schmiedebergs Arch Pharmacol 2004; 369: 294–9

    PubMed  CAS  Google Scholar 

  41. 41.

    Conti S, Costa B, Colleoni M, et al. Antiinflammatory action of endocannabinoid palmitoylethanolamide and the synthetic cannabinoid nabilone in a model of acute inflammation in the rat. Br J Pharmacol 2002; 135: 181–7

    PubMed  CAS  Google Scholar 

  42. 42.

    Nackley AG, Makriyannis A, Hohmann AG. Selective activation of cannabinoid CB(2) receptors suppresses spinal fos protein expression and pain behavior in a rat model of inflammation. Neuroscience 2003; 119: 747–57

    PubMed  CAS  Google Scholar 

  43. 43.

    Quartilho A, Mata HP, Ibrahim MM, et al. Inhibition of inflammatory hyperalgesia by activation of peripheral CB2 cannabinoid receptors. Anesthesiology 2003; 99: 955–60

    PubMed  CAS  Google Scholar 

  44. 44.

    Gutierrez T, Farthing JN, Zvonok AM, et al. Activation of peripheral cannabinoid CB1 and CB2 receptors suppresses the maintenance of inflammatory nociception: a comparative analysis. Br J Pharmacol 2007; 150: 153–63

    PubMed  CAS  Google Scholar 

  45. 45.

    Honore P, Buritova J, Besson JM. Aspirin and acetaminophen reduced both Fos expression in rat lumbar spinal cord and inflammatory signs produced by carrageenin inflammation. Pain 1995; 63: 365–75

    PubMed  CAS  Google Scholar 

  46. 46.

    Nackley AG, Zvonok AM, Makriyannis A, et al. Activation of cannabinoid CB2 receptors suppresses C-fiber responses and windup in spinal wide dynamic range neurons in the absence and presence of inflammation. J Neurophysiol 2004; 92: 3562–74

    PubMed  CAS  Google Scholar 

  47. 47.

    Richardson JD, Kilo S, Hargreaves KM. Cannabinoids reduce hyperalgesia and inflammation via interaction with peripheral CB1 receptors. Pain 1998; 75: 111–9

    PubMed  CAS  Google Scholar 

  48. 48.

    Sokal DM, Elmes SJ, Kendall DA, et al. Intraplantar injection of anandamide inhibits mechanically-evoked responses of spinal neurones via activation of CB2 receptors in anaesthetised rats. Neuropharmacology 2003; 45: 404–11

    PubMed  CAS  Google Scholar 

  49. 49.

    Elmes SJ, Jhaveri MD, Smart D, et al. Cannabinoid CB2 receptor activation inhibits mechanically evoked responses of wide dynamic range dorsal horn neurons in naive rats and in rat models of inflammatory and neuropathic pain. Eur J Neurosci 2004; 20: 2311–20

    PubMed  Google Scholar 

  50. 50.

    Elmes SJ, Winyard LA, Medhurst SJ, et al. Activation of CB1 and CB2 receptors attenuates the induction and maintenance of inflammatory pain in the rat. Pain 2005; 118: 327–35

    PubMed  CAS  Google Scholar 

  51. 51.

    Hohmann AG, Farthing JN, Zvonok AM, et al. Selective activation of cannabinoid CB2 receptors suppresses hyperalgesia evoked by intradermal capsaicin. J Pharmacol Exp Ther 2004; 308: 446–53

    PubMed  CAS  Google Scholar 

  52. 52.

    Succar R, Mitchell VA, Vaughan CW. Actions of Narachidonyl-glycine in a rat inflammatory pain model. Mol Pain 2007; 3: 24

    PubMed  Google Scholar 

  53. 53.

    Whiteside GT, Gottshall SL, Boulet JM, et al. A role for cannabinoid receptors, but not endogenous opioids, in the antinociceptive activity of the CB2-selective agonist, GW 405833. Eur J Pharmacol 2005; 528: 65–72

    PubMed  CAS  Google Scholar 

  54. 54.

    Valenzano KJ, Tafesse L, Lee G, et al. Pharmacological and pharmacokinetic characterization of the cannabinoid receptor 2 agonist, GW405833, utilizing rodent models of acute and chronic pain, anxiety, ataxia and catalepsy. Neuropharmacology 2005; 48: 658–72

    PubMed  CAS  Google Scholar 

  55. 55.

    Mitchell VA, Aslan S, Safaei R, et al. Effect of the cannabinoid ajulemic acid on rat models of neuropathic and inflammatory pain. Neurosci Lett 2005; 382: 231–5

    PubMed  CAS  Google Scholar 

  56. 56.

    Guindon J, Hohmann AG. Cannabinoid CB2 receptors: a therapeutic target for the treatment of inflammatory and neuropathic pain. Br J Pharmacol 2008; 153: 319–34

    PubMed  CAS  Google Scholar 

  57. 57.

    Comelli F, Giagnoni G, Bettoni I, et al. Antihyperalgesic effect of a Cannabis sativa extract in a rat model of neuropathic pain: mechanisms involved. Phytother Res 2008; 22: 1017–24

    PubMed  Google Scholar 

  58. 58.

    Di Marzo V, De Petrocellis L. Endocannabinoids as regulators of transient receptor potential (TRP) channels: a further opportunity to develop new endocannabinoidbased therapeutic drugs. Curr Med Chem 2010; 17(14): 1430–49

    PubMed  Google Scholar 

  59. 59.

    Liu C, Walker JM. Effects of a cannabinoid agonist on spinal nociceptive neurons in a rodent model of neuropathic pain. J Neurophysiol 2006; 96: 2984–94

    PubMed  CAS  Google Scholar 

  60. 60.

    Hu B, Doods H, Treede RD, et al. Depression-like behaviour in rats with mononeuropathy is reduced by the CB2-selective agonist GW 405833. Pain 2009; 143: 206–12

    PubMed  CAS  Google Scholar 

  61. 61.

    Costa B, Siniscalco D, Trovato AE, et al. AM404, an inhibitor of anandamide uptake, prevents pain behaviour and modulates cytokine and apoptotic pathways in a rat model of neuropathic pain. Br J Pharmacol 2006; 148: 1022–32

    PubMed  CAS  Google Scholar 

  62. 62.

    La Rana G, Russo R, Campolongo P, et al. Modulation of neuropathic and inflammatory pain by the endocannabinoid transport inhibitor AM404 [N-(4-hydroxyphenyl)eicosa-5,8,11, 14-tetraenamide]. J Pharmacol Exp Ther 2006; 317: 1365–71

    PubMed  Google Scholar 

  63. 63.

    Seltzer Z, Dubner R, Shir Y. A novel behavioural model of neuropathic pain disorders produced in rats by partial sciatic nerve injury. Pain 1990; 43(2): 205–18

    PubMed  CAS  Google Scholar 

  64. 64.

    Helyes Z, Nemeth J, Than M, et al. Inhibitory effect of anandamide on resiniferatoxin-induced sensory neuropeptide release in vivo and neuropathic hyperalgesia in the rat. Life Sci 2003; 73: 2345–53

    PubMed  CAS  Google Scholar 

  65. 65.

    Guindon J, Beaulieu P. Antihyperalgesic effects of local injections of anandamide, ibuprofen, rofecoxib and their combinations in a model of neuropathic pain. Neuropharmacology 2006; 50: 814–23

    PubMed  CAS  Google Scholar 

  66. 66.

    Desroches J, Guindon J, Lambert C, et al. Modulation of the anti-nociceptive effects of 2-arachidonoyl glycerol by peripherally administered FAAH and MGL inhibitors in a neuropathic pain model. Br J Pharmacol 2008; 155: 913–24

    PubMed  CAS  Google Scholar 

  67. 67.

    Fox A, Kesingland A, Gentry C, et al. The role of central and peripheral Cannabinoid1 receptors in the antihyperalgesic activity of cannabinoids in a model of neuropathic pain. Pain 2001; 92: 91–100

    PubMed  CAS  Google Scholar 

  68. 68.

    Dyson A, Peacock M, Chen A, et al. Antihyperalgesic properties of the cannabinoid CT-3 in chronic neuropathic and inflammatory pain states in the rat. Pain 2005; 116: 129–37

    PubMed  CAS  Google Scholar 

  69. 69.

    Guindon J, Desroches J, Dani M, et al. Pre-emptive antinociceptive effects of a synthetic cannabinoid in a model of neuropathic pain. Eur J Pharmacol 2007; 568: 173–6

    PubMed  CAS  Google Scholar 

  70. 70.

    Yamamoto W, Mikami T, Iwamura H. Involvement of central cannabinoid CB(2) receptor in reducing mechanical allodynia in a mouse model of neuropathic pain. Eur J Pharmacol 2008; 583: 56–61

    PubMed  CAS  Google Scholar 

  71. 71.

    Bridges D, Ahmad K, Rice AS. The synthetic cannabinoid WIN55,212-2 attenuates hyperalgesia and allodynia in a rat model of neuropathic pain. Br J Pharmacol 2001; 133: 586–94

    PubMed  CAS  Google Scholar 

  72. 72.

    Scott DA, Wright CE, Angus JA. Evidence that CB-1 and CB-2 cannabinoid receptors mediate antinociception in neuropathic pain in the rat. Pain 2004; 109: 124–31

    PubMed  CAS  Google Scholar 

  73. 73.

    Ibrahim MM, Deng H, Zvonok A, et al. Activation of CB2 cannabinoid receptors by AM 1241 inhibits experimental neuropathic pain: pain inhibition by receptors not present in the CNS. Proc Natl Acad Sci U S A 2003; 100: 10529–33

    PubMed  CAS  Google Scholar 

  74. 74.

    Leichsenring A, Andriske M, Backer I, et al. Analgesic and antiinflammatory effects of cannabinoid receptor agonists in a rat model of neuropathic pain. Naunyn Schmiedebergs Arch Pharmacol 2009; 379: 627–36

    PubMed  CAS  Google Scholar 

  75. 75.

    Raft D, Gregg J, Ghia J, et al. Effects of intravenous tetrahydrocannabinol on experimental and surgical pain. Clin Pharmacol Ther 1977; 21: 26–33

    PubMed  CAS  Google Scholar 

  76. 76.

    Jain AK, Ryan JR, McMahon FG, et al. Evaluation of intramuscular levonantradol and placebo in acute postoperative pain. J Clin Pharmacol 1981; 21: 320S–6S

    PubMed  CAS  Google Scholar 

  77. 77.

    Greenwald MK, Stitzer ML. Antinociceptive, subjective and behavioral effects of smoked marijuana in humans. Drug Alcohol Depend 2000; 59: 261–75

    PubMed  CAS  Google Scholar 

  78. 78.

    Buggy DJ, Toogood L, Maric S, et al. Lack of analgesic efficacy of oral delta-9-tetrahydrocannabinol in postoperative pain. Pain 2003; 106: 169–72

    PubMed  CAS  Google Scholar 

  79. 79.

    Naef M, Curatolo M, Petersen-Felix S, et al. The analgesic effect of oral delta9-tetrahydrocannabinol (THC), morphine, and a THC-morphine combination in healthy subjects under experimental pain conditions. Pain 2003; 105: 79–88

    PubMed  CAS  Google Scholar 

  80. 80.

    Rukwied R, Watkinson A, McGlone F, et al. Cannabinoid agonists attenuate capsaicin-induced responses in human skin. Pain 2003; 102: 283–8

    PubMed  CAS  Google Scholar 

  81. 81.

    Seeling W, Kneer L, Büchele B, et al. Keine synergistische Wirkung der Kombination von Delta9-Tetrahydrocannabiol und Piritramid bei postoperativen Schmerzen. Anaesthesist 2005; 55: 391–400

    Google Scholar 

  82. 82.

    Holdcroft A, Maze M, Doré C, et al. A multicenter doseescalation study of the analgesic and adverse effects of an oral cannabis extract (Cannador) for postoperative pain management. Anesthesiology 2006; 104: 1040–6

    PubMed  CAS  Google Scholar 

  83. 83.

    Roberts JD, Gennings C, Shih M. Synergistic affective analgesic interaction between delta-9-tetrahydrocannabinol and morphine. Eur J Pharmacol 2006; 530: 54–8

    PubMed  CAS  Google Scholar 

  84. 84.

    Beaulieu P. Effects of nabilone, a synthetic cannabinoid, on postoperative pain. Can J Anesth 2006; 53: 769–75

    PubMed  Google Scholar 

  85. 85.

    Wallace M, Schulteis G, Atkinson JH, et al. Dose-dependent effects of smoked cannabis on capsaicin-induced pain and hyperalgesia in healthy volunteers. Anesthesiology 2007; 107: 785–96

    PubMed  Google Scholar 

  86. 86.

    Kraft B, Frickey NA, Kaufmann RM, et al. Lack of analgesia by oral standardized cannabis extract on acute inflammatory pain and hyperalgesia in volunteers. Anesthesiology 2008; 109: 101–10

    PubMed  Google Scholar 

  87. 87.

    Redmond WJ, Goffaux P, Potvin S, et al. Analgesic and antihyperalgesic effects of nabilone on experimental heat pain. Curr Med Res Opin 2008; 24(4): 1017–24

    PubMed  CAS  Google Scholar 

  88. 88.

    Tart CT. On being stoned: a psychological study of marijuana intoxication. Palo Alto (CA): Science and Behavior Books, 1971

    Google Scholar 

  89. 89.

    Sulcova E, Mechoulam R, Fride E. Biphasic effects of anandamide. Pharmacol Biochem Behav 1998; 59: 347–52

    PubMed  CAS  Google Scholar 

  90. 90.

    Pernía-Andrade AJ, Kato A, Witschi R, et al. Spinal endocannabinoids and CB1 receptors mediate C-fiberinduced heterosynaptic pain sensitization. Science 2009; 325(5941): 760–4

    PubMed  Google Scholar 

  91. 91.

    Russo EB. Clinical endocannabinoid deficiency (CECD): can this concept explain therapeutic benefits of cannabis in migraine, fibromyalgia, irritable bowel syndrome and other treatment-resistant conditions? Neuroendocrinol Lett 2004; 25(1/2): 31–9

    PubMed  CAS  Google Scholar 

  92. 92.

    Campbell FA, Tramèr MR, Carroll D, et al. Are cannabinoids an effective and safe treatment option in the management of pain? A qualitative systematic review. BMJ 2001; 323: 1–6

    Google Scholar 

  93. 93.

    Walker JM, Huang SM. Cannabinoid analgesia. Pharmacol Ther 2002; 95: 127–35

    PubMed  CAS  Google Scholar 

  94. 94.

    Grant I, Cahn BR. Cannabis and endocannabinoid modulators: therapeutic promises and challenges. Clin Neurosci Res 2005; 5: 185–99

    PubMed  CAS  Google Scholar 

  95. 95.

    Azad SC, Rammes G. Cannabinoids in anaesthesia and pain therapy. Curr Opin Anaesthesiol 2005; 18: 424–27

    PubMed  Google Scholar 

  96. 96.

    Amar MB. Cannnabinoids in medicine: a review of their therapeutic potential. J Ethnopharmacol 2006; 105: 1–25

    PubMed  Google Scholar 

  97. 97.

    McCarberg BH, Barkin RL. The future of cannabinoids as analgesic agents: a pharmacologic, pharmacokinetic, and pharmacodynamic overview. Am J Ther 2007; 14(5): 475–83

    PubMed  Google Scholar 

  98. 98.

    Russo EB. Cannabinoids in the management of difficult to treat pain. Ther Clin Risk Manage 2008; 4(1): 245–59

    CAS  Google Scholar 

  99. 99.

    Beaulieu P, Ware M. Reassessment of the role of cannabinoids in the management of pain. Curr Opin Anaesthesiol 2007; 20: 473–7

    PubMed  Google Scholar 

  100. 100.

    Noyes Jr R, Brunk SF, Avery DH, et al. The analgesic properties of delta-9-tetrahydrocannabinol and codeine. Clin Pharmacol Ther 1975; 18(1): 84–9

    PubMed  Google Scholar 

  101. 101.

    Noyes Jr R, Brunk SF, Baram DA, et al. Analgesic effect of delta9-tetrahydrocannabinol. J Clin Pharmacol 1975; 15: 139–43

    PubMed  Google Scholar 

  102. 102.

    Jochimsen PR, Lawton RL, VerSteeg K, et al. Effect of benzopyranoperidine, a delta-9-THC congener, on pain. Clin Phamacol Ther 1978; 24: 223–7

    CAS  Google Scholar 

  103. 103.

    Staquet M, Gantt C, Machin D. Effect of nitrogen analog of tetrahydrocannabinol on cancer pain. Clin Pharmacol Ther 1978; 23: 397–401

    PubMed  CAS  Google Scholar 

  104. 104.

    Holdcroft A, Smith M, Jacklin A, et al. Pain relief with oral cannabinoids in familial Mediterranean fever. Anaesthesia 1997; 52: 483–8

    PubMed  CAS  Google Scholar 

  105. 105.

    Notcutt W, Price M, Miller R, et al. Initial experiences with medicinal extracts of cannabis for chronic pain: results from 34 ‘N of 1’ studies. Anaesthesia 2004; 59: 440–52

    PubMed  Google Scholar 

  106. 106.

    Schley M, Legler A, Skopp G, et al. Delta-9-THC based monotherapy in fibromyalgia patients on experimentally induced pain, axon reflex flare, and pain relief. Curr Med Res Opin 2006; 22(7): 1269–76

    PubMed  CAS  Google Scholar 

  107. 107.

    Pinsger M, Schimetta W, Volc D, et al. Benefits of an addon treatment with the synthetic cannabinomimetic nabilone on patients with chronic pain: a randomized controlled trial. Wien Klin Wochenschr 2006; 118: 327–35

    PubMed  Google Scholar 

  108. 108.

    Blake DR, Robson P, Ho M, et al. Preliminary assessment of the efficacy, tolerability and safety of cannabis-based medicine (Sativex) in the treatment of pain caused by rheumatoid arthritis. Rheumatology 2006; 45: 50–2

    PubMed  CAS  Google Scholar 

  109. 109.

    Narang S, Gibson D, Wasan AD, et al. Efficacy of dornabinol as an adjuvant treatment for chronic pain patients on opioid therapy. J Pain 2008; 9(3): 254–64

    PubMed  CAS  Google Scholar 

  110. 110.

    Haroutiunian S, Rosen G, Shouval R, et al. Add-on study of tetrahydrocannabinol for chronic non-malignant pain. J Pain Pall Care Pharmacol 2008; 22(3): 213–17

    Google Scholar 

  111. 111.

    Skrabek RQ, Galimova L, Ethans K, et al. Nabilone for the treatment of pain in fibromyalgia. J Pain 2008; 9(2): 164–73

    PubMed  CAS  Google Scholar 

  112. 112.

    Ware MA, Fitzcharles M-A, Joseph L, et al. The effects of nabilone on sleep in fibromyalgia: results of a randomized controlled trial. Anesth Analg 2010; 110: 604–10

    PubMed  CAS  Google Scholar 

  113. 113.

    Johnson JR, Burnell-Nugent M, Lossignol D, et al. Multi-center, double-blind, randomized, placebo-controlled, parallel-group study of the efficacy, safety, and tolerability of THC:CBD extract and THC extract in patients with intractable cancer-related pain. J Pain Sympt Manage 2010; 39(2): 167–78

    Google Scholar 

  114. 114.

    Petro DJ, Ellenberger C. Treatment of human spasticity with delta9-tetrahydrocannabinol. J Clin Pharmacol 1981; 21: 413S–6S

    PubMed  CAS  Google Scholar 

  115. 115.

    Ungerleider JT, Andrysiak T, Fairbanks L. Delta-9-THC in the treatment of spasticity associated with multiple sclerosis. Adv Alcohol Subst Abuse 1987; 7: 39–50

    PubMed  CAS  Google Scholar 

  116. 116.

    Martyn CN, Illis LS, Thom J. Nabilone in the treatment of multiple sclerosis [letter]. Lancet 1995; 345: 579

    PubMed  CAS  Google Scholar 

  117. 117.

    Killestein J, Hoogervorst ELJ, Reif M, et al. Safety, tolerability, and efficacy of orally administered cannabinoids in MS. Neurology 2002; 58: 1404–7

    PubMed  CAS  Google Scholar 

  118. 118.

    Zajicek J, Fox P, Sanders H, et al. Cannabinoids for treatment of spasticity and other symptoms related to multiple sclerosis (CAMS study): multicenter randomised placebo-controlled trial. Lancet 2003; 362: 1517–26

    PubMed  CAS  Google Scholar 

  119. 119.

    Wade DT, Robson P, House H, et al. A preliminary controlled study to determine whether whole plant cannabis extracts can improve intractable neurogenic symptoms. Clin Rehab 2003; 17: 21–9

    Google Scholar 

  120. 120.

    Wade DT, Makela P, Robson P, et al. Do cannabis-based medicinal extracts have general or specific effects on symptoms in multiple sclerosis? A double-blind, randomized, placebo-controlled study on 160 patients. Mult Scler 2004; 10: 434–41

    PubMed  CAS  Google Scholar 

  121. 121.

    Svendsen KB, Jensen TS, Back FW. Does the cannabinoid dronabinol reduce central pain in multiple sclerosis? BMJ 2004; 329: 253–61

    PubMed  CAS  Google Scholar 

  122. 122.

    Vaney C, Heinzel-Gutenbrunner M, Jobin P, et al. Efficacy, safety, and tolerability of an oral administered cannabis extract in the treatment of spasticity in patients with multiple sclerosis: a randomized, double-blind, placebocontrolled, crossover study. Mult Scler 2004; 10: 417–24

    PubMed  CAS  Google Scholar 

  123. 123.

    Zajicek JP, Sanders HP, Wright DE, et al. Cannabinoids in multiple sclerosis (CAMS) study: safety and efficacy data for 12 months follow-up. J Neurol Neurosurg Psychiatry 2005; 76: 1664–9

    PubMed  CAS  Google Scholar 

  124. 124.

    Rog DJ, Nurmikko TR, Friede T, et al. Randomized, controlled trial of cannabis-based medicine in central pain in multiple sclerosis. Neurology 2005; 65: 812–9

    PubMed  Google Scholar 

  125. 125.

    Wissel J, Haydn T, Muller J, et al. Low dose treatment with the synthetic cannabinoid nabilone significantly reduces spasticity-related pain: a double-blind placebo-controlled cross-over trial. J Neurol 2006; 253: 1337–41

    PubMed  CAS  Google Scholar 

  126. 126.

    Collin C, Davies P, Mutiboko IK, et al. Randomized controlled trial of cannabis-based medicine in spasticity caused by multiple sclerosis. Eur J Neurol 2007; 14: 290–6

    PubMed  CAS  Google Scholar 

  127. 127.

    Conte A, Bettolo CM, Onesto E, et al. Cannabinoidinduced effects on the nociceptive system: a neurophysiological study in patients with secondary progressive multiple sclerosis. Eur J Pain 2009; 13: 472–7

    PubMed  CAS  Google Scholar 

  128. 128.

    Collin C, Ehler E, Waberzinek G, et al. A double-blind, randomized, placebocontrolled, parallel-group study of Sativex, in subjects with symptoms of spasticity due to multiple sclerosis. Neurol Res 2010; 32(5): 451–59

    PubMed  CAS  Google Scholar 

  129. 129.

    Wade DT, Makela PM, House H, et al. Long-term use of a cannabis-based medicine in the treatment of spasticity and other symptoms in multiple sclerosis. Mult Scler 2006; 12: 639–45

    PubMed  CAS  Google Scholar 

  130. 130.

    Rog DJ, Nurmikko TJ, Young CA. Oromucosal D9-tetrahydro-cannabinol/ cannabidiol for neuropathic pain associated with multiple sclerosis: an uncontrolled, openlabel, 2-year extension trial. Clin Ther 2007; 29(9): 2068–79

    PubMed  CAS  Google Scholar 

  131. 131.

    Centonze D, Mori F, Koch G. Lack of effect of cannabisbased treatment on clinical and laboratory measures in multiple sclerosis. Neurol Sci 2009; 30: 531–4

    PubMed  Google Scholar 

  132. 132.

    Scully C. Cannabis; adverse effects from an oromucosal spray. Br Dent J 2007; 203(6): E12; discussion 336-7

    PubMed  CAS  Google Scholar 

  133. 133.

    Maurer M, Henn V, Dittrich A, et al. Delta-9-tetra-hydrocannabinol shows antispastic and analgesic effects in a single case double-blind trial. Eur Arch Psychiatry Clin Neurosci 1990; 240: 1–4

    PubMed  CAS  Google Scholar 

  134. 134.

    Karst M, Salim K, Burstein S, et al. Analgesic effect of the synthetic cannabinoid CT-3 on chronic neuropathic pain: a randomized controlled trial. JAMA 2003; 290: 1757–62

    PubMed  CAS  Google Scholar 

  135. 135.

    Salim K, Schneider U, Burstein S, et al. Pain measurements and side effect profile of the novel cannabinoid ajulemic acid. Neuropharmacology 2005; 48: 1164–71

    PubMed  CAS  Google Scholar 

  136. 136.

    Berman JS, Symonds C, Birch R. Efficacy of two cannabis based medicinal extracts for relief on central neuropathic pain from brachial plexus avulsion: results of a randomized controlled trial. Pain 2004; 112: 299–306

    PubMed  Google Scholar 

  137. 137.

    Nurmikko TJ, Serpell MG, Hoggart B, et al. Sativex successfully treats neuropathic pain characterised by allodynia: a randomised, double-blind, placebo-controlled clinical trail. Pain 2007; 133(1–3): 210–20

    PubMed  CAS  Google Scholar 

  138. 138.

    Frank B, Serpell MG, Hughes J, et al. Comparison of analgesic effects and patient tolerability of nabilone and dihydrocodeine for neuropathic pain: randomised, crossover, double blind study. BMJ 2008; 336(7637): 167–8

    Google Scholar 

  139. 139.

    Abrams DI, Jay CA, Shade SB, et al. Cannabis in painful HIV-associated sensory neuropathy: a randomized placebo-controlled trial. Neurology 2007; 68: 515–21

    PubMed  CAS  Google Scholar 

  140. 140.

    Wilsey B, Marcotte T, Tsodikov A, et al. A randomized, placebo-controlled, crossover trial of cannabis cigarettes in neuropathic pain. J Pain 2008; 9(6): 506–21

    PubMed  CAS  Google Scholar 

  141. 141.

    Ellis RJ, Toperoff W, Vaida F, et al. Smoked medicinal cannabis for neuropathic pain in HIV: a randomized, crossover clinical trial. Neuropsychopharmacology 2009; 34: 672–80

    PubMed  CAS  Google Scholar 

  142. 142.

    Selvarajah D, Emery CJ, Gandhi R, et al. Randomized placebo-controlled double-blind clinical trial of cannabisbased medicinal product (Sativex) in painful diabetic neuropathy. Diabetes Care 2010; 33(1): 128–30

    PubMed  Google Scholar 

  143. 143.

    Rintala DH, Fiess RN, Tan G, et al. Effect of dronabinol on central neuropathic pain after spinal cord injury: a pilot study. Am J Phys Med Rehabil 2010; 89: 840–8

    PubMed  Google Scholar 

  144. 144.

    Ware MA, Wang T, Shapiro S, et al. Smoked cannabis for chronic neuropathic pain: a randomized controlled trial. CMAJ 2010; 182(14): E694–701

    PubMed  Google Scholar 

  145. 145.

    Attal N, Brasseur L, Guirimand D, et al. Are oral cannabinoids safe and effective in refractory neuropathic pain? Eur J Pain 2004; 8(2): 173–7

    PubMed  CAS  Google Scholar 

  146. 146.

    Hagenbach U, Luz S, Ghafoor N, et al. The treatment of spasticity with D9-tetrahydrocannabinol in persons with spinal cord injury. Spinal Cord 2007; 45: 551–62

    PubMed  CAS  Google Scholar 

  147. 147.

    Weber J, Schley M, Casutt M, et al. Tetrahydrocannabinol (delta 9-THC) treatment in chronic central neuropathic pain and fibromyalgia patients: results of a multicenter survey. Anaesthesiol Res Pract 2009; 2009: 827290

    Google Scholar 

  148. 148.

    Fox A, Gentry C, Patel S, et al. Comparative activity of the anti-convulsants oxcarbazepin, carbamazepin, lamotrigine and gabapentin in a model of neuropathic pain in the rat and guinea-pig. Pain 2003; 105: 355–62

    PubMed  CAS  Google Scholar 

  149. 149.

    Kaufman I, Hauer D, Huge V, et al. Enhanced anandamide plasma levels in patients with complex regional pain syndrome following traumatic injury: a preliminary report. Eur Surg Res 2009; 43: 325–9

    Google Scholar 

  150. 150.

    Wang T, Collet J-P, Shapiro S, et al. Adverse effects of medical cannabinoids: a systematic review. CMAJ 2008; 178(13): 1669–78

    PubMed  Google Scholar 

  151. 151.

    Tetrault JM, Crothers K, Moore BA, et al. Effects of marijuana smoking on pulmonary function and respiratory complications. Arch Intern Med 2007; 167: 221–8

    PubMed  Google Scholar 

  152. 152.

    Di Forti M, Morgan C, Dazzan P, et al. High-potency cannabis and the risk of psychosis. Br J Psychiatry 2010; 195: 488–91

    Google Scholar 

  153. 153.

    Perez-Reyes M. Pharmacodynamics of certain drugs of abuse. In: Barnett G, Chang CN, editors. Pharmacokinetics and pharmacodynamics of psychoactive drugs. Foster City (CA): Biomedical Publishers, 1985: 287–310

    Google Scholar 

  154. 154.

    Loev B, Bender PE, Dowalo F, et al. Cannabinoids: structure-activity studies related to 1,2-dimethylheptyl derivatives. J Med Chem 1973; 16: 1200–6

    PubMed  CAS  Google Scholar 

  155. 155.

    Burstein SH. Inhibitory and stimulatory effects of cannabinoids on eicosanoid synthesis. NIDA Res Monogr 1987; 79: 158–72

    PubMed  CAS  Google Scholar 

  156. 156.

    Dziadulewicz EK, Bevan SJ, Brain CT, et al. Naphthalen-1-yl-(4-pentyloxynaphthalen-1-yl) methanone: a potent, orally bioavailable human CB1/CB2 dual agonist with antihyperalgesic properties and restricted central nervous system penetration. J Med Chem 2007; 50: 3851–6

    PubMed  CAS  Google Scholar 

  157. 157.

    Day A. Neuropathic pain: emerging treatments. Br J Anaesth 2008; 101: 48–58

    Google Scholar 

  158. 158.

    Cichewicz DL. Synergistic interactions between cannabinoid and opioid analgesics. Life Sci 2004; 74: 1317–24

    PubMed  CAS  Google Scholar 

  159. 159.

    Yesilyurt O, Dogrul A, Gul H, et al. Topical cannabinoid enhances topical morphine antinociception. Pain 2003; 105: 303–8

    PubMed  CAS  Google Scholar 

  160. 160.

    Martin-Sánchez E, Furukawa T, Taylor J, et al. Systematic review and meta-analysis of cannabis treatment for chronic pain. Pain Med 2009; 10(8): 1353–68

    PubMed  Google Scholar 

  161. 161.

    Farrar JT, Young Jr JP, LaMoreaux L, et al. Clinical importance of changes in chronic pain intensity measured on an 11-point numerical pain rating scale. Pain 2001; 94(2): 149–58

    PubMed  CAS  Google Scholar 

  162. 162.

    European Medicines Agency (EMEA). Doc. ref. CPMP/ EWP/252/03 rev. 1 [online]. Available from URL: http://www.emea.europa.eu [Accessed 2010 Nov 20]

  163. 163.

    Watson CPN, Moulin D, Watt-Watson J, et al. Controlledrelease oxycodone relieves neuropathic pain: a randomized controlled trial in painful diabetic neuropathy. Pain 2003; 105: 71–8

    PubMed  CAS  Google Scholar 

  164. 164.

    Eisenberg E, McNicol E, Carr DB. Opioids for neuropathic pain. Cochrane Database Syst Rev 2006 Jul 19; 3: CD006146

    PubMed  Google Scholar 

  165. 165.

    Ballantyne JC, Shin NS. Efficacy of opioids for chronic pain. Clin J Pain 2008; 24(6): 469–78

    PubMed  Google Scholar 

  166. 166.

    Karst M, Wippermann S. Cannabinoids against pain. Efficacy and strategies to reduce psychoactivity: a clinical perspective. Expert Opin Investig Drugs 2009; 18(2): 125–33

    CAS  Google Scholar 

  167. 167.

    Pertwee RG. Emerging strategies for exploiting cannabinoid receptor agonists as medicines. Br J Pharmacol 2009; 156: 397–411

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Gabriele Huwald for her support in editing the reference list. The authors state no conflict of interest. No type of funding was received from the pharmaceutical industry.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Prof. Dr Matthias Karst.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Karst, M., Wippermann, S. & Ahrens, J. Role of Cannabinoids in the Treatment of Pain and (Painful) Spasticity. Drugs 70, 2409–2438 (2010). https://doi.org/10.2165/11585260-000000000-00000

Download citation

Keywords

  • Neuropathic Pain
  • Anandamide
  • Mechanical Allodynia
  • Chronic Constriction Injury
  • Fatty Acid Amide Hydrolase