Skip to main content

Advertisement

Log in

MicroRNA Epigenetics

A New Avenue for Wound Healing Research

  • Review Article
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

A group of small non-coding RNA molecules, termed microRNAs (miRNAs), have generated considerable interest in recent years due to their central role in a growing number of biologic processes. Serving as post-transcriptional regulators of gene expression, miRNAs have also emerged as critical factors in the pathogenesis of many diseases. As a result, they show great potential as accurate diagnostic and prognostic markers, as well as viable therapeutic targets for treating disease. It has been proposed that miRNAs play a significant role in cutaneous wound repair and that aberrant miRNA expression may result in disorganized or poor healing. Specific patterns of miRNA expression have been identified in wound healing models. miRNAs are important regulators of leucocyte function and the cytokine network, and are necessary for endothelial cell migration and capillary formation. These molecules also control proliferation and differentiation of wound-specific cells and can determine extracellular matrix composition. This article reviews the evidence for miRNA regulation of inflammation, angiogenesis, fibroblast function, keratinocyte function, and apoptosis, which are essential components for effective wound repair. The future potential for improving wound healing outcomes using miRNA-based therapies is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Table I
Table II
Table III

Similar content being viewed by others

References

  1. Clark RAF. The molecular and cellular biology of wound repair. New York: Plenum Press, 1996

  2. Sassen S, Miska EA, Caldas C. MicroRNA: implications for cancer. Virchows Arch 2008 Jan; 452(1): 1–10

    Article  PubMed  CAS  Google Scholar 

  3. Baek D, Villen J, Shin C, et al. The impact of microRNAs on protein output. Nature 2008 Sep 4; 455(7209): 64–71

    Article  PubMed  CAS  Google Scholar 

  4. Shenouda SK, Alahari SK. MicroRNA function in cancer: oncogene or a tumor suppressor? Cancer Metastasis Rev 2009 Dec; 28(3-4): 369–78

    Article  PubMed  CAS  Google Scholar 

  5. Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer 2006 Nov; 6(11): 857–66

    Article  PubMed  CAS  Google Scholar 

  6. Sand M, Gambichler T, Sand D, et al. MicroRNAs and the skin: tiny players in the body's largest organ. J Dermatol Sci 2009 Mar; 53(3): 169–75

    Article  PubMed  CAS  Google Scholar 

  7. Schlauder SM, Ahmad A, Horn TD. Dicer and micro-RNAs in cutaneous disease. J Cutan Pathol 2009 May; 36(5): 607–10

    Article  PubMed  CAS  Google Scholar 

  8. Bostjancic E, Glavac D. Importance of microRNAs in skin morphogenesis and diseases. Acta Dermatovenerol Alp Panonica Adriat 2008 Sep; 17(3): 95–102

    PubMed  Google Scholar 

  9. Shilo S, Roy S, Khanna S, et al. MicroRNA in cutaneous wound healing: a new paradigm. DNA Cell Biol 2007 Apr; 26(4): 227–37

    Article  PubMed  CAS  Google Scholar 

  10. Singer AJ, Clark RA. Cutaneous wound healing. N Engl J Med 1999 Sep 2; 341(10): 738–46

    Article  PubMed  CAS  Google Scholar 

  11. Midwood KS, Williams LV, Schwarzbauer JE. Tissue repair and the dynamics of the extracellular matrix. Int J Biochem Cell Biol 2004 Jun; 36(6): 1031–7

    Article  PubMed  CAS  Google Scholar 

  12. Miller MC, Nanchahal J. Advances in the modulation of cutaneous wound healing and scarring. Biodrugs 2005; 19(6): 363–81

    Article  PubMed  CAS  Google Scholar 

  13. Gillitzer R, Goebeler M. Chemokines in cutaneous wound healing. J Leukoc Biol 2001 Apr; 69(4): 513–21

    PubMed  CAS  Google Scholar 

  14. Desmouliere A, Chaponnier C, Gabbiani G. Tissue repair, contraction, and the myofibroblast. Wound Repair Regen 2005 Jan-Feb; 13(1): 7–12

    Article  PubMed  Google Scholar 

  15. Broughton 2nd G, Janis JE, Attinger CE. The basic science of wound healing. Plast Reconstr Surg 2006 Jun; 117(7 Suppl.): 12S–34S

    PubMed  CAS  Google Scholar 

  16. Greenhalgh DG. The role of apoptosis in wound healing. Int J Biochem Cell Biol 1998 Sep; 30(9): 1019–30

    Article  PubMed  CAS  Google Scholar 

  17. Harvey C. Wound healing. Orthop Nurs 2005 Mar–Apr; 24(2): 143–57; quiz 58-9

    Article  PubMed  Google Scholar 

  18. Jones KR, Fennie K, Lenihan A. Evidence-based management of chronic wounds. Adv Skin Wound Care 2007 Nov; 20(11): 591–600

    Article  PubMed  Google Scholar 

  19. Posnett J, Gottrup F, Lundgren H, et al. The resource impact of wounds on health-care providers in Europe. J Wound Care 2009 Apr; 18(4): 154–61

    PubMed  CAS  Google Scholar 

  20. Perera RJ, Ray A. MicroRNAs in the search for understanding human diseases. Biodrugs 2007; 21(2): 97–104

    Article  PubMed  CAS  Google Scholar 

  21. Sen CK, Gordillo GM, Khanna S, et al. Micromanaging vascular biology: tiny microRNAs play big band. J Vasc Res 2009; 46(6): 527–40

    Article  PubMed  CAS  Google Scholar 

  22. Lee Y, Kim M, Han J, et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J 2004 Oct 13; 23(20): 4051–60

    Article  PubMed  CAS  Google Scholar 

  23. Han J, Lee Y, Yeom KH, et al. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev 2004 Dec 15; 18(24): 3016–27

    Article  PubMed  CAS  Google Scholar 

  24. Bohnsack MT, Czaplinski K, Gorlich D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 2004 Feb; 10(2): 185–91

    Article  PubMed  CAS  Google Scholar 

  25. Kolb FA, Zhang H, Jaronczyk K, et al. Human dicer: purification, properties, and interaction with PAZ PIWI domain proteins. Methods Enzymol 2005; 392: 316–36

    Article  PubMed  CAS  Google Scholar 

  26. Gregory RI, Chendrimada TP, Cooch N, et al. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 2005 Nov 18; 123(4): 631–40

    Article  PubMed  CAS  Google Scholar 

  27. Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of posttranscriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 2008 Feb; 9(2): 102–14

    Article  PubMed  CAS  Google Scholar 

  28. Pillai RS, Bhattacharyya SN, Filipowicz W. Repression of protein synthesis by miRNAs: how many mechanisms? Trends Cell Biol 2007 Mar; 17(3): 118–26

    Article  PubMed  CAS  Google Scholar 

  29. Shi XB, Tepper CG, de Vere White RW. Cancerous miRNAs and their regulation. Cell Cycle 2008 Jun 1; 7(11): 1529–38

    Article  PubMed  CAS  Google Scholar 

  30. Yi R, O'Carroll D, Pasolli HA, et al. Morphogenesis in skin is governed by discrete sets of differentially expressed microRNAs. Nat Genet 2006 Mar; 38(3): 356–62

    Article  PubMed  CAS  Google Scholar 

  31. Andl T, Murchison EP, Liu F, et al. The miRNA-processing enzyme dicer is essential for the morphogenesis and maintenance of hair follicles. Curr Biol 2006 May 23; 16(10): 1041–9

    Article  PubMed  CAS  Google Scholar 

  32. Yi R, Pasolli HA, Landthaler M, et al. DGCR8-dependent microRNA biogenesis is essential for skin development. Proc Natl Acad Sci U S A 2009 Jan 13; 106(2): 498–502

    Article  PubMed  CAS  Google Scholar 

  33. Yi R, Poy MN, Stoffel M, et al. A skin microRNA promotes differentiation by repressing 'stemness'. Nature 2008 Mar 13; 452(7184): 225–9

    Article  PubMed  CAS  Google Scholar 

  34. Sonkoly E, Wei T, Janson PC, et al. MicroRNAs: novel regulators involved in the pathogenesis of psoriasis? PLoS One 2007; 2(7): e610

    Article  PubMed  CAS  Google Scholar 

  35. Lena AM, Shalom-Feuerstein R, Rivetti di Val Cervo P, et al. miR-203 represses 'stemness’ by repressing DeltaNp63. Cell Death Differ 2008 Jul; 15(7): 1187–95

    Article  PubMed  CAS  Google Scholar 

  36. Aberdam D, Candi E, Knight RA, et al. miRNAs, 'stemness’ and skin. Trends Biochem Sci 2008 Dec; 33(12): 583–91

    Article  PubMed  CAS  Google Scholar 

  37. Mills AA, Zheng B, Wang XJ, et al. p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature 1999 Apr 22; 398(6729): 708–13

    Article  PubMed  CAS  Google Scholar 

  38. Koster MI, Kim S, Mills AA, et al. p63 is the molecular switch for initiation of an epithelial stratification program. Genes Dev 2004 Jan 15; 18(2): 126–31

    Article  PubMed  CAS  Google Scholar 

  39. Zhang L, Huang J, Yang N, et al. microRNAs exhibit high frequency genomic alterations in human cancer. Proc Natl Acad Sci U S A 2006 Jun 13; 103(24): 9136–41

    Article  PubMed  CAS  Google Scholar 

  40. Felicetti F, Errico MC, Bottero L, et al. The promyelocytic leukemia zinc finger-microRNA-221/-222 pathway controls melanoma progression through multiple oncogenic mechanisms. Cancer Res 2008 Apr 15; 68(8): 2745–54

    Article  PubMed  CAS  Google Scholar 

  41. Igoucheva O, Alexeev V. MicroRNA-dependent regulation of cKit in cutaneous melanoma. Biochem Biophys Res Commun 2009 Feb 13; 379(3): 790–4

    Article  PubMed  CAS  Google Scholar 

  42. Mueller DW, Bosserhoff AK. Role of miRNAs in the progression of malignant melanoma. Br J Cancer 2009 Aug 18; 101(4): 551–6

    Article  PubMed  CAS  Google Scholar 

  43. Caramuta S, Egyhazi S, Rodolfo M, et al. MicroRNA expression profiles associated with mutational status and survival in malignant melanoma. J Invest Dermatol 2010 Aug; 130(8): 2062–70

    Article  PubMed  CAS  Google Scholar 

  44. Sand M, Gambichler T, Skrygan M, et al. Expression levels of the microRNA processing enzymes Drosha and Dicer in epithelial skin cancer. Cancer Invest 2010 Jul; 28(6): 649–53

    Article  PubMed  CAS  Google Scholar 

  45. Sonkoly E, Stahle M, Pivarcsi A. MicroRNAs: novel regulators in skin inflammation. Clin Exp Dermatol 2008 May; 33(3): 312–5

    Article  PubMed  CAS  Google Scholar 

  46. Colwell AS, Longaker MT, Lorenz HP. Fetal wound healing. Front Biosci 2003 Sep 1;8: s1240–8

    Article  PubMed  CAS  Google Scholar 

  47. Martin P, Parkhurst SM. Parallels between tissue repair and embryo morphogenesis. Development 2004 Jul; 131(13): 3021–34

    Article  PubMed  CAS  Google Scholar 

  48. Szpaderska AM, Zuckerman JD, DiPietro LA. Differential injury responses in oral mucosal and cutaneous wounds. J Dent Res 2003 Aug; 82(8): 621–6

    Article  PubMed  CAS  Google Scholar 

  49. Ashcroft GS, Yang X, Glick AB, et al. Mice lacking Smad3 show accelerated wound healing and an impaired local inflammatory response. Nat Cell Biol 1999 Sep; 1(5): 260–6

    Article  PubMed  CAS  Google Scholar 

  50. Gawronska-Kozak B, Bogacki M, Rim JS, et al. Scarless skin repair in immunodeficient mice. Wound Repair Regen 2006 May–Jun; 14(3): 265–76

    Article  PubMed  Google Scholar 

  51. Mori R, Power KT, Wang CM, et al. Acute downregulation of connexin43 at wound sites leads to a reduced inflammatory response, enhanced keratinocyte proliferation and wound fibroblast migration. J Cell Sci 2006 Dec 15; 119 (Pt 24): 5193–203

    Article  PubMed  CAS  Google Scholar 

  52. Harris TA, Yamakuchi M, Ferlito M, et al. MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proc Natl Acad Sci U S A 2008 Feb 5; 105(5): 1516–21

    Article  PubMed  CAS  Google Scholar 

  53. Suarez Y, Wang C, Manes TD, et al. Cutting edge: TNF-induced microRNAs regulate TNF-induced expression of E-selectin and intercellular adhesion molecule-1 on human endothelial cells: feedback control of inflammation. J Immunol 2010 Jan 1; 184(1): 21–5

    Article  PubMed  CAS  Google Scholar 

  54. Taganov KD, Boldin MP, Chang KJ, et al. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A 2006 Aug 15; 103(33): 12481–6

    Article  PubMed  CAS  Google Scholar 

  55. Schmeier S, MacPherson CR, Essack M, et al. Deciphering the transcriptional circuitry of microRNA genes expressed during human monocytic differentiation. BMC Genomics 2009; 10: 595

    Article  PubMed  CAS  Google Scholar 

  56. O'Connell RM, Taganov KD, Boldin MP, et al. MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci U S A 2007 Jan 30; 104(5): 1604–9

    Article  PubMed  CAS  Google Scholar 

  57. Tili E, Michaille JJ, Cimino A, et al. Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock. J Immunol 2007 Oct 15; 179(8): 5082–9

    PubMed  CAS  Google Scholar 

  58. Fazi F, Rosa A, Fatica A, et al. A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis. Cell 2005 Dec 2; 123(5): 819–31

    Article  PubMed  CAS  Google Scholar 

  59. Johnnidis JB, Harris MH, Wheeler RT, et al. Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature 2008 Feb 28; 451(7182): 1125–9

    Article  PubMed  CAS  Google Scholar 

  60. Miko E, Czimmerer Z, Csanky E, et al. Differentially expressed microRNAs in small cell lung cancer. Exp Lung Res 2009 Oct; 35(8): 646–64

    Article  PubMed  CAS  Google Scholar 

  61. Pulikkan JA, Dengler V, Peramangalam S, et al. Cell-cycle regulator E2F1 and microRNA-223 comprise an autoregulatory negative feedback loop in acute myeloid leukemia. Blood 2010 Mar 4; 115(9): 1768–78

    Article  PubMed  CAS  Google Scholar 

  62. Fulci V, Scappucci G, Sebastiani GD, et al. miR-223 is overexpressed in T-lymphocytes of patients affected by rheumatoid arthritis. Hum Immunol 2010 Feb;71(2): 206–11

    Article  PubMed  CAS  Google Scholar 

  63. Wang JF, Yu ML, Yu G, et al. SerummiR-146aandmiR-223aspotentialnew biomarkers for sepsis. Biochem Biophys Res Commun 2010 Mar 26; 394(1): 184–8

    Article  PubMed  CAS  Google Scholar 

  64. Tili E, Michaille JJ, Gandhi V, et al. miRNAs and their potential for use against cancer and other diseases. Future Oncol 2007 Oct; 3(5): 521–37

    Article  PubMed  CAS  Google Scholar 

  65. Asirvatham AJ, Magner WJ, Tomasi TB. miRNA regulation of cytokine genes. Cytokine 2009 Feb; 45(2): 58–69

    Article  PubMed  CAS  Google Scholar 

  66. Lu LF, Liston A. MicroRNA in the immune system, microRNA as an immune system. Immunology 2009 Jul; 127(3): 291–8

    Article  PubMed  CAS  Google Scholar 

  67. Sonkoly E, Pivarcsi A. Advances in microRNAs: implications for immunity and inflammatory diseases. J Cell Mol Med 2009 Jan; 13(1): 24–38

    Article  PubMed  CAS  Google Scholar 

  68. Yang WJ, Yang DD, Na SQ, et al. Dicer is required for embryonic angiogenesis during mouse development. J Biol Chem 2005 Mar 11; 280(10): 9330–5

    Article  PubMed  CAS  Google Scholar 

  69. Shilo S, Roy S, Khanna S, et al. Evidence for the involvement of miRNA in redox regulated angiogenic response of human microvascular endothelial cells. Arterioscl Throm Vas 2008 Mar; 28(3): 471–7

    Article  CAS  Google Scholar 

  70. Kuehbacher A, Urbich C, Zeiher AM, et al. Role of Dicer and Drosha for endothelial microRNA expression and angiogenesis. Circ Res 2007 Jul 6; 101(1): 59–68

    Article  PubMed  CAS  Google Scholar 

  71. Suarez Y, Fernandez-Hernando C, Pober JS, et al. Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells. Circ Res 2007 Apr 27; 100(8): 1164–73

    Article  PubMed  CAS  Google Scholar 

  72. Hua Z, Lv Q, Ye W, et al. miRNA-directed regulation of VEGF and other angiogenic factors under hypoxia. PLoS One 2006 Dec 27; 1: e1 16

    Article  CAS  Google Scholar 

  73. Suarez Y, Fernandez-Hernando C, Yu J, et al. Dicer-dependent endothelial microRNAs are necessary for postnatal angiogenesis. Proc Natl Acad Sci U S A 2008 Sep 16; 105(37): 14082–7

    Article  PubMed  CAS  Google Scholar 

  74. Dews M, Homayouni A, Yu D, et al. Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat Genet 2006 Sep; 38(9): 1060–5

    Article  PubMed  CAS  Google Scholar 

  75. Bonauer A, Carmona G, Iwasaki M, et al. MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science 2009 Jun 26; 324(5935): 1710–3

    Article  PubMed  CAS  Google Scholar 

  76. Wang S, Aurora AB, Johnson BA, et al. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell 2008 Aug; 15(2): 261–71

    Article  PubMed  CAS  Google Scholar 

  77. Fish JE, Santoro MM, Morton SU, et al. miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell 2008 Aug; 15(2): 272–84

    Article  PubMed  CAS  Google Scholar 

  78. Chen Y, Gorski DH. Regulation of angiogenesis through a microRNA (miR-130a) that down-regulates antiangiogenic homeobox genes GAX and HOXA5. Blood 2008 Feb 1; 111(3): 1217–26

    Article  PubMed  CAS  Google Scholar 

  79. Fasanaro P, D'Alessandra Y, Di Stefano V, et al. MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3. J Biol Chem 2008 Jun 6; 283(23): 15878–83

    Article  PubMed  CAS  Google Scholar 

  80. Poliseno L, Tuccoli A, Mariani L, et al. MicroRNAs modulate the angiogenic properties of HUVECs. Blood 2006 Nov 1; 108(9): 3068–71

    Article  PubMed  CAS  Google Scholar 

  81. le Sage C, Nagel R, Egan DA, et al. Regulation of the p27(Kip1) tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation. EMBO J 2007 Aug 8; 26(15): 3699–708

    Article  CAS  Google Scholar 

  82. Wurdinger T, Tannous BA, Saydam O, et al. miR-296 regulates growth factor receptor overexpression in angiogenic endothelial cells. Cancer Cell 2008 Nov 4; 14(5): 382–93

    Article  PubMed  CAS  Google Scholar 

  83. Lee DY, Deng Z, Wang CH, et al. MicroRNA-378 promotes cell survival, tumor growth, and angiogenesis by targeting SuFu and Fus-1 expression. Proc Natl Acad Sci U S A 2007 Dec 18; 104(51): 20350–5

    Article  PubMed  CAS  Google Scholar 

  84. Strumberg D. Preclinical and clinical development of the oral multikinase inhibitor sorafenib in cancer treatment. Drugs Today (Barc) 2005 Dec; 41(12): 773–84

    Article  CAS  Google Scholar 

  85. Litz J, Krystal GW. Imatinib inhibits c-Kit-induced hypoxia-inducible factor-1alpha activity and vascular endothelial growth factor expression in small cell lung cancer cells. Mol Cancer Ther 2006 Jun; 5(6): 1415–22

    Article  PubMed  CAS  Google Scholar 

  86. Huttunen M, Naukkarinen A, Horsmanheimo M, et al. Transient production of stem cell factor in dermal cells but increasing expression of Kit receptor in mast cells during normal wound healing. Arch Dermatol Res 2002 Oct; 294(7): 324–30

    PubMed  Google Scholar 

  87. Ziche M, Morbidelli L, Masini E, et al. Nitric oxide mediates angiogenesis in vivo and endothelial cell growth and migration in vitro promoted by substance P. J Clin Invest 1994 Nov; 94(5): 2036–44

    Article  PubMed  CAS  Google Scholar 

  88. Murohara T, Witzenbichler B, Spyridopoulos I, et al. Role of endothelial nitric oxide synthase in endothelial cell migration. Arterioscler Thromb Vasc Biol 1999 May; 19(5): 1156–61

    Article  PubMed  CAS  Google Scholar 

  89. Rudic RD, Shesely EG, Maeda N, et al. Direct evidence for the importance of endothelium-derived nitric oxide in vascular remodeling. J Clin Invest 1998 Feb 15; 101(4): 731–6

    Article  PubMed  CAS  Google Scholar 

  90. Murohara T, Asahara T, Silver M, et al. Nitric oxide synthase modulates angiogenesis in response to tissue ischemia. J Clin Invest 1998 Jun 1; 101(11): 2567–78

    Article  PubMed  CAS  Google Scholar 

  91. Kuhnert F, Mancuso MR, Hampton J, et al. Attribution of vascular phenotypes of the murine Egfl7 locus to the microRNA miR-126. Development 2008 Dec; 135(24): 3989–93

    Article  PubMed  CAS  Google Scholar 

  92. Mendell JT. miRiad roles for the miR-17-92 cluster in development and disease. Cell 2008 Apr 18; 133(2): 217–22

    Article  PubMed  CAS  Google Scholar 

  93. Taguchi A, Yanagisawa K, Tanaka M, et al. Identification of hypoxia-inducible factor-1 alpha as a novel target for miR-17-92 microRNA cluster. Cancer Res 2008 Jul 15; 68(14): 5540–5

    Article  PubMed  CAS  Google Scholar 

  94. Rozman P, Bolta Z. Use of platelet growth factors in treating wounds and soft-tissue injuries. Acta Dermatovenerol Alp Panonica Adriat 2007 Dec; 16(4): 156–65

    PubMed  CAS  Google Scholar 

  95. Gu J, Iyer VR. PI3K signaling and miRNA expression during the response of quiescent human fibroblasts to distinct proliferative stimuli. Genome Biol 2006; 7(5): R42

    Article  PubMed  CAS  Google Scholar 

  96. Harding KG, Moore K, Phillips TJ. Wound chronicity and fibroblast senescence: implications for treatment. Int Wound J 2005 Dec; 2(4): 364–8

    Article  PubMed  Google Scholar 

  97. He L, He X, Lim LP, et al. A microRNA component of the p53 tumour suppressor network. Nature 2007 Jun 28; 447(7148): 1130–4

    Article  PubMed  CAS  Google Scholar 

  98. Kumamoto K, Spillare EA, Fujita K, et al. Nutlin-3a activates p53 to both down-regulate inhibitor of growth 2 and up-regulate mir-34a, mir-34b, and mir-34c expression, and induce senescence. Cancer Res 2008 May 1; 68(9): 3193–203

    Article  PubMed  CAS  Google Scholar 

  99. Bhaumik D, Scott GK, Schokrpur S, et al. MicroRNAs miR-146a/b negatively modulate the senescence-associated inflammatory mediators IL-6 and IL. Aging (Albany NY) 2009 Apr; 1(4): 402–11

    CAS  Google Scholar 

  100. Petrocca F, Vecchione A, Croce CM. Emerging role of miR-106b-25/miR-17-92 clusters in the control of transforming growth factor beta signaling. Cancer Res 2008 Oct 15; 68(20): 8191–4

    Article  PubMed  CAS  Google Scholar 

  101. Sun Q, Zhang Y, Yang G, et al. Transforming growth factor-beta-regulated miR-24 promotes skeletal muscle differentiation. Nucleic Acids Res 2008 May; 36(8): 2690–9

    Article  PubMed  CAS  Google Scholar 

  102. Yao G, Yin M, Lian J, et al. MicroRNA-224 is involved in transforming growth factor-beta-mediated mouse granulosa cell proliferation and granulosa cell function by targeting Smad4. Mol Endocrinol 2010 Mar; 24(3): 540–51

    Article  PubMed  CAS  Google Scholar 

  103. Roberts AB, Sporn MB. Regulation of endothelial cell growth, architecture, and matrix synthesis by TGF-beta. Am Rev Respir Dis 1989 Oct; 140(4): 1126–8

    PubMed  CAS  Google Scholar 

  104. Ferguson MW, Duncan J, Bond J, et al. Prophylactic administration of avotermin for improvement of skin scarring: three double-blind, placebo-controlled, phase I/II studies. Lancet 2009 Apr 11; 373(9671): 1264–74

    Article  PubMed  CAS  Google Scholar 

  105. Divakaran V, Adrogue J, Ishiyama M, et al. Adaptive and maladptive effects of SMAD3 signaling in the adult heart after hemodynamic pressure overloading. Circ Heart Fail 2009 Nov; 2(6): 633–42

    Article  PubMed  CAS  Google Scholar 

  106. Li Z, Hassan MQ, Jafferji M, et al. Biological functions of miR-29b contribute to positive regulation of osteoblast differentiation. J Biol Chem 2009 Jun 5; 284(23): 15676–84

    Article  PubMed  CAS  Google Scholar 

  107. Sengupta S, den Boon JA, Chen IH, et al. MicroRNA 29c is down-regulated in nasopharyngeal carcinomas, up-regulating mRNAs encoding extracellular matrix proteins. Proc Natl Acad Sci U S A 2008 Apr 15; 105(15): 5874–8

    Article  PubMed  CAS  Google Scholar 

  108. Luna C, Li G, Qiu J, et al. Role of miR-29b on the regulation of the extracellular matrix in human trabecular meshwork cells under chronic oxidative stress. Mol Vis 2009; 15: 2488–97

    PubMed  CAS  Google Scholar 

  109. Maurer B, Stanczyk J, Jungel A, et al. miR-29 is a key regulator of collagen expression in systemic sclerosis. Arthritis Rheum 2010 Jun; 62(6): 1733–43

    Article  PubMed  CAS  Google Scholar 

  110. Roy S, Khanna S, Hussain SR, et al. MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue. Cardiovasc Res 2009 Apr 1; 82(1): 21–9

    Article  PubMed  CAS  Google Scholar 

  111. Stanczyk J, Pedrioli DM, Brentano F, et al. Altered expression of MicroRNA in synovial fibroblasts and synovial tissue in rheumatoid arthritis. Arthritis Rheum 2008 Apr; 58(4): 1001–9

    Article  PubMed  Google Scholar 

  112. Chen CZ, Peng YX, Wang ZB, et al. The Scar-in-a-Jar: studying potential antifibrotic compounds from the epigenetic to extracellular level in a single well. Br J Pharmacol 2009 Nov; 158(5): 1196–209

    Article  PubMed  CAS  Google Scholar 

  113. Sonkoly E, Wei T, Pavez Lorie E, et al. Protein kinase C-dependent upregulation of miR-203 induces the differentiation of human keratinocytes. J Invest Dermatol 2010 Jan; 130(1): 124–34

    Article  PubMed  CAS  Google Scholar 

  114. Biswas S, Roy S, Banerjee J, et al. Hypoxia inducible microRNA 210 attenuates keratinocyte proliferation and impairs closure in a murine model of ischemic wounds. Proc Natl Acad Sci U S A 2010 Apr 13; 107(15): 6976–81

    Article  PubMed  CAS  Google Scholar 

  115. Lin SC, Liu CJ, Lin JA, et al. miR-24 up-regulation in oral carcinoma: positive association from clinical and in vitro analysis. Oral Oncol 2010 Mar; 46(3): 204–8

    Article  PubMed  CAS  Google Scholar 

  116. Benakanakere MR, Li Q, Eskan MA, et al. Modulation of TLR2 protein expression by miR-105 in human oral keratinocytes. J Biol Chem 2009 Aug 21; 284(34): 23107–15

    Article  PubMed  CAS  Google Scholar 

  117. van der Veer WM, Bloemen MC, Ulrich MM, et al. Potential cellular and molecular causes of hypertrophic scar formation. Burns 2009 Feb; 35(1): 15–29

    Article  Google Scholar 

  118. Rai NK, Tripathi K, Sharma D, et al. Apoptosis: a basic physiologic process in wound healing. Int J Low Extrem Wounds 2005 Sep; 4(3): 138–44

    Article  PubMed  Google Scholar 

  119. Chang TC, Wentzel EA, Kent OA, et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 2007 Jun 8; 26(5): 745–52

    Article  PubMed  CAS  Google Scholar 

  120. Calin GA, Dumitru CD, Shimizu M, et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 2002 Nov 26; 99(24): 15524–9

    Article  PubMed  CAS  Google Scholar 

  121. Nicoloso MS, Kipps TJ, Croce CM, et al. MicroRNAs in the pathogeny of chronic lymphocytic leukaemia. Br J Haematol 2007 Dec; 139(5): 709–16

    Article  PubMed  CAS  Google Scholar 

  122. Bonci D, Coppola V, Musumeci M, et al. The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat Med 2008 Nov; 14(11): 1271–7

    Article  PubMed  CAS  Google Scholar 

  123. Bottoni A, Piccin D, Tagliati F, et al. miR-15a andmiR-16-1 down-regulation in pituitary adenomas. J Cell Physiol 2005 Jul; 204(1): 280–5

    Article  PubMed  CAS  Google Scholar 

  124. Aqeilan RI, Calin GA, Croce CM. miR-15a and miR-16-1 in cancer: discovery, function and future perspectives. Cell Death Differ 2010 Feb; 17(2): 215–20

    Article  PubMed  CAS  Google Scholar 

  125. Si ML, Zhu S, Wu H, et al. miR-21-mediated tumor growth. Oncogene 2007 Apr 26; 26(19): 2799–803

    Article  PubMed  CAS  Google Scholar 

  126. Wang Y, Lee CG. MicroRNA and cancer: focus on apoptosis. J Cell Mol Med 2009 Jan; 13(1): 12–23

    Article  PubMed  CAS  Google Scholar 

  127. Johnson SM, Grosshans H, Shingara J, et al. RAS is regulated by the let-7 microRNA family. Cell 2005 Mar 11; 120(5): 635–47

    Article  PubMed  CAS  Google Scholar 

  128. Sampson VB, Rong NH, Han J, et al. MicroRNA let-7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells. Cancer Res 2007 Oct 15; 67(20): 9762–70

    Article  PubMed  CAS  Google Scholar 

  129. Cimmino A, Calin GA, Fabbri M, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A 2005 Sep 27; 102(39): 13944–9

    Article  PubMed  CAS  Google Scholar 

  130. Xia L, Zhang D, Du R, et al. miR-15b and miR-16 modulate multidrug resistance by targeting BCL2 in human gastric cancer cells. Int J Cancer 2008 Jul 15; 123(2): 372–9

    Article  PubMed  CAS  Google Scholar 

  131. Xiao C, Srinivasan L, Calado DP, et al. Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nat Immunol 2008 Apr; 9(4): 405–14

    Article  PubMed  CAS  Google Scholar 

  132. Chan JA, Krichevsky AM, Kosik KS. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 2005 Jul 15; 65(14): 6029–33

    Article  PubMed  CAS  Google Scholar 

  133. Zhang H, Ozaki I, Mizuta T, et al. Involvement of programmed cell death 4 in transforming growth factor-beta1-induced apoptosis in human hepato-cellular carcinoma. Oncogene 2006 Oct 5; 25(45): 6101–12

    Article  PubMed  CAS  Google Scholar 

  134. Mott JL, Kobayashi S, Bronk SF, et al. mir-29 regulates Mcl-1 protein expression and apoptosis. Oncogene 2007 Sep 13; 26(42): 6133–40

    Article  PubMed  CAS  Google Scholar 

  135. Saito Y, Liang G, Egge G, et al. Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 2006 Jun; 9(6): 435–43

    Article  PubMed  CAS  Google Scholar 

  136. Gironella M, Seux M, Xie MJ, et al. Tumor protein 53-induced nuclear protein 1 expression is repressed by miR-155, and its restoration inhibits pancreatic tumor development. Proc Natl Acad Sci U S A 2007 Oct 9; 104(41): 16170–5

    Article  PubMed  CAS  Google Scholar 

  137. Kulshreshtha R, Ferracin M, Wojcik SE, et al. A microRNA signature of hypoxia. Mol Cell Biol 2007 Mar; 27(5): 1859–67

  138. Wang Y, Lee AT, Ma JZ, et al. Profiling microRNA expression in hepatocellular carcinoma reveals microRNA-224 up-regulation and apoptosis inhibitor-5 as a microRNA-224-specific target. J Biol Chem 2008 May 9; 283(19): 13205–15

    Article  PubMed  CAS  Google Scholar 

  139. Stoff A, Rivera AA, Mathis JM, et al. Effect of adenoviral mediated over-expression of fibromodulin on human dermal fibroblasts and scar formation in full-thickness incisional wounds. J Mol Med 2007 May; 85(5): 481–96

    Article  PubMed  CAS  Google Scholar 

  140. Iocono JA, Ehrlich HP, Keefer KA, et al. Hyaluronan induces scarless repair in mouse limb organ culture. J Pediatr Surg 1998 Apr; 33(4): 564–7

    Article  PubMed  CAS  Google Scholar 

  141. Shah M, Foreman DM, Ferguson MW. Neutralisation of TGF-beta 1 and TGF-beta 2 or exogenous addition of TGF-beta 3 to cutaneous rat wounds reduces scarring. J Cell Sci 1995 Mar; 108 (Pt 3): 985–1002

    PubMed  CAS  Google Scholar 

  142. Ferguson MW, O'Kane S. Scar-free healing: from embryonic mechanisms to adult therapeutic intervention. Philos Trans R Soc Lond B Biol Sci 2004 May 29; 359(1445): 839–50

    Article  PubMed  CAS  Google Scholar 

  143. Buchanan EP, Longaker MT, Lorenz HP. Fetal skin wound healing. Adv Clin Chem 2009; 48: 137–61

    Article  PubMed  CAS  Google Scholar 

  144. Cheng J, Yu H, Deng S, et al. MicroRNA profiling in mid- and late-gesta-tional fetal skin: implication for scarless wound healing. Tohoku J Exp Med 2010; 221(3): 203–9

    Article  PubMed  CAS  Google Scholar 

  145. Cheung VG, Conlin LK, Weber TM, et al. Natural variation in human gene expression assessed in lymphoblastoid cells. Nat Genet 2003 Mar; 33(3): 422–5

    Article  PubMed  CAS  Google Scholar 

  146. Seitz H. Redefining microRNA targets. Curr Biol 2009 May 26; 19(10): 870–3

    Article  PubMed  CAS  Google Scholar 

  147. Tiemann K, Rossi JJ. RNAi-based therapeutics-current status, challenges and prospects. EMBO Mol Med 2009 Jun; 1(3): 142–51

    Article  PubMed  CAS  Google Scholar 

  148. Stegmeier F, Hu G, Rickles RJ, et al. A lentiviral microRNA-based system for single-copy polymerase II-regulated RNA interference in mammalian cells. Proc Natl Acad Sci U S A 2005 Sep 13; 102(37): 13212–7

    Article  PubMed  CAS  Google Scholar 

  149. Chung KH, Hart CC, Al-Bassam S, et al. Polycistronic RNA polymerase II expression vectors for RNA interference based on BIC/miR-155. Nucleic Acids Res 2006; 34(7): e53

    Article  PubMed  CAS  Google Scholar 

  150. Liu Z, Sall A, Yang D. Micro RNA: an emerging therapeutic target and intervention tool. Int J Mol Sci 2008 Jun; 9(6): 978–99

    Article  PubMed  CAS  Google Scholar 

  151. Zhang B, Pan X, Cobb GP, et al. Plant micro RNA: a small regulatory molecule with big impact. Dev Biol 2006 Jan 1; 289(1): 3–16

    Article  CAS  Google Scholar 

  152. Lynch SE, Nixon JC, Colvin RB, et al. Role of platelet-derived growth factor in wound healing: synergistic effects with other growth factors. Proc Natl Acad Sci U S A 1987 Nov; 84(21): 7696–700

    Article  PubMed  CAS  Google Scholar 

  153. Jeschke MG, Herndon DN. Effect of growth factors as therapeutic drugs on hepatic metabolism during the systemic inflammatory response syndrome. Curr Drug Metab 2004 Oct; 5(5): 399–413

    Article  PubMed  CAS  Google Scholar 

  154. Davis S, Lollo B, Freier S, et al. Improved targeting of miRNA with antisense oligonucleotides. Nucleic Acids Res 2006; 34(8): 2294–304

    Article  PubMed  CAS  Google Scholar 

  155. Esau C, Davis S, Murray SF, et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 2006 Feb; 3(2): 87–98

    Article  PubMed  CAS  Google Scholar 

  156. Krutzfeldt J, Rajewsky N, Braich R, et al. Silencing of microRNAs in vivo with ‘antagomirs'. Nature 2005 Dec 1; 438(7068): 685–9

    Article  PubMed  CAS  Google Scholar 

  157. Elmen J, Lindow M, Silahtaroglu A, et al. Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver. Nucleic Acids Res 2008 Mar; 36(4): 1153–62

    Article  PubMed  CAS  Google Scholar 

  158. Elmen J, Lindow M, Schutz S, et al. LNA-mediated microRNA silencing in non-human primates. Nature 2008 Apr 17; 452(7189): 896–9

    Article  PubMed  CAS  Google Scholar 

  159. van Solingen C, Seghers L, Bijkerk R, et al. Antagomir-mediated silencing of endothelial cell specific microRNA-126 impairs ischemia-induced angiogenesis. J Cell Mol Med 2009 Aug; 13(8A): 1577–85

    Article  CAS  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this review. The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luckshman Bavan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bavan, L., Midwood, K. & Nanchahal, a. MicroRNA Epigenetics. BioDrugs 25, 27–41 (2011). https://doi.org/10.2165/11585010-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11585010-000000000-00000

Keywords

Navigation