Skip to main content

Exercise Guidelines in Pregnancy

New Perspectives

Abstract

In 2002, the American College of Obstetricians and Gynecologists published exercise guidelines for pregnancy, which suggested that in the absence of medical or obstetric complications, 30 minutes or more of moderate exercise a day on most, if not all, days of the week is recommended for pregnant women. However, these guidelines did not define ‘moderate intensity’ or the specific amount of weekly caloric expenditure from physical activity required. Recent research has determined that increasing physical activity energy expenditure to a minimum of 16 metabolic equivalent task (MET) hours per week, or preferably 28 MET hours per week, and increasing exercise intensity to ≥60% of heart rate reserve during pregnancy, reduces the risk of gestational diabetes mellitus and perhaps hypertensive disorders of pregnancy (i.e. gestational hypertension and pre-eclampsia) compared with less vigorous exercise. To achieve the target expenditure of 28 MET hours per week, one could walk at 3.2km per hour for 11.2 hours per week (2.5 METs, light intensity), or preferably exercise on a stationary bicycle for 4.7 hours per week (~6–7 METs, vigorous intensity). The more vigorous the exercise, the less total time of exercise is required per week, resulting in ≥60% reduction in total exercise time compared with light intensity exercise. Light muscle strengthening performed over the second and third trimester of pregnancy has minimal effects on a newborn infant’s body size and overall health. On the basis of this and other information, updated recommendations for exercise in pregnancy are suggested.

This is a preview of subscription content, access via your institution.

Table I
Fig. 1
Fig. 2
Fig. 3
Table II
Table III
Table IV
Table V

Notes

  1. 1.

    Excessive weight gain during pregnancy is defined as ≥9.0 kg in overweight women (pre-pregnancy body mass index [BMI] = 25.0–29.9 kg/m2), or ≥5.9 kg in obese women (pre-pregnancy BMI ≥30 kg/m2). For pregnant women of normal pre-pregnancy bodyweight (BMI = 20.0–24.9 kg/m2), optimal weight gain during pregnancy is between 2.1 and 9.9 kg. For pregnant women whose pre-pregnancy BMI is <20 kg/m2, optimal weight gain during pregnancy is 4.1–9.9 kg.[25]

  2. 2.

    Vigorous exercise is defined by the ACSM as an oxygen consumption (V̇O2) of >21 mLO2/kg/min, which is taken to be >6-fold greater than the resting metabolic rate (>6 METs). However, this article shows that some pregnant women are not able to exercise at that V̇O2 Therefore, the definition of vigorous exercise should be defined as ≥60% of heart rate reserve (HRR) [preferably] or ≥65% of V̇O2 reserve (V̇O2R)

  3. 3.

    Prescription V̇O2 = %intensity × (V̇O2max-resting V̇O2)+resting V̇O2.

References

  1. 1.

    Dempsey JC, Sorensen TK, Williams MA, et al. Prospective study of gestational diabetes mellitus risk in relation tomaternal recreational physical activity before and duringpregnancy. Am J Epidemiol 2004 Apr 1; 159 (7): 663–70

    PubMed  Article  Google Scholar 

  2. 2.

    Berkowitz GS, Lapinski RH, Wein R, et al. Race/ethnicity and other risk factors for gestational diabetes. Am JEpidemiol 1992 May 1; 135 (9): 965–73

    CAS  Google Scholar 

  3. 3.

    Rooney BL, Schauberger CW. Excess pregnancy weight gain and long-term obesity: one decade later. Obstet Gynecol 2002 Aug; 100 (2): 245–52

    PubMed  Article  Google Scholar 

  4. 4.

    Rooney BL, Schauberger CW, Mathiason MA. Impact of perinatal weight change on long-term obesity and obesityrelatedillnesses. Obstet Gynecol 2005 Dec; 106 (6): 1349–56

    PubMed  Article  Google Scholar 

  5. 5.

    Hensrud DD, Klein S. Extreme obesity: a new medical crisis in the United States. Mayo Clin Proc 2006 Oct; 81 (10 Suppl.): S5–10

    PubMed  Google Scholar 

  6. 6.

    ACOG Committee opinion. Number 267, January 2002: exercise during pregnancy and the postpartum period. Obstet Gynecol 2002 Jan; 99 (1): 171–3

    Article  Google Scholar 

  7. 7.

    Pate RR, Pratt M, Blair SN, et al. Physical activity and public health: a recommendation from the Centers forDisease Control and Prevention and the American Collegeof Sports Medicine. JAMA 1995 Feb 1; 273 (5): 402–7

    PubMed  CAS  Article  Google Scholar 

  8. 8.

    Haskell WL, Lee IM, Pate RR, et al. Physical activity and public health: updated recommendation for adults fromthe American College of Sports Medicine and the American Heart Association. Med Sci Sports Exerc 2007 Aug; 39 (8): 1423–34

    PubMed  Article  Google Scholar 

  9. 9.

    Nelson ME, Rejeski WJ, Blair SN, et al. Physical activity and public health in older adults: recommendationfrom the American College of Sports Medicine and the American Heart Association. Med Sci Sports Exerc 2007 Aug; 39 (8): 1435–45

    PubMed  Article  Google Scholar 

  10. 10.

    Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc 1982; 14 (5): 377–81

    PubMed  CAS  Google Scholar 

  11. 11.

    Ainsworth BE, Haskell WL, Whitt MC, et al. Compendium of physical activities: an update of activity codesand MET intensities. Med Sci Sports Exerc 2000 Sep; 32 (9 Suppl.): S498–504

    PubMed  CAS  Google Scholar 

  12. 12.

    Petersen AM, Leet TL, Brownson RC. Correlates of physical activity among pregnant women in the United States. Med Sci Sports Exerc 2005 Oct; 37 (10): 1748–53

    PubMed  Article  Google Scholar 

  13. 13.

    Clapp 3rd JF. Long-term outcome after exercising throughout pregnancy: fitness and cardiovascular risk. Am J Obstet Gynecol 2008 Nov; 199 (5): 489

    PubMed  Article  Google Scholar 

  14. 14.

    Narchi H, Skinner A. Overweight and obesity in pregnancy do not adversely affect neonatal outcomes: new evidence. J Obstet Gynaecol 2010; 30 (7): 679–86

    PubMed  CAS  Article  Google Scholar 

  15. 15.

    Cedergren MI. Maternal morbid obesity and the risk of adverse pregnancy outcome. Obstet Gynecol 2004 Feb; 103 (2): 219–24

    PubMed  Article  Google Scholar 

  16. 16.

    Kiel DW, Dodson EA, Artal R, et al. Gestational weight gain and pregnancy outcomes in obese women: how muchis enough? Obstet Gynecol 2007 Oct; 110 (4): 752–8

    PubMed  Article  Google Scholar 

  17. 17.

    Galtier-Dereure F, Boegner C, Bringer J. Obesity and pregnancy: complications and cost. Am J Clin Nutr 2000 May; 71 (5 Suppl.): 1242–8S

    Google Scholar 

  18. 18.

    Chu SY, Callaghan WM, Kim SY, et al. Maternal obesity and risk of gestational diabetes mellitus. Diabetes Care 2007 Aug; 30 (8): 2070–6

    PubMed  Article  Google Scholar 

  19. 19.

    Chu SY, Kim SY, Lau J, et al. Maternal obesity and risk of stillbirth: a meta-analysis. Am J Obstet Gynecol 2007 Sep; 197 (3): 223–8

    PubMed  Article  Google Scholar 

  20. 20.

    Chu SY, Kim SY, Schmid CH, et al. Maternal obesity and risk of cesarean delivery: a meta-analysis. Obes Rev 2007 Sep; 8 (5): 385–94

    PubMed  CAS  Article  Google Scholar 

  21. 21.

    Gillman MW, Rifas-Shiman S, Berkey CS, et al. Maternal gestational diabetes, birth weight, and adolescent obesity. Pediatrics 2003 Mar; 111 (3): e221–6

    PubMed  Article  Google Scholar 

  22. 22.

    Clausen TD, Mathiesen ER, Hansen T, et al. High prevalence of type 2 diabetes and pre-diabetes in adult offspringof women with gestational diabetes mellitus or type1 diabetes: the role of intrauterine hyperglycemia. Diabetes Care 2008 Feb; 31 (2): 340–6

    PubMed  Article  Google Scholar 

  23. 23.

    Ismail-Beigi F, Catalano PM, Hanson RW. Metabolic programming: fetal origins of obesity and metabolic syndromein the adult. Am J Physiol Endocrinol Metab 2006 Sep; 291 (3): E439–40

    PubMed  CAS  Article  Google Scholar 

  24. 24.

    Shankar K, Harrell A, Liu X, et al. Maternal obesity at conception programs obesity in the offspring. AmJ Physiol Regul Integr Comp Physiol 2008 Feb; 294 (2): R528–38

    CAS  Article  Google Scholar 

  25. 25.

    Zhang C, Solomon CG, Manson JE, et al. A prospective study of pregravid physical activity and sedentary behaviorsin relation to the risk for gestational diabetes mellitus. Arch Intern Med 2006 Mar 13; 166 (5): 543–8

    PubMed  Article  Google Scholar 

  26. 26.

    Cedergren MI. Optimal gestational weight gain for body mass index categories. Obstet Gynecol 2007 Oct; 110 (4): 759–64

    PubMed  Article  Google Scholar 

  27. 27.

    Rudra CB, Williams MA, Lee IM, et al. Perceived exertion in physical activity and risk of gestational diabetes mellitus. Epidemiology 2006 Jan; 17 (1): 31–7

    PubMed  Article  Google Scholar 

  28. 28.

    Goldsmith R, Joanisse DR, Gallagher D, et al. Effects of experimental weight perturbation on skeletal muscle workefficiency, fuel utilization, and biochemistry in humansubjects. Am J Physiol Regul Integr Comp Physiol 2010 Jan; 298 (1): R79–88

    PubMed  CAS  Article  Google Scholar 

  29. 29.

    Sitnick M, Bodine SC, Rutledge JC. Chronic high fat feeding attenuates load-induced hypertrophy in mice. JPhysiol 2009 Dec 1; 587 (Pt23): 5753–65

    CAS  Article  Google Scholar 

  30. 30.

    Katan MB, Ludwig DS. Extra calories cause weight gain: but how much? JAMA 2010 Jan 6; 303 (1): 65–6

    PubMed  CAS  Article  Google Scholar 

  31. 31.

    Malenfant P, Joanisse DR, Theriault R, et al. Fat content in individual muscle fibers of lean and obese subjects. Int JObes Relat Metab Disord 2001 Sep; 25 (9): 1316–21

    CAS  Article  Google Scholar 

  32. 32.

    Kriketos AD, Baur LA, O’Connor J, et al. Muscle fibre type composition in infant and adult populations and relationshipswith obesity. Int J Obes Relat Metab Disord 1997 Sep; 21 (9): 796–801

    PubMed  CAS  Article  Google Scholar 

  33. 33.

    Hickey MS, Carey JO, Azevedo JL, et al. Skeletal muscle fiber composition is related to adiposity and in vitro glucosetransport rate in humans. Am J Physiol 1995 Mar; 268 (3Pt1): E453–7

    Google Scholar 

  34. 34.

    Kern PA, Simsolo RB, Fournier M. Effect of weight loss on muscle fiber type, fiber size, capillarity, and succinate dehydrogenaseactivity in humans. J Clin Endocrinol Metab 1999 Nov; 84 (11): 4185–90

    PubMed  CAS  Article  Google Scholar 

  35. 35.

    Menshikova EV, Ritov VB, Ferrell RE, et al. Characteristics of skeletal muscle mitochondrial biogenesis inducedby moderate-intensity exercise and weight loss in obesity. J Appl Physiol 2007 Jul; 103 (1): 21–7

    PubMed  CAS  Article  Google Scholar 

  36. 36.

    Toledo FG, Menshikova EV, Ritov VB, et al. Effects of physical activity and weight loss on skeletal muscle mitochondriaand relationship with glucose control in type 2diabetes. Diabetes 2007 Aug; 56 (8): 2142–7

    PubMed  CAS  Article  Google Scholar 

  37. 37.

    Phelain JF, Reinke E, Harris MA, et al. Postexercise energy expenditure and substrate oxidation in young women resultingfrom exercise bouts of different intensity. J Am Coll Nutr 1997 Apr; 16 (2): 140–6

    PubMed  CAS  Google Scholar 

  38. 38.

    Bahr R, Sejersted OM. Effect of intensity of exercise on excess postexercise O2 consumption. Metabolism 1991 Aug; 40 (8): 836–41

    PubMed  CAS  Article  Google Scholar 

  39. 39.

    Tremblay A, Simoneau JA, Bouchard C. Impact of exercise intensity on body fatness and skeletal muscle metabolism. Metabolism 1994 Jul; 43 (7): 814–8

    PubMed  CAS  Article  Google Scholar 

  40. 40.

    Marra C, Bottaro M, Oliveira RJ, et al. Effect of moderate and high intensity aerobic exercise on the body compositionof overweight men. J Ex Physiol 2005; 8 (2): 39–45

    Google Scholar 

  41. 41.

    Slentz CA, Duscha BD, Johnson JL, et al. Effects of the amount of exercise on body weight, body composition, and measures of central obesity: STRRIDE — a randomized controlled study. Arch Intern Med 2004 Jan 12; 164 (1): 31–9

    PubMed  Article  Google Scholar 

  42. 42.

    Bryner RW, Toffle RC, Ullrich IH, et al. The effects of exercise intensity on body composition, weight loss, and dietary compositionin women. J Am Coll Nutr 1997 Feb; 16 (1): 68–73

    PubMed  CAS  Google Scholar 

  43. 43.

    Kardel KR, Johansen B, Voldner N, et al. Association between aerobic fitness in late pregnancy and duration oflabor in nulliparous women. Acta Obstet Gynecol Scand 2009; 88 (8): 948–52

    PubMed  Article  Google Scholar 

  44. 44.

    Clapp 3rd JF. The course of labor after endurance exercise during pregnancy. Am J Obstet Gynecol 1990 Dec; 163 (6Pt1): 1799–805

    PubMed  Google Scholar 

  45. 45.

    Beckmann CR, Beckmann CA. Effect of a structured antepartum exercise programon pregnancy and labor outcome inprimiparas. J Reprod Med 1990 Jul; 35 (7): 704–9

    PubMed  CAS  Google Scholar 

  46. 46.

    Paterson DH, Cunningham DA, Koval JJ, et al. Aerobic fitness in a population of independently living men and women aged55-86 years. Med Sci Sports Exerc 1999 Dec; 31 (12): 1813–20

    PubMed  CAS  Article  Google Scholar 

  47. 47.

    Paterson DH, Govindasamy D, Vidmar M, et al. Longitudinal study of determinants of dependence in an elderlypopulation. J Am Geriatr Soc 2004 Oct; 52 (10): 1632–8

    PubMed  Article  Google Scholar 

  48. 48.

    ACSM. ACSM’s guidelines for exercise testing and prescription. 8th ed. Baltimore (MD): Lippincott Williams & Wilkins, 2009

    Google Scholar 

  49. 49.

    Sady SP, Carpenter MW, Sady MA, et al. Prediction of VO2max during cycle exercise in pregnant women. J Appl Physiol 1988 Aug; 65 (2): 657–61

    PubMed  CAS  Google Scholar 

  50. 50.

    Mottola MF, Davenport MH, Brun CR, et al. VO2peak prediction and exercise prescription for pregnant women. Med Sci Sports Exerc 2006 Aug; 38 (8): 1389–95

    PubMed  Article  Google Scholar 

  51. 51.

    Sady SP, Carpenter MW, Thompson PD, et al. Cardiovascular response to cycle exercise during and after pregnancy. J Appl Physiol 1989 Jan; 66 (1): 336–41

    PubMed  CAS  Article  Google Scholar 

  52. 52.

    Collings CA, Curet LB, Mullin JP. Maternal and fetal responses to a maternal aerobic exercise program. Am JObstet Gynecol 1983 Mar 15; 145 (6): 702–7

    CAS  Google Scholar 

  53. 53.

    Khodiguian N, Jaque-Fortunato SV, Wiswell RA, et al. A comparison of cross-sectional and longitudinal methods ofassessing the influence of pregnancy on cardiac functionduring exercise. Semin Perinatol 1996 Aug; 20 (4): 232–41

    PubMed  CAS  Article  Google Scholar 

  54. 54.

    Davenport MH, Charlesworth S, Vanderspank D, et al. Development and validation of exercise target heart ratezones for overweight and obese pregnant women. Appl Physiol Nutr Metab 2008 Oct; 33 (5): 984–9

    PubMed  Article  Google Scholar 

  55. 55.

    Kardel KR. Effects of intense training during and after pregnancy in top-level athletes. Scand J Med Sci Sports 2005 Apr; 15 (2): 79–86

    PubMed  Article  Google Scholar 

  56. 56.

    Kardel KR, Kase T. Training in pregnant women: effects on fetal development and birth. Am J Obstet Gynecol 1998 Feb; 178 (2): 280–6

    PubMed  CAS  Article  Google Scholar 

  57. 57.

    Gibala MJ, Little JP, van Essen M, et al. Short-term sprint interval versus traditional endurance training: similar initialadaptations in human skeletal muscle and exerciseperformance. J Physiol 2006 Sep 15; 575 (Pt3): 901–11

    PubMed  CAS  Article  Google Scholar 

  58. 58.

    Burgomaster KA, Howarth KR, Phillips SM, et al. Similar metabolic adaptations during exercise after low Vol. sprint interval and traditional endurance training in humans. J Physiol 2008 Jan 1; 586 (1): 151–60

    PubMed  CAS  Article  Google Scholar 

  59. 59.

    Rognmo O, Hetland E, Helgerud J, et al. High intensity aerobic interval exercise is superior to moderate intensityexercise for increasing aerobic capacity in patients withcoronary artery disease. Eur J Cardiovasc Prev Rehabil 2004 Jun; 11 (3): 216–22

    PubMed  Article  Google Scholar 

  60. 60.

    Warburton DE, McKenzie DC, Haykowsky MJ, et al. Effectiveness of high-intensity interval training for the rehabilitationof patients with coronary artery disease. Am J Cardiol 2005 May 1; 95 (9): 1080–4

    PubMed  Article  Google Scholar 

  61. 61.

    Wisloff U, Stoylen A, Loennechen JP, et al. Superior cardiovascular effect of aerobic interval training versus moderatecontinuous training in heart failure patients: a randomizedstudy. Circulation 2007 Jun 19; 115 (24): 3086–94

    PubMed  Article  Google Scholar 

  62. 62.

    American College of Sports Medicine Position Stand. The recommended quantity and quality of exercise for developingand maintaining cardiorespiratory and muscularfitness, and flexibility in healthy adults. Med Sci Sports Exerc 1998 Jun; 30 (6): 975–91

    Article  Google Scholar 

  63. 63.

    Davies GA, Wolfe LA, Mottola MF, et al. Joint SOGC/CSEP clinical practice guideline: exercise in pregnancyand the postpartum period. Can J Appl Physiol 2003 Jun; 28 (3): 330–41

    PubMed  Article  Google Scholar 

  64. 64.

    Johnson JL, Slentz CA, Houmard JA, et al. Exercise training amount and intensity effects on metabolic syndrome(from studies of a targeted risk reduction interventionthrough defined exercise). Am J Cardiol 2007 Dec 15; 100 (12): 1759–66

    PubMed  Article  Google Scholar 

  65. 65.

    Petersen AM, Pedersen BK. The anti-inflammatory effect of exercise. J Appl Physiol 2005 Apr; 98 (4): 1154–62

    PubMed  CAS  Article  Google Scholar 

  66. 66.

    Cherkas LF, Hunkin JL, Kato BS, et al. The association between physical activity in leisure time and leukocyte telomerelength. Arch Intern Med 2008 Jan 28; 168 (2): 154–8

    PubMed  Article  Google Scholar 

  67. 67.

    Chakravarty EF, Hubert HB, Lingala VB, et al. Reduced disability and mortality among aging runners: a 21-yearlongitudinal study. Arch Intern Med 2008 Aug 11; 168 (15): 1638–46

    PubMed  Article  Google Scholar 

  68. 68.

    Williams PT. Physical fitness and activity as separate heart disease risk factors: a meta-analysis. Med Sci Sports Exerc 2001 May; 33 (5): 754–61

    PubMed  CAS  Google Scholar 

  69. 69.

    Magkos F, Tsekouras Y, Kavouras SA, et al. Improved insulin sensitivity after a single bout of exercise is curvilinearlyrelated to exercise energy expenditure. Clin Sci(Lond) 2008 Jan; 114 (1): 59–64

    CAS  Article  Google Scholar 

  70. 70.

    Rudra CB, Williams MA, Lee IM, et al. Perceived exertion during prepregnancy physical activity and preeclampsiarisk. Med Sci Sports Exerc 2005 Nov; 37 (11): 1836–41

    PubMed  Article  Google Scholar 

  71. 71.

    Redden SL, Lamonte MJ, Freudenheim JL, et al. The association between gestational diabetes mellitus and recreationalphysical activity. Matern Child Health J. Epub 2010 Mar 6

    Google Scholar 

  72. 72.

    Jovanovic-Peterson L, Durak EP, Peterson CM. Randomized trial of diet versus diet plus cardiovascular conditioningon glucose levels in gestational diabetes. Am JObstet Gynecol 1989 Aug; 161 (2): 415–9

    CAS  Google Scholar 

  73. 73.

    Avery MD, Walker AJ. Acute effect of exercise on blood glucose and insulin levels in women with gestational diabetes. J Matern Fetal Med 2001 Feb; 10 (1): 52–8

    PubMed  CAS  Article  Google Scholar 

  74. 74.

    Lesser KB, Gruppuso PA, Terry RB, et al. Exercise fails to improve postprandial glycemic excursion in women withgestational diabetes. J Matern Fetal Med 1996 Jul-Aug; 5 (4): 211–7

    PubMed  CAS  Article  Google Scholar 

  75. 75.

    Anderson KM, Odell PM, Wilson PW, et al. Cardiovascular disease risk profiles. Am Heart J 1991 Jan; 121 (1Pt2): 293–8

    PubMed  CAS  Article  Google Scholar 

  76. 76.

    Anderson KM, Wilson PW, Odell PM, et al. An updated coronary risk profile: a statement for health professionals. Circulation 1991 Jan; 83 (1): 356–62

    PubMed  CAS  Article  Google Scholar 

  77. 77.

    Mittleman MA, Maclure M, Tofler GH, et al. Triggering of acute myocardial infarction by heavy physical exertion:protection against triggering by regular exertion. Determinantsof Myocardial Infarction Onset Study Investigators. N Engl J Med 1993 Dec 2; 329 (23): 1677–83

    PubMed  CAS  Article  Google Scholar 

  78. 78.

    Fletcher GF, Froelicher VF, Hartley LH, et al. Exercise standards: a statement for health professionals from theAmerican Heart Association. Circulation 1990 Dec; 82 (6): 2286–322

    PubMed  CAS  Article  Google Scholar 

  79. 79.

    Albert CM, Mittleman MA, Chae CU, et al. Triggering of sudden death from cardiac causes by vigorous exertion. N Engl J Med 2000 Nov 9; 343 (19): 1355–61

    PubMed  CAS  Article  Google Scholar 

  80. 80.

    Xu J, Kochanek KD, Murphy SL, et al. Deaths: final data for 2007. Natl Vital Stat Rep 2010 May 10; 58 (19): 1–136

    Google Scholar 

  81. 81.

    Wilcox AJ, Skjaerven R. Birth weight and perinatal mortality: the effect of gestational age. Am J Public Health 1992 Mar; 82 (3): 378–82

    PubMed  CAS  Article  Google Scholar 

  82. 82.

    Leet T, Flick L. Effect of exercise on birthweight. Clin Obstet Gynecol 2003 Jun; 46 (2): 423–31

    PubMed  Article  Google Scholar 

  83. 83.

    Kramer MS, Platt RW, Wen SW, et al. A new and improved population-based Canadian reference forbirth weight for gestational age. Pediatrics 2001 Aug; 108 (2): E35

    Article  Google Scholar 

  84. 84.

    Altman DG, Hytten FE. Intrauterine growth retardation: let’s be clear about it. Br J Obstet Gynaecol 1989 Oct; 96 (10): 1127–32

    PubMed  CAS  Article  Google Scholar 

  85. 85.

    Lee PA, Chernausek SD, Hokken-Koelega AC, et al. International Small for Gestational Age Advisory Board consensusdevelopment conference statement: management of shortchildren born small for gestational age, April 24-October 1,2001. Pediatrics 2003 Jun; 111 (6Pt1): 1253–61

    PubMed  Article  Google Scholar 

  86. 86.

    Juhl M, Olsen J, Andersen PK, et al. Physical exercise during pregnancy and fetal growth measures: a studywithin the Danish National Birth Cohort. Am J Obstet Gynecol 2010 Jan; 202 (1): 63

    PubMed  Article  Google Scholar 

  87. 87.

    MacPhail A, Davies GA, Victory R, et al. Maximal exercise testing in late gestation: fetal responses. Obstet Gynecol 2000 Oct; 96 (4): 565–70

    PubMed  CAS  Article  Google Scholar 

  88. 88.

    Juhl M, Andersen PK, Olsen J, et al. Physical exercise during pregnancy and the risk of preterm birth: a studywithin the Danish National Birth Cohort. Am J Epidemiol 2008 Apr; 167 (7): 859–66

    PubMed  Article  Google Scholar 

  89. 89.

    Lotgering FK, Gilbert RD, Longo LD. Exercise responses in pregnant sheep: oxygen consumption, uterine blood flow,and blood Vol.. J Appl Physiol 1983 Sep; 55 (3): 834–41

    PubMed  CAS  Google Scholar 

  90. 90.

    Lotgering FK, Gilbert RD, Longo LD. Exercise responses in pregnant sheep: blood gases, temperatures, and fetal cardiovascularsystem. J Appl Physiol 1983 Sep; 55 (3): 842–50

    PubMed  CAS  Google Scholar 

  91. 91.

    Lotgering FK, Gilbert RD, Longo LD. Maternal and fetal responses to exercise during pregnancy. Physiol Rev 1985 Jan; 65 (1): 1–36

    PubMed  CAS  Google Scholar 

  92. 92.

    Kennelly MM, Geary M, McCaffrey N, et al. Exercise-related changes in umbilical and uterine artery waveformsas assessed by Doppler ultrasound scans. Am J Obstet Gynecol 2002 Sep; 187 (3): 661–6

    PubMed  Article  Google Scholar 

  93. 93.

    Artal R, Romem Y, Paul RH, et al. Fetal bradycardia induced by maternal exercise. Lancet 1984 Aug 4; II (8397): 258–60

    Article  Google Scholar 

  94. 94.

    Jovanovic L, Kessler A, Peterson CM. Human maternal and fetal response to graded exercise. J Appl Physiol 1985 May; 58 (5): 1719–22

    PubMed  CAS  Article  Google Scholar 

  95. 95.

    Dale E, Mullinax KM, Bryan DH. Exercise during pregnancy: effects on the fetus. Can J Appl Sport Sci 1982 Jun; 7 (2): 98–103

    PubMed  CAS  Google Scholar 

  96. 96.

    Paolone AM, Shangold M, Paul D, et al. Fetal heart rate measurement during maternal exercise: avoidance of artifact. Med Sci Sports Exerc 1987 Dec; 19 (6): 605–9

    PubMed  CAS  Google Scholar 

  97. 97.

    Paolone AM, Shangold MM. Artifact in the recording of fetal heart rates during material exercise. J Appl Physiol 1987 Feb; 62 (2): 848–9

    PubMed  CAS  Google Scholar 

  98. 98.

    Kennelly MM, McCaffrey N, McLoughlin P, et al. Fetal heart rate response to strenuous maternal exercise: not apredictor of fetal distress. Am J Obstet Gynecol 2002 Sep; 187 (3): 811–6

    PubMed  Article  Google Scholar 

  99. 99.

    van Doorn MB, Lotgering FK, Struijk PC, et al. Maternal and fetal cardiovascular responses to strenuous bicycleexercise. Am J Obstet Gynecol 1992 Mar; 166 (3): 854–9

    PubMed  Google Scholar 

  100. 100.

    Barakat R, Ruiz JR, Rodriguez-Romo G, et al. Does exercise training during pregnancy influence fetal cardiovascular responsesto an exercise stimulus? Insights from a randomisedcontrolled trial. Br J Sports Med 2010 Aug; 44 (10): 762–4

    PubMed  CAS  Article  Google Scholar 

  101. 101.

    Lotgering FK, Struijk PC, van Doorn MB, et al. Errors in predicting maximal oxygen consumption in pregnantwomen. J Appl Physiol 1992 Feb; 72 (2): 562–7

    PubMed  CAS  Google Scholar 

  102. 102.

    Sady MA, Haydon BB, Sady SP, et al. Cardiovascular response to maximal cycle exercise during pregnancy andat two and seven months post partum. Am J Obstet Gynecol 1990 May; 162 (5): 1181–5

    PubMed  CAS  Google Scholar 

  103. 103.

    Heenan AP, Wolfe LA, Davies GA. Maximal exercise testing in late gestation: maternal responses. Obstet Gynecol 2001 Jan; 97 (1): 127–34

    PubMed  CAS  Article  Google Scholar 

  104. 104.

    Londeree BR, Moeschberger ML. Effect of age and other factors on maximal heart rate. Res Q Exerc Sport 1982; 53: 297–303

    Google Scholar 

  105. 105.

    Karvonen MJ, Kentala E, Mustala O. The effects of training on heart rate; a longitudinal study. Ann Med Exp Biol Fenn 1957; 35 (3): 307–15

    PubMed  CAS  Google Scholar 

  106. 106.

    Swain DP, Franklin BA. VO(2) reserve and the minimal intensity for improving cardiorespiratory fitness. Med Sci Sports Exerc 2002 Jan; 34 (1): 152–7

    PubMed  Article  Google Scholar 

  107. 107.

    Blair SN, Haskell WL, Ho P, et al. Assessment of habitual physical activity by a seven-day recall in a communitysurvey and controlled experiments. Am J Epidemiol 1985 Nov; 122 (5): 794–804

    PubMed  CAS  Google Scholar 

  108. 108.

    Washburn RA, Jacobsen DJ, Sonko BJ, et al. The validity of the Stanford Seven-Day Physical Activity Recall in youngadults. Med Sci Sports Exerc 2003 Aug; 35 (8): 1374–80

    PubMed  Article  Google Scholar 

  109. 109.

    Sallis JF, Haskell WL, Wood PD, et al. Physical activity assessment methodology in the Five-City Project. Am JEpidemiol 1985 Jan; 121 (1): 91–106

    CAS  Google Scholar 

  110. 110.

    Barakat R, Lucia A, Ruiz JR. Resistance exercise training during pregnancy and newborn’s birth size: a randomisedcontrolled trial. Int J Obes (Lond) 2009 Sep; 33 (9): 1048–57

    CAS  Article  Google Scholar 

  111. 111.

    Schmidt MD, Freedson PS, Pekow P, et al. Validation of the Kaiser Physical Activity Survey in pregnant women. Med Sci Sports Exerc 2006 Jan; 38 (1): 42–50

    PubMed  Article  Google Scholar 

  112. 112.

    Ainsworth BE, Sternfeld B, Richardson MT, et al. Evaluation of the kaiser physical activity survey in women. Med Sci Sports Exerc 2000 Jul; 32 (7): 1327–38

    PubMed  CAS  Article  Google Scholar 

  113. 113.

    Chasan-Taber L, Schmidt MD, Roberts DE, et al. Development and validation of a pregnancy physical activityquestionnaire. Med Sci Sports Exerc 2004 Oct; 36 (10): 1750–60

    PubMed  Article  Google Scholar 

  114. 114.

    CSEP. Physical activity readiness medical evaluation for pregnancy (PAR med-x for Pregnancy) 2002 [online]. Available from URL: http://www.csep.ca/english/view.asp?x=698 [Accessed 2011 Mar 21]

    Google Scholar 

  115. 115.

    Jaque-Fortunato SV, Wiswell RA, Khodiguian N, et al. A comparison of the ventilatory responses to exercise inpregnant, postpartum, and nonpregnant women. Semin Perinatol 1996 Aug; 20 (4): 263–76

    PubMed  CAS  Article  Google Scholar 

  116. 116.

    Soultanakis HN, Artal R, Wiswell RA. Prolonged exercise in pregnancy: glucose homeostasis, ventilatory andcardiovascular responses. Semin Perinatol 1996 Aug; 20 (4): 315–27

    PubMed  CAS  Article  Google Scholar 

  117. 117.

    Hill-Smith I. Professional and patient perspectives of NICE guidelines to abandon maternal monitoring of fetalmovements. Br J Gen Pract 2004 Nov; 54 (508): 858–61

    PubMed  Google Scholar 

Download references

Acknowledgements

Gerald S. Zavorsky, PhD, holds a Certified Strength and Conditioning Specialist® credential from the National Strength and Conditioning Association™ and a Certified Exercise Physiologist® credential from the Canadian Society for Exercise Physiology. Lawrence D. Longo is an obstetrician-gynecologist with extensive expertise in exercise and pregnancy in both animal and human models.

No sources of funding were used to assist in the preparation of the article. The authors have no conflicts of interests to declare that are directly relevant to the content of this article.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gerald S. Zavorsky PhD.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zavorsky, G.S., Longo, L.D. Exercise Guidelines in Pregnancy. Sports Med 41, 345–360 (2011). https://doi.org/10.2165/11583930-000000000-00000

Download citation

Keywords

  • Gestational Diabetes Mellitus
  • Aerobic Capacity
  • Vigorous Exercise
  • Heart Rate Reserve
  • Physical Activity Energy Expenditure