United Nations. World population prospects: the 2004 revision. New York: United Nations, 2005
Google Scholar
Reinhardt UE. Does the aging of the population really drive the demand for health care? Health Affairs 2003; 22 (6): 27–39
PubMed
Article
Google Scholar
Stevens JA, Corso PS, Finkelstein EA, et al. The costs of fatal and non-fatal falls among older adults. Inj Prev 2006; 12 (5): 290–5
PubMed
CAS
Article
Google Scholar
Rubenstein LZ. Falls in older people: epidemiology, risk factors and strategies for prevention. Age Ageing 2006; 35 Suppl.2: 37–41
Google Scholar
Campbell AJ, Reinken J, Allan BC, et al. Falls in old age: a study of frequency and related clinical factors. Age Ageing 1981; 10 (4): 264–70
PubMed
CAS
Article
Google Scholar
Blake AJ, Morgan K, Bendall MJ, et al. Falls by elderly people at home: prevalence and associated factors. Age Ageing 1988; 17 (6): 365–72
PubMed
CAS
Article
Google Scholar
Tinetti ME, Speechley M, Ginter SF. Risk factors for falls among elderly persons living in the community. N Engl J Med 1988; 319 (26): 1701–7
PubMed
CAS
Article
Google Scholar
Downton JH, Andrews K. Prevalence, characteristics and factors associated with falls among the elderly livingat home. Aging 1991; 3 (3): 219–28
PubMed
CAS
Google Scholar
Kannus P, Parkkari J, Koskinen S, et al. Fall-induced injuries and deaths among older adults. JAMA 1999; 281 (20): 1895–9
PubMed
CAS
Article
Google Scholar
Bueno-Cavanillas A, Padilla-Ruiz F, Jimenez-Moleon JJ, et al. Risk factors in falls among the elderly according toextrinsic and intrinsic precipitating causes. Eur J Epidemiol 2000; 16 (9): 849–59
PubMed
CAS
Article
Google Scholar
Alexander NB, Goldberg A. Gait disorders: search for multiple causes. Cleve Clin J Med 2005; 72 (7): 586–600
PubMed
Article
Google Scholar
Jensen J, Nyberg L, Gustafson Y, et al. Fall and injury prevention in residential care: effects in residents withhigher and lower levels of cognition. J Am Geriatr Soc 2003; 51 (5): 627–35
PubMed
Article
Google Scholar
Lord SR, Dayhew J. Visual risk factors for falls in older people. J Am Geriatr Soc 2001; 49 (5): 508–15
PubMed
CAS
Article
Google Scholar
Moreland JD, Richardson JA, Goldsmith CH, et al. Muscle weakness and falls in older adults: a systematic reviewand meta-analysis. J Am Geriatr Soc 2004; 52 (7): 1121–9
PubMed
Article
Google Scholar
Nnodim JO, Alexander NB. Assessing falls in older adults: a comprehensive fall evaluation to reduce fall risk in olderadults. Geriatrics 2005; 60 (10): 24–8
PubMed
Google Scholar
Carter SE, Campbell EM, Sanson Fisher RW, et al. Environmental hazards in the homes of older people. Age Ageing 1997; 26 (3): 195–202
PubMed
CAS
Article
Google Scholar
Granacher U, Zahner L, Gollhofer A. Strength, power, and postural control in seniors: considerations for functionaladaptations and for fall prevention. Eur J Sport Sci 2008; 8 (6): 325–40
Article
Google Scholar
Beauchet O, Annweiler C, Dubost V, et al. Stops walking when talking: a predictor of falls in older adults? Eur J Neurol 2009; 16 (7): 786–95
PubMed
CAS
Article
Google Scholar
Whitman GT, Tang Y, Lin A, et al. A prospective study of cerebral white matter abnormalities in older people withgait dysfunction. Neurology 2001; 57 (6): 990–4
PubMed
CAS
Article
Google Scholar
Shaffer SW, Harrison AL. Aging of the somatosensory system: a translational perspective. Phys Ther 2007; 87 (2): 193–207
PubMed
Article
Google Scholar
Hurley MV, Rees J, Newham DJ. Quadriceps function, proprioceptive acuity and functional performance inhealthy young, middle-aged and elderly subjects. Age Ageing 1998; 27 (1): 55–62
PubMed
CAS
Article
Google Scholar
Sale MV, Semmler JG. Age-related differences in corticospinal control during functional isometric contractions inleft and right hands. J Appl Physiol 2005; 99 (4): 1483–93
PubMed
Article
Google Scholar
Macaluso A, Nimmo MA, Foster JE, et al. Contractile muscle Vol. and agonist-antagonist coactivation accountfor differences in torque between young and olderwomen. Muscle Nerve 2002; 25 (6): 858–63
PubMed
Article
Google Scholar
Terao S, Sobue G, Hashizume Y, et al. Age-related changes in human spinal ventral horn cells with special reference tothe loss of small neurons in the intermediate zone: aquantitative analysis. Acta Neuropathol 1996; 92 (2): 109–14
PubMed
CAS
Article
Google Scholar
Lexell J, Taylor CC, Sjostrom M. What is the cause of the ageing atrophy? Total number, size and proportion ofdifferent fiber types studied in whole vastus lateralismuscle from 15- to 83-year-old men. J Neurol Sci 1988; 84 (2-3): 275–94
PubMed
CAS
Article
Google Scholar
Narici MV, Maganaris CN, Reeves ND, et al. Effect of aging on human muscle architecture. J Appl Physiol 2003; 95 (6): 2229–34
PubMed
CAS
Google Scholar
Narici MV, Maganaris CN, Reeves N. Muscle and tendon adaptations to ageing and spaceflight. J Gravit Physiol 2002; 9 (1): 137–8
Google Scholar
Granacher U, Gruber M, Gollhofer A. Force production capacity and functional reflex activity in young and elderlymen. Aging Clin Exp Res. Epub 2009 Nov 27
Google Scholar
Gillespie LD, Robertson MC, Gillespie WJ, et al. Interventions for preventing falls in older people living in thecommunity. Cochrane Database Syst Rev 2009; (2): CD007146
Mansfield A, Peters AL, Liu BA, et al. A perturbationbased balance training program for older adults: studyprotocol for a randomised controlled trial. BMC Geriatr 2007; 7: 12
PubMed
Article
Google Scholar
Maki BE, Cheng KC, Mansfield A, et al. Preventing falls in older adults: new interventions to promote more effectivechange-in-support balance reactions. J Electromyogr Kinesiol 2008; 18 (2): 243–54
PubMed
Article
Google Scholar
Sakai M, Shiba Y, Sato H, et al. Motor adaptations during slip-perturbed gait in older adults. J Phys Ther Sci 2008; 20 (2): 109–15
Article
Google Scholar
Maki BE, McIlroy WE. Change-in-support balance reactions in older persons: an emerging research area of clinicalimportance. Neurol Clin 2005; 23 (3): 751–83
PubMed
Article
Google Scholar
Mynark RG, Koceja DM. Down training of the elderly soleus H reflex with the use of a spinally induced balanceperturbation. J Appl Physiol 2002; 93 (1): 127–33
PubMed
Google Scholar
Sayers SP. High-speed power training: a novel approach to resistance training in older men and women: a briefreview and pilot study. J Strength Cond Res 2007; 21 (2): 518–26
PubMed
Google Scholar
Silsupadol P, Shumway-Cook A, Lugade V, et al. Effects of single-task versus dual-task training on balanceperformance in older adults: a double-blind, randomizedcontrolled trial. Arch Phys Med Rehabil 2009; 90 (3): 381–7
PubMed
Article
Google Scholar
Reid KF, Callahan DM, Carabello RJ, et al. Lower extremity power training in elderly subjects with mobilitylimitations: a randomized controlled trial. Aging Clin Exp Res 2008; 20 (4): 337–43
PubMed
Google Scholar
Porter MM. Power training for older adults. Appl Physiol Nutr Metab 2006; 31 (2): 87–94
PubMed
Article
Google Scholar
Richardson W, Wilson M, Nishikawa J, et al. The wellbuilt clinical question: a key to evidence-based decisions. ACP J Club 1995; 123: 12–3
Google Scholar
Physiotherapy Evidence Database. PEDro scale, 2010 [online]. Available from URL: http://www.pedro.orga [Accessed 2010 Jun 25]
Google Scholar
Tooth L, Bennett S, McCluskey A, et al. Appraising the quality of randomized controlled trials: inter-rater reliabilityfor the OTseeker evidence database. J Eval Clin Pract 2005; 11 (6): 547–55
PubMed
Article
Google Scholar
Maher CG, Sherrington C, Herbert RD, et al. Reliability of the PEDro scale for rating quality of randomized controlledtrials. Phys Ther 2003; 83 (8): 713–21
PubMed
Google Scholar
Rogers MW, Johnson ME, Martinez KM, et al. Step training improves the speed of voluntary step initiationin aging. J Gerontol A Biol Sci Med Sci 2003; 58 (1): 46–51
PubMed
Article
Google Scholar
Jöbges M, Heuschkel G, Pretzel C, et al. Repetitive training of compensatory steps: a therapeutic approach for posturalinstability in Parkinson’s disease. J Neurol Neurosurg Psychiatry 2004; 75 (12): 1682–7
PubMed
Article
Google Scholar
Shimada H, Obuchi S, Furuna T, et al. New intervention program for preventing falls among frail elderlypeople: the effects of perturbed walking exercise using abilateral separated treadmill. Am J Phys Med Rehabil 2004; 83 (7): 493–9
PubMed
Article
Google Scholar
Marigold DS, Eng JJ, Dawson AS, et al. Exercise leads to faster postural reflexes, improved balance and mobility,and fewer falls in older persons with chronic stroke. J Am Geriatr Soc 2005; 53 (3): 416–23
PubMed
Article
Google Scholar
Silsupadol P, Siu KC, Shumway-Cook A, et al. Training of balance under single- and dual-task conditions in olderadults with balance impairment. Phys Ther 2006; 86 (2): 269–81
PubMed
Google Scholar
Yang YR, Wang RY, Chen YC, et al. Dual-task exercise improves walking ability in chronic stroke: a randomizedcontrolled trial. Arch Phys Med Rehabil 2007; 88 (10): 1236–40
PubMed
Article
Google Scholar
Silsupadol P, Lugade V, Shumway-Cook A, et al. Trainingrelated changes in dual-task walking performance of elderlypersons with balance impairment: a double-blind,randomized controlled trial. Gait Posture 2009; 29 (4): 634–9
PubMed
Article
Google Scholar
Brauer SG, Morris ME. Can people with Parkinson’s disease improve dual tasking when walking? Gait Posture 2010; 31 (2): 229–33
PubMed
Article
Google Scholar
Granacher U, Muehlbauer T, Bridenbaugh S, et al. Balance training and multi-task performance in seniors. Int JSports Med 2010; 31 (5): 353–8
CAS
Article
Google Scholar
Mansfield A, Peters AL, Liu BA, et al. Effect of a perturbation- based balance training program on compensatorystepping and grasping reactions in older adults: a randomizedcontrolled trial. Phys Ther 2010; 90 (4): 476–91
PubMed
Article
Google Scholar
Schwenk M, Zieschang T, Oster P, et al. Dual-task performances can be improved in patients with dementia: arandomized controlled trial. Neurology 2010; 74 (24): 1961–8
PubMed
Article
Google Scholar
Häkkinen K, Kallinen M, Izquierdo M, et al. Changes in agonist-antagonist EMG, muscle CSA, and force duringstrength training in middle-aged and older people. J Appl Physiol 1998; 84 (4): 1341–9
PubMed
Google Scholar
Häkkinen K, Alen M, Kallinen M, et al. Neuromuscular adaptation during prolonged strength training, detrainingand re-strength-training in middle-aged and elderly people. Eur J Appl Physiol 2000; 83 (1): 51–62
PubMed
Article
Google Scholar
Earles DR, Judge JO, Gunnarsson OT. Velocity training induces power-specific adaptations in highly functioningolder adults. Arch Phys Med Rehabil 2001; 82 (7): 872–8
PubMed
CAS
Article
Google Scholar
Izquierdo M, Häkkinen K, Ibanez J, et al. Effects of strength training on muscle power and serum hormones inmiddle-aged and older men. J Appl Physiol 2001; 90 (4): 1497–507
PubMed
CAS
Google Scholar
Fielding RA, LeBrasseur NK, LeBrasseur NK, et al. High-velocity resistance training increases skeletal muscle peak power inolder women. J Am Geriatr Soc 2002; 50 (4): 655–62
PubMed
Article
Google Scholar
Miszko TA, Cress ME, Slade JM, et al. Effect of strength and power training on physical function in communitydwellingolder adults. J Gerontol A Biol Sci Med Sci 2003; 58 (2): 171–5
PubMed
Article
Google Scholar
Sayers SP, Bean J, Cuoco A, et al. Changes in function and disability after resistance training: does velocitymatter? A pilot study. Am J Phys Med Rehabil 2003; 82 (8): 605–13
PubMed
Google Scholar
Bean JF, Herman S, Kiely DK, et al. Increased Velocity Exercise Specific to Task (InVEST) training: a pilot study exploring effects on leg power, balance, and mobility incommunity-dwelling older women. J Am Geriatr Soc 2004; 52 (5): 799–804
PubMed
Article
Google Scholar
Kongsgaard M, Backer V, Jorgensen K, et al. Heavy resistance training increases muscle size, strength andphysical function in elderly male COPD-patients: a pilotstudy. Respir Med 2004; 98 (10): 1000–7
PubMed
CAS
Article
Google Scholar
de Vos NJ, Singh NA, Ross DA, et al. Optimal load for increasing muscle power during explosive resistancetraining in older adults. J Gerontol A Biol Sci Med Sci 2005; 60 (5): 638–47
PubMed
Article
Google Scholar
Henwood TR, Taaffe DR. Improved physical performance in older adults undertaking a short-term programmeof high-velocity resistance training. Gerontology 2005; 51 (2): 108–15
PubMed
Article
Google Scholar
Henwood TR, Taaffe DR. Short-term resistance training and the older adult: the effect of varied programmesfor the enhancement of muscle strength and functionalperformance. Clin Physiol Funct Imaging 2006; 26 (5): 305–13
PubMed
Article
Google Scholar
Holviala JH, Sallinen JM, Kraemer WJ, et al. Effects of strength training on muscle strength characteristics,functional capabilities, and balance in middle-aged andolder women. J Strength Cond Res 2006; 20 (2): 336–44
PubMed
Google Scholar
Orr R, de Vos NJ, Singh NA, et al. Power training improves balance in healthy older adults. J Gerontol A Biol Sci Med Sci 2006; 61 (1): 78–85
PubMed
Article
Google Scholar
Bottaro M, Machado SN, Nogueira W, et al. Effect of high versus low-velocity resistance training on muscular fitnessand functional performance in older men. Eur J Appl Physiol 2007; 99 (3): 257–64
PubMed
Article
Google Scholar
Caserotti P, Aagaard P, Buttrup LJ, et al. Explosive heavyresistance training in old and very old adults: changes inrapid muscle force, strength and power. Scand J Med Sci Sports 2008; 18 (6): 773–82
PubMed
CAS
Article
Google Scholar
Henwood TR, Riek S, Taaffe DR. Strength versus muscle power-specific resistance training in community-dwellingolder adults. J Gerontol A Biol Sci Med Sci 2008; 63 (1): 83–91
PubMed
Article
Google Scholar
Marsh AP, Miller ME, Rejeski WJ, et al. Lower extremity muscle function after strength or power training in olderadults. J Aging Phys Act 2009; 17 (4): 416–43
PubMed
Google Scholar
Nogueira W, Gentil P, Mello SN, et al. Effects of power training on muscle thickness of older men. Int J Sports Med 2009; 30 (3): 200–4
PubMed
CAS
Article
Google Scholar
Webber SC, Porter MM. Effects of ankle power training on movement time in mobility-impaired older women. Med Sci Sports Exerc 2010; 42 (7): 1233–40
PubMed
Google Scholar
Granacher U, Gollhofer A, Strass D. Training induced adaptations in characteristics of postural reflexes in elderlymen. Gait Posture 2006; 24 (4): 459–66
PubMed
CAS
Article
Google Scholar
Madureira MM, Takayama L, Gallinaro AL, et al. Balance training program is highly effective in improving functionalstatus and reducing the risk of falls in elderlywomen with osteoporosis: a randomized controlled trial. Osteoporos Int 2007; 18 (4): 419–25
PubMed
CAS
Article
Google Scholar
DiStefano LJ, Clark MA, Padua DA. Evidence supporting balance training in healthy individuals: a systemic review. J Strength Cond Res 2009; 23 (9): 2718–31
Article
Google Scholar
Chodzko-Zajko WJ, Proctor DN, Fiatarone Singh MA, et al. American College of Sports Medicine positionstand: exercise and physical activity for older adults. Med Sci Sports Exerc 2009; 41 (7): 1510–30
PubMed
Article
Google Scholar
Granacher U, Gruber M, Strass D, et al. The impact of sensorimotor training in elderly men on maximal and explosiveforce production capacity. Deut Z Sportmed 2007; 58 (12): 446–51
Google Scholar
Steadman J, Donaldson N, Kalra L. A randomized controlled trial of an enhanced balance training program toimprove mobility and reduce falls in elderly patients. J Am Geriatr Soc 2003; 51 (6): 847–52
PubMed
Article
Google Scholar
Granacher U, Gruber M, Gollhofer A. The impact of sensorimotor training on postural control in elderly men. Deut Z Sportmed 2009; 60 (12): 387–93
Google Scholar
Rochat S, Martin E, Piot-Ziegler C, et al. Falls self-efficacy and gait performance after gait and balance training inolder people. J Am Geriatr Soc 2008; 56 (6): 1154–6
PubMed
Article
Google Scholar
Voukelatos A, Cumming RG, Lord SR, et al. A randomized, controlled trial of tai chi for the prevention of falls:the Central Sydney tai chi trial. J Am Geriatr Soc 2007; 55 (8): 1185–91
PubMed
Article
Google Scholar
Li F, Harmer P, Harmer P, et al. Tai Chi and fall reductions in older adults: a randomized controlled trial. J GerontolA Biol Sci Med Sci 2005; 60 (2): 187–94
Article
Google Scholar
Gollhofer A. Proprioceptive training: considerations for strength and power production. In: Komi PV, editor. Strength and power in sport. Oxford: Blackwell Publishing, 2003: 331–42
Chapter
Google Scholar
Taube W, Gruber M, Beck S, et al. Cortical and spinal adaptations induced by balance training: correlation betweenstance stability and corticospinal activation. Acta Physiol 2007; 189 (4): 347–58
CAS
Article
Google Scholar
Gabell A, Simons MA, Nayak US. Falls in the healthy elderly: predisposing causes. Ergonomics 1985; 28 (7): 965–75
PubMed
CAS
Article
Google Scholar
Lord SR, Ward JA, Williams P, et al. An epidemiological study of falls in older community-dwelling women: theRandwick falls and fractures study. Aust J Public Health 1993; 17 (3): 240–5
PubMed
CAS
Article
Google Scholar
Woollacott MH, Shumway-Cook A, Nashner LM. Aging and posture control: changes in sensory organization andmuscular coordination. Int J Aging Hum Dev 1986; 23 (2): 97–114
PubMed
CAS
Article
Google Scholar
Maki BE, McIlroy WE. The role of limb movements in maintaining upright stance: the “change-in-support”strategy. Phys Ther 1997; 77 (5): 488–507
PubMed
CAS
Google Scholar
Reilly T, Morris T, Whyte G. The specificity of training prescription and physiological assessment: a review. J Sports Sci 2009; 27 (6): 575–89
PubMed
Article
Google Scholar
Melzer I, Elbar O, Tsedek I, et al. A water-based training program that include perturbation exercises to improvestepping responses in older adults: study protocol for arandomized controlled cross-over trial. BMC Geriatr 2008; 8: 19
PubMed
Article
Google Scholar
Oddsson LIE, Boissy P, Melzer I. How to improve gait and balance function in elderly individuals: compliance withprinciples of training. Eur Rev Aging Phys Act 2007; 4 (1): 15–23
Article
Google Scholar
Boissy P, Yurkow J, Chopra A, et al. Balance training in the elderly using Swiss ball: a pilot study [abstract]. Arch Phys Med Rehabil 2000; 81 (10): 1463
Google Scholar
Fiatarone MA, Marks EC, Ryan ND, et al. High-intensity strength training in nonagenarians: effects on skeletalmuscle. JAMA 1990; 263 (22): 3029–34
PubMed
CAS
Article
Google Scholar
Granacher U, Gruber M, Gollhofer A. Resistance training and neuromuscular performance in seniors. Int J Sports Med 2009; 30 (9): 652–7
PubMed
CAS
Article
Google Scholar
LaStayo PC, Ewy GA, Pierotti DD, et al. The positive effects of negative work: increased muscle strength anddecreased fall risk in a frail elderly population. J GerontolA Biol Sci Med Sci 2003; 58 (5): 419–24
Article
Google Scholar
Mueller M, Breil FA, Vogt M, et al. Different response to eccentric and concentric training in older men andwomen. Eur J Appl Physiol 2009; 107 (2): 145–53
PubMed
Article
Google Scholar
LaStayo PC, Reich TE, Urquhart M, et al. Chronic eccentric exercise: improvements in muscle strength canoccur with little demand for oxygen. Am J Physiol 1999; 276 (2): 611–5
Google Scholar
Roig M, O’Brien K, Kirk G, et al. The effects of eccentric versus concentric resistance training on muscle strengthand mass in healthy adults: a systematic review with metaanalysis. Br J Sports Med 2009; 43 (8): 556–68
PubMed
CAS
Article
Google Scholar
Porter MM, Vandervoort AA. High-intensity strength training for the older adult: a review. Topics Geriatr Rehabil 1995; 10 (3): 61–74
Google Scholar
Frontera WR, Meredith CN, O’Reilly KP, et al. Strength conditioning in older men: skeletal muscle hypertrophyand improved function. J Appl Physiol 1988; 64 (3): 1038–44
PubMed
CAS
Google Scholar
Latham NK, Bennett DA, Stretton CM, et al. Systematic review of progressive resistance strength training in olderadults. J Gerontol A Biol Sci Med Sci 2004; 59 (1): 48–61
PubMed
Article
Google Scholar
Aagaard P, Suetta C, Caserotti P, et al. Role of the nervous system in sarcopenia and muscle atrophy with aging:strength training as a countermeasure. Scand J Med Sci Sports 2010; 20 (1): 49–64
PubMed
CAS
Article
Google Scholar
Häkkinen K. Ageing and neuromuscular adaptation to strength training. In: Komi PV, editor. Strengthand power in sport. Oxford: Blackwell Publishing, 2003: 409–25
Chapter
Google Scholar
Seynnes OR, de Boer M, Narici MV. Early skeletal muscle hypertrophy and architectural changes in response tohigh-intensity resistance training. J Appl Physiol 2007; 102 (1): 368–73
PubMed
CAS
Article
Google Scholar
Reeves ND, Narici MV, Maganaris CN. Strength training alters the viscoelastic properties of tendons in elderly humans. Muscle Nerve 2003; 28 (1): 74–81
PubMed
Article
Google Scholar
Orr R, Raymond J, Fiatarone SM. Efficacy of progressive resistance training on balance performance in olderadults: a systematic review of randomized controlledtrials. Sports Med 2008; 38 (4): 317–43
PubMed
Article
Google Scholar
Latham NK, Anderson CS, Lee A, et al. A randomized, controlled trial of quadriceps resistance exercise and vitamin D in frail older people: the Frailty Interventions Trial in Elderly Subjects (FITNESS). J Am Geriatr Soc 2003; 51 (3): 291–9
PubMed
Article
Google Scholar
McMurdo ME, Mole PA, Paterson CR. Controlled trial of weight bearing exercise in older women in relation to bonedensity and falls. BMJ 1997; 314 (7080): 569
PubMed
CAS
Article
Google Scholar
Wolff I, van Croonenborg JJ, Kemper HC, et al. The effect of exercise training programs on bone mass: a meta-analysisof published controlled trials in pre- and postmenopausalwomen. Osteoporos Int 1999; 9 (1): 1–12
PubMed
CAS
Article
Google Scholar
Liu-Ambrose TY, Khan KM, Eng JJ, et al. Both resistance and agility training increase cortical bone density in75- to 85-year-old women with low bone mass: a 6-monthrandomized controlled trial. J Clin Densitom 2004; 7 (4): 390–8
PubMed
Article
Google Scholar
Suominen H. Muscle training for bone strength. Aging Clin Exp Res 2006; 18 (2): 85–93
PubMed
Google Scholar
Skelton DA, Greig CA, Davies JM, et al. Strength, power and related functional ability of healthy people aged 65-89years. Age Ageing 1994; 23 (5): 371–7
PubMed
CAS
Article
Google Scholar
Suetta C, Magnusson SP, Beyer N, et al. Effect of strength training on muscle function in elderly hospitalizedpatients. Scand J Med Sci Sports 2007; 17 (5): 464–72
PubMed
CAS
Article
Google Scholar
Perry MC, Carville SF, Smith IC, et al. Strength, power output and symmetry of leg muscles: effect of ageand history of falling. Eur J Appl Physiol 2007; 100 (5): 553–61
PubMed
Article
Google Scholar
Shigematsu R, Rantanen T, Saari P, et al. Motor speed and lower extremity strength as predictors of fall-related bonefractures in elderly individuals. Aging Clin Exp Res 2006; 18 (4): 320–4
PubMed
Google Scholar
Judge JO, Underwood M, Gennosa T. Exercise to improve gait velocity in older persons. Arch Phys Med Rehabil 1993; 74 (4): 400–6
PubMed
CAS
Google Scholar
Judge JO, Lindsey C, Underwood M, et al. Balance improvements in older women: effects of exercise training. Phys Ther 1993; 73 (4): 254–62
PubMed
CAS
Google Scholar
Sipila S, Multanen J, Kallinen M, et al. Effects of strength and endurance training on isometric muscle strength andwalking speed in elderly women. Acta Physiol Scand 1996; 156 (4): 457–64
PubMed
CAS
Article
Google Scholar
Buchner DM, Cress ME, de Lateur BJ, et al. The effect of strength and endurance training on gait, balance, fall risk,and health services use in community-living older adults. J Gerontol A Biol Sci Med Sci 1997; 52 (4): 218–24
Article
Google Scholar
Singh NA, Clements KM, Fiatarone MA. A randomized controlled trial of progressive resistance training indepressed elders. J Gerontol A Biol Sci Med Sci 1997; 52 (1): 27–35
Article
Google Scholar
Schlicht J, Camaione DN, Owen SV. Effect of intense strength training on standing balance, walking speed, andsit-to-stand performance in older adults. J Gerontol ABiol Sci Med Sci 2001; 56 (5): 281–6
Article
Google Scholar
Tyni-Lenne R, Gordon A, Jensen-Urstad M, et al. Aerobic training involving a minor muscle mass shows greaterefficiency than training involving a major muscle massin chronic heart failure patients. J Card Fail 1999; 5 (4): 300–7
PubMed
CAS
Article
Google Scholar
Englund U, Littbrand H, Sondell A, et al. A 1-year combined weight-bearing training program is beneficialfor bone mineral density and neuromuscular function inolder women. Osteoporos Int 2005; 16 (9): 1117–23
PubMed
Article
Google Scholar
Judge JO, Whipple RH, Wolfson LI. Effects of resistive and balance exercises on isokinetic strength in older persons. J Am Geriatr Soc 1994; 42 (9): 937–46
PubMed
CAS
Google Scholar
Topp R, Mikesky A, Wigglesworth J, et al. The effect of a 12-week dynamic resistance strength training program ongait velocity and balance of older adults. Gerontologist 1993; 33 (4): 501–6
PubMed
CAS
Article
Google Scholar
Topp R, Mikesky A, Dayhoff NE, et al. Effect of resistance training on strength, postural control, and gait velocityamong older adults. Clin Nurs Res 1996; 5 (4): 407–27
PubMed
CAS
Article
Google Scholar