Skip to main content

L-Arginine as a Potential Ergogenic Aidin Healthy Subjects

Abstract

Dietary supplements containing L-arginine, a semi-essential amino acid, are one of the latest ergogenic aids intended to enhance strength, power and muscle recovery associated with both aerobic and resistance exercise. L-arginine is claimed to promote vasodilation by increasing nitric oxide (NO) production in the active muscle during exercise, improving strength, power and muscular recovery through increased substrate utilization and metabolite removal, such as lactate and ammonia. Research on L-arginine has recently tested this hypothesis, under the assumption that it may be the active compound associated with the vasodilator effects of NO. There were only five acute studies retrieved from the literature that evaluated exercise performance after L-arginine supplementation, three of which reported significant improvements. Regarding studies on chronic effects, eight studies were encountered: four reported enhancements in exercise performance, whilst four reports showed no changes. Whether these improvements in exercise performance — regardless of the aerobic or anaerobic nature of the exercise — can be associated with increases in NO production, has yet to be demonstrated in future studies. Low oral doses (20 g) are well tolerated and clinical side effects are rare in healthy subjects. In summary, it is still premature to recommend dietary supplements containing L-arginine as an ergogenic aid for healthy physically active subjects.

This is a preview of subscription content, access via your institution.

Table I
Table II
Fig. 1
Fig. 2

References

  1. Maxwell AJ, Ho HV, Le CQ, et al. L-arginine enhances aerobic exercise capacity in association with augmentednitric oxide production. J Appl Physiol 2001; 90 (3): 933–8

    PubMed  CAS  Google Scholar 

  2. Long JH, Lira VA, Soltow QA, et al. Arginine supplementation induces myoblast fusion via augmentationof nitric oxide production. J Muscle Res Cell Motil 2006; 27 (8): 577–84

    PubMed  CAS  Article  Google Scholar 

  3. Rector TS, Bank AJ, Mullen KA, et al. Randomized, double-blind, placebo-controlled study of supplementaloral L-arginine in patients with heart failure. Circulation 1996; 93 (12): 2135–41

    PubMed  CAS  Article  Google Scholar 

  4. Schaefer A, Piquard F, Geny B, et al. L-arginine reduces exercise-induced increase in plasma lactate and ammonia. Int J Sports Med 2002; 23 (6): 403–7

    PubMed  CAS  Article  Google Scholar 

  5. Malinauskas BM, Overton RF, Carraway VG, et al. Supplements of interest for sport-related injury and sources ofsupplement information among college athletes. Adv Med Sci 2007; 52: 50–4

    PubMed  CAS  Google Scholar 

  6. McConell GK. Effects of L-arginine supplementation on exercise metabolism. Curr Opin Clin Nutr Metab Care 2007; 10 (1): 46–51

    PubMed  CAS  Article  Google Scholar 

  7. Liu TH, Wu CL, Chiang CW, et al. No effect of short-term arginine supplementation on nitric oxide production,metabolism and performance in intermittent exercise inathletes. J Nutr Biochem 2009; 20 (6): 462–8

    PubMed  CAS  Article  Google Scholar 

  8. Stevens BR, Godfrey MD, Kaminski TW, et al. Highintensity dynamic human muscle performance enhancedby a metabolic intervention. Med Sci Sports Exerc 2000; 32 (12): 2102–8

    PubMed  CAS  Article  Google Scholar 

  9. Buford BN, Koch AJ. Glycine-arginine-alpha-ketoisocaproic acid improves performance of repeated cycling sprints. Med Sci Sports Exerc 2004; 36 (4): 583–7

    PubMed  CAS  Article  Google Scholar 

  10. McConell GK, Huynh NN, Lee-Young RS, et al. L-arginine infusion increases glucose clearance during prolongedexercise in humans. AmJ Physiol Endocrinol Metab 2006; 290 (1): E60–6

    CAS  Article  Google Scholar 

  11. Bailey SJ, Winyard PG, Vanhatalo A, et al. Acute L-arginine supplementation reduces the O2 cost of moderateintensityexercise and enhances high-intensity exercisetolerance. J Appl Physiol 2010; 109 (5): 1394–403

    PubMed  CAS  Article  Google Scholar 

  12. Campbell B, Roberts M, Kerksick C, et al. Pharmacokinetics, safety and effects on exercise performance ofL-arginine alpha-ketoglutarate in trained adult men. Nutrition 2006; 22 (9): 872–81

    PubMed  CAS  Article  Google Scholar 

  13. Abel T, Knechtle B, Perret C, et al. Influence of chronic supplementation of arginine aspartate in endurance athleteson performance and substrate metabolism: a randomized,double-blind, placebo-controlled study. Int JSports Med 2005; 26 (5): 344–9

    CAS  Article  Google Scholar 

  14. Colombani PC, Bitzi R, Frey-Rindova P, et al. Chronic arginine aspartate supplementation in runners reducestotal plasma amino acid level at rest and during a marathonrun. Eur J Nutr 1999; 38 (6): 263–70

    PubMed  CAS  Article  Google Scholar 

  15. Little JP, Forbes SC, Candow DG, et al. Creatine, arginine alpha-ketoglutarate, amino acids, and medium-chaintriglycerides and endurance and performance. Int J Sport Nutr Exerc Metab 2008; 18 (5): 493–508

    PubMed  CAS  Google Scholar 

  16. Santos RS, Pacheco MTT, Martins RABL, et al. Study of the effect of oral administration of L-arginine on muscularperformance in healthy volunteers: an isokineticstudy. Isok Exerc Sci 2002; 10: 153–8

    Google Scholar 

  17. Fricke O, Baecker N, Heer M, et al. The effect of L-arginine administration on muscle force and power in postmenopausalwomen. Clin Physiol Funct Imaging 2008; 28 (5): 307–11

    PubMed  CAS  Article  Google Scholar 

  18. Chen S, Kim W, Henning SM, et al. Arginine and antioxidant supplement on performance in elderly male cyclists: a randomizedcontrolled trial. J Int Soc Sports Nutr 2010; 7: 13

    PubMed  CAS  Article  Google Scholar 

  19. Camic CL, Housh TJ, Zuniga JM, et al. Effects of argininebased supplements on the physical working capacity at thefatigue threshold. J Strength Cond Res 2010; 24 (5): 1306–12

    PubMed  Article  Google Scholar 

  20. Morris Jr S. Arginine: beyond protein. Am J Clin Nutr 2006; 83: 508S–12S

    PubMed  CAS  Google Scholar 

  21. Böger RH, Bode-Böger S. The clinical pharmacology of L-arginine. Annu Rev Pharmacol Toxicol 2001; 41: 79–99

    PubMed  Article  Google Scholar 

  22. Moncada S, Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med 1993; 329 (27): 2002–12

    PubMed  CAS  Article  Google Scholar 

  23. Nakane M, Schmidt HH, Pollock JS, et al. Cloned human brain nitric oxide synthase is highly expressed in skeletalmuscle. FEBS Lett 1993; 316 (2): 175–80

    PubMed  CAS  Article  Google Scholar 

  24. Frandsen U, Lopez-Figueroa M, Hellsten Y. Localization of nitric oxide synthase in human skeletal muscle. Biochem Biophys Res Commun 1996; 227 (1): 88–93

    PubMed  CAS  Article  Google Scholar 

  25. Morrison RJ, Miller III C, Reid MB. Nitric oxide effects on shortening velocity and power production in the rat diaphragm. J Appl Physiol 1996; 80 (3): 1065–9

    PubMed  CAS  Google Scholar 

  26. Morrison RJ, Miller III C, Reid MB. Nitric oxide effects on force: velocity characteristics of the rat diaphragm. Comp Biochem Physiol 1998; 119 (1): 203–9

    CAS  Article  Google Scholar 

  27. Doshi S, Naka K, Payne N, et al. Flow-mediated dilatation following wrist and upper arm occlusion in humans:the contribution of nitric oxide. Clin Sci 2001; 101 (6): 629–35

    PubMed  CAS  Article  Google Scholar 

  28. Smith LW, Smith JD, Criswell DS. Involvement of nitric oxide synthase in skeletal muscle adaptation to chronicoverload. J Appl Physiol 2002; 92 (5): 2005–11

    PubMed  CAS  Google Scholar 

  29. Sellman J, DeRuisseau K, Betters J, et al. In vivo inhibition of nitric oxide synthase impairs upregulation of contractileprotein mRNA in overloaded plantaris muscle. J Appl Physiol 2006; 100 (1): 258–65

    PubMed  CAS  Article  Google Scholar 

  30. Anderson JE. A role for nitric oxide in muscle repair: nitric oxidemediated activation of muscle satellite cells. Mol Biol Cell 2000; 11 (5): 1859–74

    PubMed  CAS  Google Scholar 

  31. Nisoli E, Clementi E, Paolucci C, et al. Mitochondrial biogenesis in mammals: the role of endogenous nitricoxide. Science 2003; 299 (5608): 896–9

    PubMed  CAS  Article  Google Scholar 

  32. Nisoli E, Carruba MO. Nitric oxide and mitochondrial biogenesis. J Cell Sci 2006; 119 (Pt14): 2855–62

    PubMed  CAS  Article  Google Scholar 

  33. Balon TW, Nadler JL. Evidence that nitric oxide increases glucose transport in skeletal muscle. J Appl Physiol 1997; 82 (1): 359–63

    PubMed  CAS  Google Scholar 

  34. McConell GK, Kingwell BA. Does nitric oxide regulate skeletal muscle glucose uptake during exercise? Exerc Sport Sci Rev 2006; 34 (1): 36–41

    PubMed  Article  Google Scholar 

  35. Reid MB. Role of nitric oxide in skeletal muscle: synthesis, distribution and functional importance. Acta Physiol Scand 1998; 162: 401–9

    PubMed  CAS  Article  Google Scholar 

  36. Stamler JS, Meissner G. Physiology of nitric oxide in skeletal muscle. Physiol Rev 2001; 81 (1): 209–37

    PubMed  CAS  Google Scholar 

  37. Powers SK Jackson MJ. Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev 2008; 88: 1243–76

    PubMed  CAS  Article  Google Scholar 

  38. Arnal J, Dinh-Xuan A, Pueyo M, et al. Endotheliumderived nitric oxide and vascular physiology and pathology. Cell Mol Life Sci 1999; 55 (8-9): 1078–87

    PubMed  CAS  Article  Google Scholar 

  39. Maxwell A, Tsao P, Cooke J. Modulation of the nitric oxide synthase pathway in atherosclerosis. Exp Physiol 1998; 83 (5): 573–87

    PubMed  CAS  Google Scholar 

  40. Böger RH, Bode-Böger SM, Szuda A, et al. Asymmetric dimethylarginine (ADMA): a novel risk factor for endothelialdysfunction. Circulation 1998a; 98 (18): 1842–7

    PubMed  Article  Google Scholar 

  41. Creager M, Gallagher S, Girerd X, et al. L-arginine improves endothelium-dependent vasodilation in hypercholesterolemichumans. J Clin Invest 1992; 90 (4): 1248–53

    PubMed  CAS  Article  Google Scholar 

  42. Clarkson P, Adams M, Powe A, et al. Oral L-arginnine improves endothelium-dependent dilation in hypercholesterolemicyoung adults. J Clin Invest 1996; 97 (8): 1989–94

    PubMed  CAS  Article  Google Scholar 

  43. Pieper G, Siebeneich W, Dondlinger L. Short-term oral administration of L-arginine reverses defective endotheliumdependentrelaxation and cGMP generation in diabetes. Eur J Pharmacol 1996; 317 (2-3): 317–20

    PubMed  CAS  Article  Google Scholar 

  44. Adams M, McCredie R, Jessup W, et al. Oral L-arginine improves endothelium-dependent dilatation and reducesmonocyte adhesion to endothelial cells in young men withcoronary artery disease. Atherosclerosis 1997; 129 (2): 261–9

    PubMed  CAS  Article  Google Scholar 

  45. Lerman A, Burnett Jr J, Higano S, et al. Long-termL-arginine supplementation improves small-vessel coronary endothelialfunction in humans. Circulation 1998; 97 (21): 2123–8

    PubMed  CAS  Article  Google Scholar 

  46. West S, Likos-Krick A, Brown P, et al. Oral L-arginine improves hemodynamic responses to stress and reduceplasma homocysteine in hypercholesterolemic men. J Nutr 2005; 135 (2): 212–7

    PubMed  CAS  Google Scholar 

  47. Imaizumi T, Hirooka Y, Masaki H, et al. Effects of L-arginine on forearm vessels and responses to acetylcholine. Hyperthension 1992; 20 (4): 511–7

    CAS  Article  Google Scholar 

  48. Adams M, Forsyth C, Jessup W, et al. Oral L-arginine inhibits platelet aggregation but does not enhance endotheliumdependentdilation in healthy young men. J Am Coll Cardiol 1995; 26 (4): 1054–61

    PubMed  CAS  Article  Google Scholar 

  49. Blum A, Hathaway L, Hathaway L, et al. Oral L-arginine in patients with coronary artery disease on medical management. Circulation 2000b; 101 (18): 2160–4

    PubMed  CAS  Article  Google Scholar 

  50. Archer S. Measurement of nitric oxide in biological models. FASEB J 1993; 7 (2): 349–53

    PubMed  CAS  Google Scholar 

  51. Schrage WG, Dietz NM, Eisenach JH, et al. Agonistdependent variability of contributions of nitric oxide andprostaglandins in human skeletal muscle. J Appl Physiol 2005; 98 (4): 1251–7

    PubMed  CAS  Article  Google Scholar 

  52. Xia Y, Zweier JL. Direct measurement of nitric oxide generation from nitric oxide synthase. Proc Natl Acad SciU S A 1997; 94 (23): 12705–10

    CAS  Article  Google Scholar 

  53. Laver JR, Stevanin TM, Read RC. Chemiluminescence quantification of NO and its derivatives in liquid samples. Methods Enzymol 2008; 436: 113–27

    PubMed  CAS  Article  Google Scholar 

  54. Davies IR, Zhang X. Nitric oxide selective electrodes. Methods Enzymol 2008; 436: 63–95

    PubMed  CAS  Article  Google Scholar 

  55. Böger RH, Bode-Böger SM, Thiele W, et al. Restoring vascular nitric oxide formation by L-arginine improvesthe symptoms of intermittent claudication in patients withperipheral arterial occlusive disease. J Am Coll Cardiol 1998b; 32 (5): 1336–44

    PubMed  Article  Google Scholar 

  56. Bode-Böger SM, Böger RH, Alfke H, et al. L-arginine induces nitric oxide-dependent vasodilation in patients withcritical limb ischemia: a randomized, controlled study. Circulation 1996; 93 (1): 85–90

    PubMed  Article  Google Scholar 

  57. Bode-Böger SM, Böger RH, Galland A, et al. L-arginineinduced vasodilation in healthy humans: pharmacokineticpharmacodynamicrelationship. Br J Pharmacol 1998; 46 (5): 489–97

    Google Scholar 

  58. Lucotti P, Setola E, Monti LD, et al. Beneficial effects of a long-term oral L-arginine treatment added to a hypocaloricdiet and exercise training program in obese, insulin-resistanttype 2 diabetic patients. Am J Physiol Endocrinol Metab 2006; 291 (5): 906–12

    Article  CAS  Google Scholar 

  59. Jobgen WS, Jobgen SC, Li H, et al. Analysis of nitrite and nitrate in biological samples using high-performance liquidchromatography. J Chromatogr B 2007; 851 (1-2): 71–82

    CAS  Article  Google Scholar 

  60. Tsikas D. Methods of quantitative analysis of the nitric oxide metabolites nitrite and nitrate in human biologicalfluids. Free Radic Res 2005; 39 (8): 797–815

    PubMed  CAS  Article  Google Scholar 

  61. Ignarro LJ, Fukuto JM, Griscavage JM, et al. Oxidation of nitric oxide in aqueous solution to nitrite but not nitrate:comparison with enzymatically formed nitric oxide fromL-arginine. Proc Natl Acad Sci USA 1993; 90 (17): 8103–7

    PubMed  CAS  Article  Google Scholar 

  62. Griesenbeck JS, Steck MD, Huber Jr JC, et al. Development of estimates of dietary nitrates, nitrites, and nitrosaminesfor use with the short Willet food frequencyquestionnaire. Nutr J 2009; 6: 8–16

    Google Scholar 

  63. Ellis G, Adatia I, Yazdanpanah M, et al. Nitrite and nitrate analyses: a clinical biochemistry perspective. Clin Biochem 1998; 31 (4): 195–220

    PubMed  CAS  Article  Google Scholar 

  64. Castillo L, Beaumier L, Ajami AM, et al. Whole body nitric oxide synthesis in healthy men determined from [15N]arginine-to-[15N]citrulline labeling. Proc Natl Acad SciU S A 1996; 93 (21): 11460–5

    CAS  Article  Google Scholar 

  65. Rhodes P, Leone AM, Francis PL, et al. The L-arginine: nitric oxide pathway is the major source of plasma nitritein fasted humans. Biochem Biophys Res Commun 1995; 209 (2): 590–6

    PubMed  CAS  Article  Google Scholar 

  66. Bode-Böger SM, Böger RH, Creutzig A, et al. L-arginine infusion decreases peripheral resistance and inhibits plateletaggregation in healthy subjects. Clin Sci 1994; 87 (3): 303–10

    PubMed  Google Scholar 

  67. Bode-Böger SM, Boger RH, Schroder EP, et al. Exercise increases systemic nitric oxide production in men. J Cardiovasc Risk 1994; 1 (2): 173–8

    PubMed  Google Scholar 

  68. Pollock J, Förstermann U, Mitchell J, et al. Purification and characterization of particulate endothelium-derivedrelaxing factor synthase from cultured and native bovineaortic endothelial cells. Proc Natl Acad Sci U S A 1991; 88 (23): 10480–4

    PubMed  CAS  Article  Google Scholar 

  69. Cooke PJ. Does ADMA cause endothelial dysfunction? Arterioscler Thromb Vasc Biol 2000; 20 (9): 2032–7

    PubMed  CAS  Article  Google Scholar 

  70. Bode-Böger SM, Scalera F, Ignarro LJ. The L-arginine paradox: importance of the L-arginine/asymmetrical dimethylarginineratio. Pharmacol Ther 2007; 114 (3): 295–306

    PubMed  Article  CAS  Google Scholar 

  71. Goumas G, Tentolouris C, Tousoulis D, et al. Therapeutic modification of the L-arginine-eNOS pathway in cardiovasculardiseases. Atherosclerosis 2001; 154 (2): 255–67

    PubMed  CAS  Article  Google Scholar 

  72. Loscalzo J. What we know and dont know about L-arginine and NO. Circulation 2000; 101 (18): 2126–9

    PubMed  CAS  Article  Google Scholar 

  73. Belviranli M, Gökbel H. Acute exercise induced oxidative stress and antioxidant changes. Eur J Gen Med 2006; 3 (3): 126–31

    CAS  Google Scholar 

  74. Hudson MB, Hosick PA, McCaulley GO, et al. The effect of resistance exercise on humoral markers of oxidativestress. Med Sci Sports Exerc 2008; 40 (3): 542–8

    PubMed  CAS  Article  Google Scholar 

  75. Bloomer RJ, Falvo MJ, Fry AC, et al. Oxidative stress response in trained men following repeated squats orsprints. Med Sci Sports Exerc 2006; 38 (8): 1436–42

    PubMed  CAS  Article  Google Scholar 

  76. Böger RH, Bode-Böger SM, Mügge A, et al. Supplementation of hypercholesterolaemic rabbits with L-argininereduces the vascular release of superoxide anions andrestores NO production. Atherosclerosis 1995; 117 (2): 273–84

    PubMed  Article  Google Scholar 

  77. Maiorana A, O’Driscoll G, Taylor R, et al. Exercise and the nitric oxide vasodilator system. Sports Med 2003; 33 (14): 1013–35

    PubMed  Article  Google Scholar 

  78. Hickner RC, Fisher JS, Ehsani AA, et al. Role of nitric oxide in skeletal muscle blood flow at rest and during dynamicexercise in humans. AmJ Physiol 1997; 273 (1Pt2): H405–10

    CAS  Google Scholar 

  79. Jungersten L, Ambring A, Wall B, et al. Both physical fitness and acute exercise regulate nitric oxide formation inhealthy humans. J Appl Physiol 1997; 82 (3): 760–4

    PubMed  CAS  Google Scholar 

  80. Maeda S, Miyauchi T, Kakiyama T, et al. Effects of exercise training of 8 weeks and detraining on plasma levels of endothelium-derived factors, endothelin-1 and nitric oxide, inhealthy young humans. Life Sci 2001; 69 (9): 1005–16

    PubMed  CAS  Article  Google Scholar 

  81. Maeda S, Tanabe T, Otsuki T, et al. Moderate regular exercise increases basal production of nitric oxide in elderlywomen. Hypertens Res 2004; 27 (12): 947–53

    PubMed  CAS  Article  Google Scholar 

  82. Poveda JJ, Riestra A, Salas E, et al. Contribution of nitric oxide to exercise-induced changes in healthy volunteers:effects of acute exercise and long-term physical training. Eur J Clin Invest 1997; 27 (11): 967–71

    PubMed  CAS  Article  Google Scholar 

  83. Yamamoto K, Kondo T, Kimata A, et al. Lack of effect of aerobic physical exercise on endothelium-derived nitricoxide concentrations in healthy young subjects. NagoyaJ Med Sci 2007; 69 (3-4): 167–72

    CAS  Google Scholar 

  84. Gilligan DM, Panza JA, Kilcoyne CM, et al. Contribution of endothelium-derived nitric oxide to exercise-inducedvasodilation. Circulation 1994; 90 (6): 2853–8

    PubMed  CAS  Article  Google Scholar 

  85. Dyke CK, Proctor DN, Dietz NM, et al. Role of nitric oxide in exercise hyperaemia during prolonged rhythmichandgripping in humans. J Physiol 1995; 488 (Pt1): 259–65

    PubMed  CAS  Google Scholar 

  86. Katz SD, Krum H, Khan T, et al. Exercise-induced vasodilation in forearm circulation of normal subjects and patientswith congestive heart failure: role of endothelium-derivednitric oxide. J Am Coll Cardiol 1996; 28 (3): 585–90

    PubMed  CAS  Article  Google Scholar 

  87. Radegran G, Saltin B. Nitric oxide in the regulation of vasomotor tone in human skeletal muscle. Am J Physiol 1999; 6 (Pt 2): 1951–60

    Google Scholar 

  88. Endo T, Imaizumi T, Tagawa T, et al. Role of nitric oxide in exercise-induced vasodilation of the forearm. Circulation 1994; 90 (6): 2886–90

    PubMed  CAS  Article  Google Scholar 

  89. Green DJ, Bilsborough W, Naylor LH, et al. Comparison of forearm blood flow responses to incremental handgripand cycle ergometer exercise: relative contribution of nitricoxide. J Physiol 2005; 562 (Pt2): 617–28

    PubMed  CAS  Google Scholar 

  90. Wilson JR, Kapoor S. Contribution of endotheliumderived relaxing factor to exercise-induced vasodilation inhumans. J Appl Physiol 1993; 75 (6): 2740–4

    PubMed  CAS  Google Scholar 

  91. Boushel R, Langberg H, Gemmer C, et al. Combined inhibition of nitric oxide and prostaglandins reduces humanskeletal muscle blood flow during exercise. J Physiol 2002; 543 (2): 691–8

    PubMed  CAS  Article  Google Scholar 

  92. Kalliokoski K, Langberg H, Ryberg A, et al. Nitric oxide and prostaglandins influence local skeletal muscle bloodflow during exercise in humans: coupling between localsubstrate uptake and blood flow. Am J Physiol Regul Integr Comp Physiol 2006; 291 (3): 803–9

    Article  CAS  Google Scholar 

  93. Sureda A, Cordova A, Ferrer MD, et al. Effects of L-citrulline oral supplementation on polymorphonuclearneutrophils oxidative burst and nitric oxide productionafter exercise. Free Radic Res 2009; 43 (9): 828–35

    PubMed  CAS  Article  Google Scholar 

  94. Schwedhelm E, Maas R, Freese R, et al. Pharmacokinetic and pharmacodynamic properties of oral L-citrulline andL-arginine: impact on nitric oxide metabolism. Br J Clin Pharmacol 2008; 65 (1): 51–9

    PubMed  CAS  Article  Google Scholar 

  95. Bergstrom J, Hultman E. Synthesis of muscle glycogen in man after glucose and fructose infusion. Acta Med Scand 1967; 182 (1): 93–107

    PubMed  CAS  Article  Google Scholar 

  96. Hayashi T, Wojtaszewski JF, Goodyear LJ. Exercise regulation of glucose transport in skeletal muscle. Am JPhysiol 1997; 273 (6Pt1): E1039–51

    CAS  Google Scholar 

  97. Bradley SJ, Kingwell BA, McConell GK. Nitric oxide synthase inhibition reduces leg glucose uptake but notblood flow during dynamic exercise in humans. Diabetes 1999; 48 (9): 1815–21

    PubMed  CAS  Article  Google Scholar 

  98. Kingwell BA, Formosa M, Muhlmann M, et al. Nitric oxide synthase inhibition reduces glucose uptake duringexercise in individuals with type 2 diabetes more than incontrol subjects. Diabetes 2002; 51 (8): 2572–80

    PubMed  CAS  Article  Google Scholar 

  99. Yaspelkis 3rd BB, Ivy JL. The effect of a carbohydratearginine supplement on postexercise carbohydrate metabolism. Int J Sport Nutr 1999; 9 (3): 241–50

    PubMed  CAS  Google Scholar 

  100. Tsai PH, Tang TK, Juang CL, et al. Effects of arginine supplementation on post-exercise metabolic responses. Chin J Physiol 2009; 52 (3): 136–42

    PubMed  CAS  Article  Google Scholar 

  101. Robinson TM, Sewell DA, Greenhaff PL. L-arginine ingestion after rest and exercise: effects on glucose disposal. Med Sci Sports Exerc 2003; 35 (8): 1309–15

    PubMed  CAS  Article  Google Scholar 

  102. Matsumoto K, Mizuno M, Mizuno T, et al. Branched-chain amino acids and arginine supplementation attenuates skeletalmuscle proteolysis induced by moderate exercise in youngindividuals. Int J Sports Med 2007; 28 (6): 531–8

    PubMed  CAS  Article  Google Scholar 

  103. Fahs CA, Heffernan KS, Fernhall B. Hemodynamic and vascular response to resistance exercise with L-arginine. Med Sci Sports Exerc 2009; 41 (4): 773–9

    PubMed  CAS  Article  Google Scholar 

  104. Burtscher M, Brunner F, Faulhaber M, et al. The prolonged intake of L-arginine-l-aspartate reduces bloodlactate accumulation and oxygen consumption duringsubmaximal exercise. J Sports Sci Med 2005; 4: 314–22

    Google Scholar 

  105. Sunderland KL, Greer F, Morales J. V̇O2max and ventilatory threshold of trained cyclists are not affected by28-day L-arginine supplementation. J Strength Cond Res. Epub 2010 Jun 23

    Google Scholar 

  106. Koppo K, Taes YE, Pottier A, et al. Dietary arginine supplementation speeds pulmonary V̇O2 kinetics during cycleexercise. Med Sci Sports Exerc 2009; 41 (8): 1626–32

    PubMed  CAS  Article  Google Scholar 

  107. Lambert CP, Flynn MG. Fatigue during high-intensity intermittent exercise: application to bodybuilding. Sports Med 2002; 32 (8): 511–22

    PubMed  Article  Google Scholar 

  108. Hishikawa K, Nakaki T, Nakaki T, et al. Effect of systemic L-arginine administration on hemodynamics and nitricoxide release in man. Jpn Heart J 1992; 33 (1): 41–8

    PubMed  CAS  Article  Google Scholar 

  109. Tiwary CM, Rosenbloom AL, Julius RL. Anaphylactic reaction to arginine infusion [letter]. N Engl J Med 1973; 288 (4): 218

    PubMed  CAS  Google Scholar 

  110. Hertz P, Richardson JA. Arginine-induced hyperkalemia in renal failure patients. Arch Intern Med 1972; 130 (5): 778–80

    PubMed  CAS  Article  Google Scholar 

  111. Bushinsky DA, Gennari FJ. Life-threatening hyperkalemia induced by arginine. Ann Intern Med 1978; 89 (5Pt1): 632–4

    PubMed  CAS  Google Scholar 

  112. Massara F, Martelli S, Cagliero E, et al. The hypophosphatemic and hyperkalemic effect of arginine in man. J Endocrinol Invest 1980; 3 (2): 177–80

    PubMed  CAS  Google Scholar 

  113. Massara F, Cagliero E, Bisbocci D, et al. The risk of pronounced hyperkalaemia after arginine infusion in thediabetic subject. Diabetes Metab 1981; 7 (3): 149–53

    CAS  Google Scholar 

  114. Evans RW, Fernstrom JD, Thompson J, et al. Biochemical responses of healthy subjects during dietary supplementationwith L-arginine. J Nutr Biochem 2004; 15 (9): 534–9

    PubMed  CAS  Article  Google Scholar 

  115. Schulman SP, Becker LC, Kass DA, et al. L-arginine therapy in acute myocardial infarction: the Vascular Interaction With Age in Myocardial Infarction (VINTAGE MI) randomized clinical trial. JAMA 2006; 295 (1): 58–64

    PubMed  CAS  Article  Google Scholar 

  116. Bednarz B, Jaxa-Chamiec T, Maciejewski P, et al. Efficacy and safety of oral l-arginine in acute myocardial infarction:results of the multicenter, randomized, double-blind,placebo-controlled ARAMI pilot trial. Kardiol Pol 2005; 62 (5): 421–7

    PubMed  Google Scholar 

  117. Sun T, Zhou WB, Luo XP, et al. Oral L-arginine supplementation in acute myocardial infarction therapy: a metaanalysisof randomized controlled trials. Clin Cardiol 2009; 32 (11): 649–52

    PubMed  Article  Google Scholar 

  118. Shao A, Hathcock JN. Risk assessment for the amino acids taurine, L-glutamine and L-arginine. Regul Toxicol Pharmacol 2008; 50 (3): 376–99

    PubMed  CAS  Article  Google Scholar 

Download references

Acknowledgements

Professor Paulo S.C. Gomes is a recipient of a Productivity Research Fellowship from Conselho Nacional de Desenvolvimento Tecnológico (CNPq) from Brazil. Thiago S. Álvares is supported by a research scholarship from CNPq. The authors have no conflicts of interest that are directly relevant to the content of this review. The authors would like to thank Ricky Toledano for the preparation of the English version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo S. C. Gomes.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Álvares, T.S., Meirelles, C.M., Bhambhani, Y.N. et al. L-Arginine as a Potential Ergogenic Aidin Healthy Subjects. Sports Med 41, 233–248 (2011). https://doi.org/10.2165/11538590-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11538590-000000000-00000

Keywords

  • Nitric Oxide
  • Resistance Exercise
  • Anaerobic Power
  • Plasma Lactate Concentration
  • Cycle Ergometer Exercise