Skip to main content
Log in

Calcineurin Inhibitor-Free Immunosuppression in Pediatric Renal Transplantation

A Viable Option?

  • Review Article
  • Published:
Pediatric Drugs Aims and scope Submit manuscript

Abstract

The introduction, in the mid-1980s, of calcineurin inhibitors — namely ciclosporin (cyclosporine) and later tacrolimus — has significantly improved short-term renal graft survival by lowering acute rejection rates in both adult and pediatric kidney transplantation. Nonetheless, long-term transplant survival is still not satisfactory, with calcineurin inhibitor-induced chronic nephrotoxicity being one of the main causes of progressive nephron loss and declining renal transplant function. Hence, different immunosuppressant regimens have been proposed to avoid or ameliorate calcineurin inhibitor-induced nephrotoxicity. These comprise the use of non-depleting or depleting antibodies for calcineurin inhibitor minimization, calcineurin inhibitor avoidance, or calcineurin inhibitor withdrawal from mycophenolate mofetil-based immunosuppressant protocols. De novo use of a mammalian target of rapamycin (mTOR) inhibitor (sirolimus or everolimus) or conversion from a calcineurin inhibitor to an mTOR inhibitor may constitute another therapeutic option to avoid or reduce calcineurin inhibitor-induced nephrotoxicity.

To date, complete calcineurin inhibitor avoidance seems to be inappropriate because other relatively potent immunosuppressant agents such as lymphocyte-depleting antibodies are needed for rejection prophylaxis, which are frequently accompanied by a higher incidence of infections and an unacceptably high acute rejection rate under calcineurin inhibitor avoidance. In some studies, calcineurin inhibitor withdrawal in adult and pediatric kidney allograft recipients with stable or declining transplant function has been associated with an amelioration of renal function; however, this is attained at the cost of a higher acute rejection rate in 10–20% of patients. It has been frequently stressed that conversion from a calcineurin inhibitor-based regimen to an mTOR inhibitor-based immunosuppressant regimen should be performed early (e.g. 3 or 6 months post-transplant) in patients with well-preserved renal transplant function without significant proteinuria in order to prevent, or at least limit, calcineurin inhibitor-induced tissue damage and provide long-term benefit. It should be borne in mind though that the use of an mTOR inhibitor carries the risk of potential adverse events such as aggravation of proteinuria, hyperlipidemia, myelosuppression, and hypergonadotropic hypogonadism. Even though everolimus may be better tolerated than sirolimus, studies on everolimus for calcineurin inhibitor-free immunosuppression in the pediatric kidney transplant patient population are lacking.

At present, the safest therapeutic strategy for pediatric renal allograft recipients with chronic calcineurin inhibitor-induced nephrotoxicity appears to be a mycophenolate mofetil-based regimen with low-dose calcineurin inhibitor therapy and corticosteroids; available published data show that dual immunosuppression with mycophenolate mofetil and corticosteroids, as well as an mTOR inhibitor plus mycophenolate mofetil plus corticosteroid-based regimens, are associated with an increased risk of acute rejection episodes. In individual patients with evidenced chronic allograft dysfunction and over-immunosuppression leading to recurrent infections, dual maintenance immunosuppression with mycophenolate mofetil and corticosteroids may be appropriate. As stated in the annual report issued by the North American Pediatric Renal Trials and Collaborative Studies (NAPRTCS) Registry, currently the most popular immunosuppressant protocol consists of a calcineurin inhibitor combined with mycophenolate mofetil and corticosteroids: 59.1% and 53.2% of patients with a functioning graft receive a calcineurin inhibitor plus mycophenolate mofetil plus corticosteroid-based immunosuppression at 1 and 5 years post-transplant, respectively. 91.4% and 87.8% of patients are administered a calcineurin inhibitor-containing regimen 1 and/or 5 years after transplantation, respectively. Undoubtedly, the use of calcineurin inhibitor-free immunosuppressant regimens with or without antibody induction, plus an mTOR inhibitor and mycophenolate mofetil, requires more comprehensive long-term investigations to determine whether acceptable rejection rates and conservation of renal function can be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II
Table III
Table V
Table IV

Similar content being viewed by others

References

  1. Meier-Kriesche HU, Schold JD, Kaplan B. Long-term renal allograft survival: have we made significant progress or is it time to rethink our analytic and therapeutic strategies? Am J Transplant 2004 Aug; 4(8): 1289–95

    Article  PubMed  Google Scholar 

  2. Lamb KE, Lodhi S, Meier-Kriesche HU. Long-term renal allograft survival in the United States: a critical reappraisal. Am J Transplant. Epub 2010 Oct 25

  3. Höcker B, Tonshoff B. Treatment strategies to minimize or prevent chronic allograft dysfunction in pediatric renal transplant recipients: an overview. Paediatr Drugs 2009; 11(6): 381–96

    Article  PubMed  Google Scholar 

  4. Nankivell BJ, Borrows RJ, Fung CL, et al. The natural history of chronic allograft nephropathy. N Engl J Med 2003 Dec 11; 349(24): 2326–33

    Article  PubMed  CAS  Google Scholar 

  5. North American Pediatric Renal Trials and Collaborative Studies 2008 annual report [online]. Available from URL: http://www.NAPRTCS.org [Accessed 2009 Aug]

  6. UpToDate. Clinical practice guidelines: table UTD grading criteria [online]. Available from URL: http://www.uptodate.com [Accessed 2010 Feb 18]

  7. Benfield MR, Tejani A, Harmon WE, et al. A randomized multicenter trial of OKT3 mAbs induction compared with intravenous cyclosporine in pediatric renal transplantation. Pediatr Transplant 2005 Jun; 9(3): 282–92

    Article  PubMed  CAS  Google Scholar 

  8. Guba M, Rentsch M, Wimmer CD, et al. Calcineurin-inhibitor avoidance in elderly renal allograft recipients using ATG and basiliximab combined with mycophenolate mofetil. Transpl Int 2008 Jul; 21(7): 637–45

    Article  PubMed  CAS  Google Scholar 

  9. Khositseth S, Matas A, Cook ME, et al. Thymoglobulin versus ATGAM induction therapy in pediatric kidney transplant recipients: a single-center report. Transplantation 2005 Apr 27; 79(8): 958–63

    Article  PubMed  CAS  Google Scholar 

  10. Colleen Hastings M, Wyatt RJ, Lau KK, et al. Five years’ experience with thymoglobulin induction in a pediatric renal transplant population. Pediatr Transplant 2006 Nov; 10(7): 805–10

    Article  PubMed  CAS  Google Scholar 

  11. Baron PW, Ojogho ON, Yorgin P, et al. Comparison of outcomes with low-dose anti-thymocyte globulin, basiliximab or no induction therapy in pediatric kidney transplant recipients: a retrospective study. Pediatr Transplant 2008 Feb; 12(1): 32–9

    Article  PubMed  CAS  Google Scholar 

  12. Vincenti F, Ramos E, Brattstrom C, et al. Multicenter trial exploring calcineurin inhibitors avoidance in renal transplantation. Transplantation 2001 May 15; 71(9): 1282–7

    Article  PubMed  CAS  Google Scholar 

  13. Asberg A, Midtvedt K, Line PD, et al. Calcineurin inhibitor avoidance with daclizumab, mycophenolate mofetil, and prednisolone in DR-matched de novo kidney transplant recipients. Transplantation 2006 Jul 15; 82(1): 62–8

    Article  PubMed  Google Scholar 

  14. Abramowicz D, Manas D, Lao M, et al. Cyclosporine withdrawal from a mycophenolate mofetil-containing immunosuppressive regimen in stable kidney transplant recipients: a randomized, controlled study. Transplantation 2002 Dec 27; 74(12): 1725–34

    Article  PubMed  CAS  Google Scholar 

  15. Schnuelle P, van der Heide JH, Tegzess A, et al. Open randomized trial comparing early withdrawal of either cyclosporine or mycophenolate mofetil in stable renal transplant recipients initially treated with a triple drug regimen. J Am Soc Nephrol 2002 Feb; 13(2): 536–43

    PubMed  CAS  Google Scholar 

  16. Smak Gregoor PJ, de Sevaux RG, Ligtenberg G, et al. Withdrawal of cyclosporine or prednisone six months after kidney transplantation in patients on triple drug therapy: a randomized, prospective, multicenter study. J Am Soc Nephrol 2002 May; 13(5): 1365–73

    Article  PubMed  Google Scholar 

  17. Ekberg H, Grinyo J, Nashan B, et al. Cyclosporine sparing with mycophenolate mofetil, daclizumab and corticosteroids in renal allograft recipients: the CAESAR Study. Am J Transplant 2007 Mar; 7(3): 560–70

    Article  PubMed  CAS  Google Scholar 

  18. Dudley C, Pohanka E, Riad H, et al. Mycophenolate mofetil substitution for cyclosporine a in renal transplant recipients with chronic progressive allograft dysfunction: the “creeping creatinine” study. Transplantation 2005 Feb 27; 79(4): 466–75

    Article  PubMed  CAS  Google Scholar 

  19. Harmon W, Meyers K, Ingelfinger J, et al. Safety and efficacy of a calcineurin inhibitor avoidance regimen in pediatric renal transplantation. J Am Soc Nephrol 2006 Jun; 17(6): 1735–45

    Article  PubMed  CAS  Google Scholar 

  20. Pascual J, Bloom D, Torrealba J, et al. Calcineurin inhibitor withdrawal after renal transplantation with alemtuzumab: clinical outcomes and effect on T-regulatory cells. Am J Transplant 2008 Jul; 8(7): 1529–36

    Article  PubMed  CAS  Google Scholar 

  21. Ellis D, Shapiro R, Moritz M, et al. Renal transplantation in children managed with lymphocyte depleting agents and low-dose maintenance tacrolimus monotherapy. Transplantation 2007 Jun 27; 83(12): 1563–70

    Article  PubMed  CAS  Google Scholar 

  22. Halloran P, Mathew T, Tomlanovich S, et al. Mycophenolate mofetil in renal allograft recipients: a pooled efficacy analysis of three randomized, double-blind, clinical studies in prevention of rejection. The International Mycophenolate Mofetil Renal Transplant Study Groups. Transplantation 1997 Jan 15; 63(1): 39–47

    Article  PubMed  CAS  Google Scholar 

  23. Jungraithmayr T, Staskewitz A, Kirste G, et al., German Pediatric Renal Transplantation Study Group. Pediatric renal transplantation with mycophenolate mofetil-based immunosuppression without induction: results after three years. Transplantation 2003 Feb 27; 75(4): 454–61

    Article  PubMed  CAS  Google Scholar 

  24. Abramowicz D, Del Carmen Rial M, Vitko S, et al. Cyclosporine withdrawal from a mycophenolate mofetil-containing immunosuppressive regimen: results of a five-year, prospective, randomized study. J Am Soc Nephrol 2005 Jul; 16(7): 2234–40

    Article  PubMed  CAS  Google Scholar 

  25. Cransberg K, Cornelissen M, Lilien M, et al. Maintenance immunosuppression with mycophenolate mofetil and corticosteroids in pediatric kidney transplantation: temporary benefit but not without risk. Transplantation 2007 Apr 27; 83(8): 1041–7

    Article  PubMed  CAS  Google Scholar 

  26. Krischock L, Gullett A, Bockenhauer D, et al. Calcineurin-inhibitor free immunosuppression with mycophenolate mofetil and corticosteroids in paediatric renal transplantation improves renal allograft function without in creasing acute rejection. Pediatr Transplant 2009 Jun; 13(4): 475–81

    Article  PubMed  CAS  Google Scholar 

  27. David-Neto E, Araujo LM, Lemos FC, et al. Introduction of mycophenolate mofetil and cyclosporin reduction in children with chronic transplant nephropathy. Pediatr Transplant 2001 Aug; 5(4): 302–9

    Article  PubMed  CAS  Google Scholar 

  28. Kerecuk L, Horsfield C, Taylor J. Improved long-term graft function in pediatric transplant renal recipients with chronic allograft nephropathy. Pediatr Transplant 2009 May; 13(3): 324–31

    Article  PubMed  Google Scholar 

  29. Filler G, Gellermann J, Zimmering M, et al. Effect of adding mycophenolate mofetil in paediatric renal transplant recipients with chronical cyclosporine nephrotoxicity. Transpl Int 2000; 13(3): 201–6

    Article  PubMed  CAS  Google Scholar 

  30. Tapia E, Franco M, Sanchez-Lozada LG, et al. Mycophenolate mofetil prevents arteriolopathy and renal injury in subtotal ablation despite persistent hypertension. Kidney Int 2003 Mar; 63(3): 994–1002

    Article  PubMed  CAS  Google Scholar 

  31. Kuypers DR. Benefit-risk assessment of sirolimus in renal transplantation. Drug Saf 2005; 28(2): 153–81

    Article  PubMed  CAS  Google Scholar 

  32. Faivre S, Kroemer G, Raymond E. Current development of mTOR inhibitors as anticancer agents. Nat Rev Drug Discov 2006 Aug; 5(8): 671–88

    Article  PubMed  CAS  Google Scholar 

  33. Rubinsztein DC, Gestwicki JE, Murphy LO, et al. Potential therapeutic applications of autophagy. Nat Rev Drug Discov 2007 Apr; 6(4): 304–12

    Article  PubMed  CAS  Google Scholar 

  34. Majumder PK, Febbo PG, Bikoff R, et al. mTOR inhibition reverses Aktdependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways. Nat Med 2004 Jun; 10(6): 594–601

    Article  PubMed  CAS  Google Scholar 

  35. Hartford CM, Ratain MJ. Rapamycin: something old, something new, sometimes borrowed and now renewed. Clin Pharmacol Ther 2007 Oct; 82(4): 381–8

    Article  PubMed  CAS  Google Scholar 

  36. Chapman JR, Valantine H, Albanell J, et al. Proliferation signal inhibitors in transplantation: questions at the cutting edge of everolimus therapy. Transplant Proc 2007 Dec; 39(10): 2937–50

    Article  PubMed  CAS  Google Scholar 

  37. Gaumann A, Schlitt HJ, Geissler EK. Immunosuppression and tumor development in organ transplant recipients: the emerging dualistic role of rapamycin. Transpl Int 2008 Mar; 21(3): 207–17

    Article  PubMed  CAS  Google Scholar 

  38. Höcker B, Feneberg R, Kopf S, et al. SRL-based immunosuppression vs. CNI minimization in pediatric renal transplant recipients with chronic CNI nephrotoxicity. Pediatr Transplant 2006 Aug; 10(5): 593–601

    Article  PubMed  Google Scholar 

  39. Knight RJ, Villa M, Laskey R, et al. Risk factors for impaired wound healing in sirolimus-treated renal transplant recipients. Clin Transplant 2007 Jul–Aug; 21(4): 460–5

    Article  PubMed  Google Scholar 

  40. Stallone G, Infante B, Grandaliano G, et al. Management of side effects of sirolimus therapy. Transplantation 2009 Apr 27; 87(8 Suppl.): S23–6

    Article  PubMed  CAS  Google Scholar 

  41. Vitko S, Margreiter R, Weimar W, et al. Three-year efficacy and safety results from a study of everolimus versus mycophenolate mofetil in de novo renal transplant patients. Am J Transplant 2005 Oct; 5(10): 2521–30

    Article  PubMed  CAS  Google Scholar 

  42. Morelon E, Stern M, Israel-Biet D, et al. Characteristics of sirolimus-associated interstitial pneumonitis in renal transplant patients. Transplantation 2001 Sep 15; 72(5): 787–90

    Article  PubMed  CAS  Google Scholar 

  43. Garrean S, Massad MG, Tshibaka M, et al. Sirolimus-associated interstitial pneumonitis in solid organ transplant recipients. Clin Transplant 2005 Oct; 19(5): 698–703

    Article  PubMed  Google Scholar 

  44. Chhajed PN, Dickenmann M, Bubendorf L, et al. Patterns of pulmonary complications associated with sirolimus. Respiration 2006; 73(3): 367–74

    Article  PubMed  CAS  Google Scholar 

  45. Butani L. Investigation of pediatric renal transplant recipients with heavy proteinuria after sirolimus rescue. Transplantation 2004 Nov 15; 78(9): 1362–6

    Article  PubMed  Google Scholar 

  46. Kahan BD. Sirolimus-based immunosuppression: present state of the art. J Nephrol 2004 Nov–Dec; 17Suppl. 8: S32–9

    PubMed  CAS  Google Scholar 

  47. Fritsche L, Budde K, Dragun D, et al. Testosterone concentrations and sirolimus in male renal transplant patients. Am J Transplant 2004 Jan; 4(1): 130–1

    Article  PubMed  CAS  Google Scholar 

  48. Huyghe E, Zairi A, Nohra J, et al. Gonadal impact of target of rapamycin inhibitors (sirolimus and everolimus) in male patients: an overview. Transpl Int 2007 Apr; 20(4): 305–11

    Article  PubMed  CAS  Google Scholar 

  49. Tenderich G, Fuchs U, Zittermann A, et al. Comparison of sirolimus and everolimus in their effects on blood lipid profiles and haematological parameters in heart transplant recipients. Clin Transplant 2007 Jul–Aug; 21(4): 536–43

    Article  PubMed  Google Scholar 

  50. Albano L, Berthoux F, Moal MC, et al. Incidence of delayed graft function and wound healing complications after deceased-donor kidney transplantation is not affected by de novo everolimus. Transplantation 2009 Jul 15; 88(1): 69–76

    Article  PubMed  CAS  Google Scholar 

  51. Pascual J, Boletis IN, Campistol JM. Everolimus (Certican) in renal transplantation: a review of clinical trial data, current usage, and future directions. Transplant Rev 2006; 20(1): 1–18

    Article  Google Scholar 

  52. Groth CG, Backman L, Morales JM, et al. Sirolimus (rapamycin)-based therapy in human renal transplantation: similar efficacy and different toxicity compared with cyclosporine. Sirolimus European Renal Transplant Study Group. Transplantation 1999 Apr 15; 67(7): 1036–42

    Article  PubMed  CAS  Google Scholar 

  53. Kreis H, Cisterne JM, Land W, et al. Sirolimus in association with mycophenolate mofetil induction for the prevention of acute graft rejection in renal allograft recipients. Transplantation 2000 Apr 15; 69(7): 1252–60

    Article  PubMed  CAS  Google Scholar 

  54. Larson TS, Dean PG, Stegall MD, et al. Complete avoidance of calcineurin inhibitors in renal transplantation: a randomized trial comparing sirolimus and tacrolimus. Am J Transplant 2006 Mar; 6(3): 514–22

    Article  PubMed  CAS  Google Scholar 

  55. Flechner SM, Goldfarb D, Solez K, et al. Kidney transplantation with sirolimus and mycophenolate mofetil-based immunosuppression: 5-year results of a randomized prospective trial compared to calcineurin inhibitor drugs. Transplantation 2007 Apr 15; 83(7): 883–92

    Article  PubMed  CAS  Google Scholar 

  56. Hamdy AF, Bakr MA, Ghoneim MA. Long-term efficacy and safety of a calcineurin inhibitor-free regimen in live-donor renal transplant recipients. J Am Soc Nephrol 2008 Jun; 19(6): 1225–32

    Article  PubMed  CAS  Google Scholar 

  57. Durrbach A, Rostaing L, Tricot L, et al. Prospective comparison of the use of sirolimus and cyclosporine in recipients of a kidney from an expanded criteria donor. Transplantation 2008 Feb 15; 85(3): 486–90

    Article  PubMed  Google Scholar 

  58. Ekberg H, Tedesco-Silva H, Demirbas A, et al. Reduced exposure to calcineurin inhibitors in renal transplantation. N Engl J Med 2007 Dec 20; 357(25): 2562–75

    Article  PubMed  CAS  Google Scholar 

  59. Hamdy AF, El-Agroudy AE, Bakr MA, et al. Comparison of sirolimus with low-dose tacrolimus versus sirolimus-based calcineurin inhibitor-free regimen in live donor renal transplantation. Am J Transplant 2005 Oct; 5(10): 2531–8

    Article  PubMed  CAS  Google Scholar 

  60. Lloberas N, Torras J, Alperovich G, et al. Different renal toxicity profiles in the association of cyclosporine and tacrolimus with sirolimus in rats. Nephrol Dial Transplant 2008 Oct; 23(10): 3111–9

    Article  PubMed  CAS  Google Scholar 

  61. Oberbauer R, Kreis H, Johnson RW, et al. Long-term improvement in renal function with sirolimus after early cyclosporine withdrawal in renal transplant recipients: 2-year results of the Rapamune Maintenance Regimen Study. Transplantation 2003 Jul 27; 76(2): 364–70

    Article  PubMed  CAS  Google Scholar 

  62. Budde K, Becker T, Arns W, et al. Analysis of renal function in everolimus/enteric-coated mycophenolate sodium treated de novo renal transplant recipients after calcineurin inhibitor withdrawal: the ZEUS study [abstract]. Am J Transplant 2009; 9: 259

    Google Scholar 

  63. Pietruck F, Becker T, Arns W, et al. Efficacy and safety of an everolimus/enteric-coated mycophenolate sodium regimen after calcineurin inhibitor withdrawal in de novo renal transplant recipients: results of the ZEUS trial [abstract]. Am J Transplant 2009; 9: 499

    Google Scholar 

  64. Baboolal K. A phase III prospective, randomized study to evaluate concentration-controlled sirolimus (rapamune) with cyclosporine dose minimization or elimination at six months in de novo renal allograft recipients. Transplantation 2003 Apr 27; 75(8): 1404–8

    Article  PubMed  CAS  Google Scholar 

  65. Stallone G, Infante B, Schena A, et al. Rapamycin for treatment of chronic allograft nephropathy in renal transplant patients. J Am Soc Nephrol 2005 Dec; 16(12): 3755–62

    Article  PubMed  CAS  Google Scholar 

  66. Watson CJ, Firth J, Williams PF, et al. A randomized controlled trial of late conversion from CNI-based to sirolimus-based immunosuppression following renal transplantation. Am J Transplant 2005 Oct; 5(10): 2496–503

    Article  PubMed  CAS  Google Scholar 

  67. Schena FP, Pascoe MD, Alberu J, et al. Conversion from calcineurin inhibitors to sirolimus maintenance therapy in renal allograft recipients: 24-month efficacy and safety results from the CONVERT trial. Transplantation 2009 Jan 27; 87(2): 233–42

    Article  PubMed  CAS  Google Scholar 

  68. Hymes LC, Warshaw BL, Amaral SG, et al. Tacrolimus withdrawal and conversion to sirolimus at three months post-pediatric renal transplantation. Pediatr Transplant 2008 Nov; 12(7): 773–7

    Article  PubMed  CAS  Google Scholar 

  69. Powell HR, Kara T, Jones CL. Early experience with conversion to sirolimus in a pediatric renal transplant population. Pediatr Nephrol 2007 Oct; 22(10): 1773–7

    Article  PubMed  Google Scholar 

  70. Falger JC, Mueller T, Arbeiter K, et al. Conversion from calcineurin inhibitor to sirolimus in pediatric chronic allograft nephropathy. Pediatr Transplant 2006 Jun; 10(4): 474–8

    Article  PubMed  CAS  Google Scholar 

  71. Ibanez JP, Monteverde ML, Diaz MA, et al. Sirolimus in chronic allograft nephropathy in pediatric recipients. Pediatr Transplant 2007 Nov; 11(7): 777–80

    Article  PubMed  CAS  Google Scholar 

  72. Weintraub L, Li L, Kambham N, et al. Patient selection critical for calcineurin inhibitor withdrawal in pediatric kidney transplantation. Pediatr Transplant 2008 Aug; 12(5): 541–9

    Article  PubMed  Google Scholar 

  73. Diekmann F, Budde K, Oppenheimer F, et al. Predictors of success in conversion from calcineurin inhibitor to sirolimus in chronic allograft dysfunction. Am J Transplant 2004 Nov; 4(11): 1869–75

    Article  PubMed  CAS  Google Scholar 

  74. Diekmann F, Budde K, Slowinski T, et al. Conversion to sirolimus for chronic allograft dysfunction: long-term results confirm predictive value of proteinuria. Transpl Int 2008 Feb; 21(2): 152–5

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to support the preparation of this manuscript. The authors have no conflicts of interest relevant to the contents of this review. Britta Höcker has received travel grants from Roche, Novartis, Astellas Pharma Europe, and Wyeth. Burkhard Tönshoff has received grant support and lecture fees from Astellas Pharma Europe, Novartis, Roche, and Wyeth.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Britta Höcker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Höcker, B., Tönshoff, B. Calcineurin Inhibitor-Free Immunosuppression in Pediatric Renal Transplantation. Pediatr-Drugs 13, 49–69 (2011). https://doi.org/10.2165/11538530-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11538530-000000000-00000

Keywords

Navigation