Skip to main content
Log in

Thrombin Receptor Antagonists for the Treatment of Atherothrombosis

Therapeutic Potential of Vorapaxar and E-5555

  • Leading Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Platelet activation, achieved through a variety of surface receptors and biochemical mediators, represents a key event in the pathogenesis of atherothrombosis and its clinical manifestations. The major pathways involved in platelet activation are triggered by thromboxane A2, adenosine diphosphate and thrombin, with the latter being the most potent of these agonists. Despite the effective inhibition of the first two pathways with aspirin and several generations of P2Y12 receptor antagonists, respectively, the recurrence of ischaemic events in patients with atherothrombosis remains high. In addition, there is a growing concern over the safety profile of increasingly powerful antiplatelet drugs in terms of bleeding, which has tempered expectations of newly developed compounds.

Thrombin receptor antagonists are a novel class of antiplatelet agents that inhibit thrombin-mediated platelet activation. Preliminary data indicate that these compounds may have the potential to improve ischaemic outcomes without significantly increasing the bleeding liability. Currently, two agents of this class are under clinical development: vorapaxar (previously known as SCH 530348) and E-5555. In this review we discuss this novel class of antiplatelet agents, focusing in particular on their therapeutic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Fig. 1
Fig. 2
Table II
Fig. 3
Table III
Fig. 4
Fig. 5
Fig. 6
Table IV

Similar content being viewed by others

References

  1. Offermanns S. Activation of platelet function through G protein-coupled receptors. Circ Res 2006; 99: 1293–304

    Article  PubMed  CAS  Google Scholar 

  2. Roth GJSN, Majerus PW. Acetylation of prostaglandin synthase by aspirin. Proc Natl Acad Sci U S A 1975; 72: 3073–6

    Article  PubMed  CAS  Google Scholar 

  3. The Clopidogrel in Unstable Angina to Prevent Recurrent Events Trial Investigators. Effects of clopidogrel in addition to aspirin in patients with acute coronary syndromes without ST-segment elevation. N Engl J Med 2001; 345: 494–502

    Article  Google Scholar 

  4. Wiviott SD, Braunwald E, McCabe CH, et al., TRITONTIMI 38 Investigators. Prasugrel versus clopidogrel in patients with acute coronary syndromes. N Engl J Med 2007; 357: 2001–15

    Article  PubMed  CAS  Google Scholar 

  5. Wallentin L, Becker RC, Budaj A, et al. Ticagrelor versus clopidogrel in patients with acute coronary syndromes. N Engl J Med 2009; 361: 1045–57

    Article  PubMed  CAS  Google Scholar 

  6. Bhatt DL, Lincoff AM, Gibson CM, et al. Intravenous platelet blockade with cangrelor during PCI. N Engl J Med 2009; 361: 2330–41

    Article  PubMed  CAS  Google Scholar 

  7. Mann KG. Thrombin formation. Chest 2003; 124: 4S–10S

    Article  PubMed  CAS  Google Scholar 

  8. Coughlin SR. Thrombin signalling and protease-activated receptors. Nature 2000; 407: 258–64

    Article  PubMed  CAS  Google Scholar 

  9. Coughlin SR. How the protease thrombin talks to cells. Proc Natl Acad Sci U S A 1999; 96: 11023–7

    Article  PubMed  CAS  Google Scholar 

  10. Chackalamannil S. Thrombin receptor (protease activated receptor-1) antagonists as potent antithrombotic agents with strong antiplatelet effects. J Med Chem 2006; 49: 5389–403

    Article  PubMed  CAS  Google Scholar 

  11. Gurbel PA, Tantry US. Combination antithrombotic therapies. Circulation 2010; 121: 569–83

    Article  PubMed  Google Scholar 

  12. Schomig A, Neumann F-J, Kastrati A, et al. A randomized comparison of antiplatelet and anticoagulant therapy after the placement of coronary-artery stents. N Engl J Med 1996; 334: 1084–9

    Article  PubMed  CAS  Google Scholar 

  13. Leon MBBD, Popma JJ, Gordon PC, et al. A clinical trial comparing three antithrombotic-drug regimens after coronary-artery stenting: stent anticoagulation restenosis study investigators. N Engl J Med 1998; 339: 1665–71

    Article  PubMed  CAS  Google Scholar 

  14. Shuldiner AR, O’Connell JR, Bliden KP, et al. Association of cytochrome P450 2C19 genotype with the antiplatelet effect and clinical efficacy of clopidogrel therapy. JAMA 2009; 302: 849–57

    Article  PubMed  CAS  Google Scholar 

  15. Mega JL, Close SL, Wiviott SD, et al. Cytochrome P-450 polymorphisms and response to clopidogrel. N Engl J Med 2009; 360: 354–62

    Article  PubMed  CAS  Google Scholar 

  16. Eikelboom JW, Weitz JI, Budaj A, et al. Clopidogrel does not suppress blood markers of coagulation activation in aspirin-treated patients with non-ST-elevation acute coronary syndromes. Eur Heart J 2002; 23: 1771–9

    Article  PubMed  CAS  Google Scholar 

  17. Cattaneo M, Zighetti ML, Lombardi R, et al. Molecular bases of defective signal transduction in the platelet P2Y12 receptor of a patient with congenital bleeding. Proc Natl Acad Sci U S A 2003; 100: 1978–83

    Article  PubMed  CAS  Google Scholar 

  18. Bhatt DL, Fox KAA, Hacke W, et al. Clopidogrel and aspirin versus aspirin alone for the prevention of atherothrombotic events. N Engl J Med 2006; 354: 1706–17

    Article  PubMed  CAS  Google Scholar 

  19. Becker RC, Moliterno DJ, Jennings LK, et al. Safety and tolerability of SCH 530348 in patients undergoing nonurgent percutaneous coronary intervention: a randomised, double-blind, placebo-controlled phase II study. Lancet 2009; 373: 919–28

    Article  PubMed  CAS  Google Scholar 

  20. Chackalamannil S, Wang Y, Greenlee WJ, et al. Discovery of a novel, orally active himbacine-based thrombin receptor antagonist (SCH 530348) with potent antiplatelet activity. J Med Chem 2008; 51: 3061–4

    Article  PubMed  CAS  Google Scholar 

  21. Serebruany VL, Kogushi M, Dastros-Pitei D, et al. The in-vitro effects of E5555 a protease-activated receptor (PAR)-1 antagonist, on platelet biomarkers in healthy volunteers and patients with coronary artery disease. Thromb Haemost 2009; 102: 111–9

    PubMed  CAS  Google Scholar 

  22. Vu TK, Hung DT, Wheaton VI, et al. Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell 1991; 64: 1057–68

    Article  PubMed  CAS  Google Scholar 

  23. Soto AG, Trejo J. N-Linked glycosylation of protease-activated receptor-1 second extracellular loop. J Biol Chem 2010; 285: 18781–93

    Article  PubMed  CAS  Google Scholar 

  24. Gandhi PS, Chen Z, Di Cera E. Crystal structure of thrombin bound to the uncleaved extracellular fragment of PAR1. J Biol Chem 2010; 285: 15393–8

    Article  PubMed  CAS  Google Scholar 

  25. Marino F, Pelc LA, Vogt A, et al. Engineering thrombin for selective specificity toward protein C and PAR1. J Biol Chem 2010; 285: 19145–52

    Article  PubMed  CAS  Google Scholar 

  26. Kahn ML, Zheng Y-W, Huang W, et al. A dual thrombin receptor system for platelet activation. Nature 1998; 394: 690–4

    Article  PubMed  CAS  Google Scholar 

  27. Harker LA, Hanson SR, Runge MS. Thrombin hypothesis of thrombus generation and vascular lesion formation. Am J Cardiol 1995; 75: 12B–7B

    Article  PubMed  CAS  Google Scholar 

  28. Xu W-f, Andersen H, Whitmore TE, et al. Cloning and characterization of human protease-activated receptor 4. Proc Natl Acad Sci U S A 1998; 95: 6642–6

    Article  PubMed  CAS  Google Scholar 

  29. Hirano K. The roles of proteinase-activated receptors in the vascular physiology and pathophysiology. Arterioscler Thromb Vasc Biol 2007; 27: 27–36

    Article  PubMed  CAS  Google Scholar 

  30. London FS, Marcinkiewicz M, Walsh PN. PAR-1-stimulated factor IXa binding to a small platelet sub-population requires a pronounced and sustained increase of cytoplasmic calcium. Biochemistry 2006; 45: 7289–98

    Article  PubMed  CAS  Google Scholar 

  31. Keuren JFW, Wielders SJH, Ulrichts H, et al. Synergistic effect of thrombin on collagen-induced platelet procoagulant activity is mediated through protease-activated receptor-1. Arterioscler Thromb Vasc Biol 2005; 25: 1499–505

    Article  PubMed  CAS  Google Scholar 

  32. Riewald M, Kravchenko VV, Petrovan RJ, et al. Gene induction by coagulation factor Xa is mediated by activation of pro tease-activated receptor 1. Blood 2001; 97: 3109–16

    Article  PubMed  CAS  Google Scholar 

  33. Schuepbach RA, Riewald M. Coagulation factor Xa cleaves pro tease-activated receptor-1 and mediates signaling dependent on binding to the endothelial protein C receptor. J Thromb Haemost 2010; 8: 379–88

    Article  PubMed  CAS  Google Scholar 

  34. Lova P, Campus F, Lombardi R, et al. Contribution of protease-activated receptors 1 and 4 and glycoprotein Ib-IX-V in the G(i)-independent activation of platelet Rap1B by thrombin. J Biol Chem 2004; 279: 25299–306

    Article  PubMed  CAS  Google Scholar 

  35. Dubois C, Steiner B, Meyer Reigner SC. Contribution of PAR-1, PAR-4 and GPIbalpha in intracellular signaling leading to the cleavage of the beta3 cytoplasmic domain during thrombin-induced platelet aggregation. Thromb Haemost 2004; 91: 733–42

    PubMed  CAS  Google Scholar 

  36. Swift S, Xu J, Trivedi V, et al. A Novel Protease-activated receptor-1 interactor, bicaudal D1, regulates G protein signaling and internalization. J Biol Chem 2010; 285: 11402–10

    Article  PubMed  CAS  Google Scholar 

  37. Andrade-Gordon P, Maryanoff BE, Derian CK, et al. Design, synthesis, and biological characterization of a peptide-mimetic antagonist for a tethered-ligand receptor. Proc Natl Acad Sci U S A 1999; 96: 12257–62

    Article  PubMed  CAS  Google Scholar 

  38. Chackalamannil SDR, Asberom T, Doller D, et al. A highly efficient total synthesis of (+)-himbacine. J Am Chem Soc 1996; 118: 9812–3

    Article  CAS  Google Scholar 

  39. Doller DCS, Czarniecki M, McQuade R, et al. Design, synthesis, and structure-activity relationship studies of himbacine derived muscarinic receptor antagonists. Bioorg Med Chem Lett 1999; 9: 901–6

    Article  PubMed  CAS  Google Scholar 

  40. Pharmacology of a selective, orally active thrombin receptor antagonist, SCH 530348. Report no. 46293. Kenilworth (NJ): Schering-Plough Research Institute, 2004

  41. Chintala MVS, Kurowski S, Sabin C, et al. SCH 530348, a novel oral antiplatelet agent, demonstrated no bleeding risk alone or in combination with aspirin and clopidogrel in cynomolgus monkeys [abstract no. P579]. Atheroscler Thromb Vasc Biol 2008; 28: e32–149

    Article  Google Scholar 

  42. Kosoglou TRL, Tiessen R, Fales RR, et al. Trap-induced platelet aggregation following single and multiple rising oral doses of SCH 530348, a novel thrombin receptor antagonist, in healthy volunteers [abstract no. PI-40]. Clin Pharmacol Ther 2009; 85 Suppl. 1: 40

    Google Scholar 

  43. Kosoglou TRL, Kasserra C, Young S, et al. Optimizing dose of the novel thrombin receptor antagonist SCH 530348 based on pharmacodynamics and pharmacokinetics in healthy subjects [abstract no. PII-42]. Clin Pharmacol Ther 2008; 83 Suppl. 1: S55

    Google Scholar 

  44. SCH 530348: rising-multiple-dose safety and tolerance study of SCH 530348 in healthy volunteers [study report for protocol P03450]. Document ID 2926091. Kenilworth (NJ): Schering-Plough Research Institute, 2006

  45. Jennings LKEA, Becker RC, Reyderman L, et al. Thrombin receptor antagonist (TRA; SCH530348) is a selective, potent inhibitor of PAR1 activity with predictable pharmacokinetics [abstract no. 3010]. Circulation 2007; 116: 674

    Google Scholar 

  46. Chintala M, Kurowski S, Zhai Y, et al. SCH 530348 Is a novel oral antiplatelet agent selective for protease-activated receptor-1 (PAR-1) receptor subtype without partial agonist activity. FASEB J 2009; 23: 757.6

    Google Scholar 

  47. Coughlin SR. Protease-activated receptors in hemostasis, thrombosis and vascular biology. J Thromb Haemost 2005; 3: 1800–14

    Article  PubMed  CAS  Google Scholar 

  48. Sambrano GR, Weiss EJ, Zheng Y-W, et al. Role of thrombin signalling in platelets in haemostasis and thrombosis. Nature 2001; 413: 74–8

    Article  PubMed  CAS  Google Scholar 

  49. Hamilton JR, Cornelissen I, Coughlin SR. Impaired hemostasis and protection against thrombosis in protease-activated receptor 4-deficient mice is due to lack of thrombin signaling in platelets. J Thromb Haemost 2004; 2: 1429–35

    Article  PubMed  CAS  Google Scholar 

  50. SCH 530348: influence of chronic renal disease and hemodialysis on the single-dose pharmacokinetics and pharmacodynamics of SCH 530348 [study report for protocol P03464]. Document ID 3303095. Kenilworth (NJ): Schering-Plough Research Institute, 2005

  51. Reyderman L, Kosoglu T, Tseng J, et al. The effect of food and antiacid on pharmacokinetics (PK) of SCH 530348 in healthy subjects [poster no. PI-42]. Clin Pharmacol Ther 2009; 85 Suppl. 1: S21

    Google Scholar 

  52. Goto SYT, Ikeda Y, Kato K, et al. Safety and exploratory efficacy of the novel thrombin receptor (PAR-1) antagonist SCH 530348 for non-ST-segment elevation acute coronary syndrome. J Atheroscler Thromb 2010; 17: 156–64

    Article  PubMed  CAS  Google Scholar 

  53. Matsuoka T, Kogushi M, Kawata T, et al. Inhibitory effect of E5555, an orally active thrombin receptor antagonist, on intimal hyperplasia following balloon injury [abstract]. J Am Coll Cardiol 2004; 43: 68A

    Article  Google Scholar 

  54. Kogushi M, Kobayashi H, Matsuoka T, et al. Antithrombotic and bleeding time effects of E5555, an orally active protease-activated receptor-1 antagonist, in guinea pigs [abstract]. Circulation 2003; 108 Suppl. IV: 280

    Google Scholar 

  55. Kogushi M, Yokohama H, Kitamura S, et al. Effects of E5555, a protease-activated receptor-1 antagonist, on the inflammatory markers in vitro [abstract no. PM-059]. XXIst Congress of the International Society on Thrombosis and Haemostasis; 2007 Jul 6–12; Geneva

  56. Kai Y, Hirano K, Maeda Y, et al. Prevention of the hypercontractile response to thrombin by proteinase-activated receptor-1 antagonist in subarachnoid hemorrhage. Stroke 2007; 38: 3259–65

    Article  PubMed  CAS  Google Scholar 

  57. Morrow DA, Scirica BM, Fox KAA, et al. Evaluation of a novel antiplatelet agent for secondary prevention in patients with a history of atherosclerotic disease: design and rationale for the thrombin-receptor antagonist in secondary prevention of atherothrombotic ischemic events (TRA 2°P)-TIMI 50 trial. Am Heart J 2009; 158: 335–41.e3

    Article  PubMed  CAS  Google Scholar 

  58. The TRA·CER Executive and Steering Committees. The thrombin receptor antagonist for clinical event reduction in acute coronary syndrome (TRA·CER) trial: study design and rationale. Am Heart J 2009; 158: 327–34.e4

    Article  Google Scholar 

  59. Létienne R, Leparq-Panissié A, Calmettes Y, et al. Antithrombotic activity of F 16618, a new PAR1 antagonist evaluated in extracorporeal arterio-venous shunt in the rat. Biochem Pharmacol 2010; 79: 1616–21

    Article  PubMed  Google Scholar 

  60. Planty B, Pujol C, Lamothe M, et al. Exploration of a new series of PAR1 antagonists. Bioorg Med Chem Lett 2010; 20: 1735–9

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this review. Drs Becker, Leonardi and Tricoci declare that The Duke Clinical Research Institute has received research grants for clinical trials with PAR-1 receptor antagonists. Drs Becker and Tricoci have received scientific advisory board honoraria from Merck.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard C. Becker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leonardi, S., Tricoci, P. & Becker, R.C. Thrombin Receptor Antagonists for the Treatment of Atherothrombosis. Drugs 70, 1771–1783 (2010). https://doi.org/10.2165/11538060-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11538060-000000000-00000

Keywords

Navigation