Skip to main content

Advertisement

Log in

Therapeutic Approaches to Multiple Sclerosis

An Update on Failed, Interrupted, or Inconclusive Trials of Immunomodulatory Treatment Strategies

  • Review Article
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

Multiple sclerosis (MS) continues to be a therapeutic challenge, and much effort is being made to develop new and more effective immune therapies. Particularly in the past decade, neuroimmunologic research has delivered new and highly effective therapeutic options, as seen in the growing number of immunotherapeutic agents and biologics in development. However, numerous promising clinical trials have failed to show efficacy or have had to be halted prematurely because of unexpected adverse events. Some others have shown results that are of unknown significance with regard to a reliable assessment of true efficacy versus safety. For example, studies of the highly innovative monoclonal antibodies that selectively target immunologic effector molecules have not only revealed the impressive efficacy of such treatments, they have also raised serious concerns about the safety profiles of these antibodies. These results add a new dimension to the estimation of risk-benefit ratios regarding acute or long-term adverse effects.

Therapeutic approaches that have previously failed in MS have indicated that there are discrepancies between theoretical expectations and practical outcomes of different compounds. Learning from these defeats helps to optimize future study designs and to reduce the risks to patients. This review summarizes trials on MS treatments since 2001 that failed or were interrupted, attempts to analyze the underlying reasons for failure, and discusses the implications for our current view of MS pathogenesis, clinical practice, and design of future studies. In order to maintain clarity, this review focuses on anti-inflammatory therapies and does not include studies on already approved and effective disease-modifying therapies, albeit used in distinct administration routes or under different paradigms. Neuroprotective and alternative treatment strategies are presented elsewhere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II
Table III
Table IV
Table V
Table VI
Table VII

Similar content being viewed by others

References

  1. Hohlfeld R, Wekerle H. Autoimmune concepts of multiple sclerosis as a basis for selective immunotherapy: from pipe dreams to (therapeutic) pipelines. Proc Natl Acad Sci U S A 2004 Oct 5; 101Suppl. 2: 14599–606

    Article  PubMed  CAS  Google Scholar 

  2. Kleinschnitz C, Meuth SG, Kieseier BC, et al. Immunotherapeutic approaches in MS: update on pathophysiology and emerging agents or strategies 2006. Endocr Metab Immune Disord Drug Targets 2007 Mar; 7(1): 35–63

    Article  PubMed  CAS  Google Scholar 

  3. Friese MA, Montalban X, Willcox N, et al. The value of animal models for drug development in multiple sclerosis. Brain 2006; 129: 1940–52

    Article  PubMed  Google Scholar 

  4. Hohlfeld R, Wiendl H. The ups and downs of multiple sclerosis therapeutics. Ann Neurol 2001 Mar; 49(3): 281–4

    Article  PubMed  CAS  Google Scholar 

  5. Wiendl H, Hohlfeld R. Therapeutic approaches in multiple sclerosis: lessons from failed and interrupted treatment trials. BioDrugs 2002; 16(3): 183–200

    Article  PubMed  CAS  Google Scholar 

  6. Hohlfeld R, Wekerle H. Immunological update on multiple sclerosis. Curr Opin Neurol 2001; 14(3): 299–304

    Article  PubMed  CAS  Google Scholar 

  7. Adorini L. Immunotherapeutic approaches in multiple sclerosis. J Neurol Sci 2004 Aug 15; 223(1): 13–24

    Article  PubMed  CAS  Google Scholar 

  8. Kasper LH, Everitt D, Leist TP, et al. A phase I trial of an interleukin-12/23 monoclonal antibody in relapsing multiple sclerosis. Curr Med Res Opin 2006 Sep; 22(9): 1671–8

    Article  PubMed  CAS  Google Scholar 

  9. Segal BM, Constantinescu CS, Raychaudhuri A, et al. Repeated subcutaneous injections of IL12/23 p40 neutralising antibody, ustekinumab, in patients with relapsing-remitting multiple sclerosis: a phase II, double-blind, placebo-controlled, randomised, dose-ranging study. Lancet Neurol 2008 Sep; 7(9): 796–804

    Article  PubMed  CAS  Google Scholar 

  10. Feng J, Misu T, Fujihara K, et al. Ibudilast, a nonselective phosphodiesterase inhibitor, regulates Th1/Th2 balance and NKT cell subset in multiple sclerosis. Mult Scler 2004 Oct; 10(5): 494–8

    Article  PubMed  CAS  Google Scholar 

  11. Paul F, Waiczies S, Wuerfel J, et al. Oral high-dose atorvastatin treatment in relapsing-remitting multiple sclerosis. PLoS One 2008; 3(4): e1928

    Article  PubMed  CAS  Google Scholar 

  12. Birnbaum G, Cree B, Altafullah I, et al. Combining beta interferon and atorvastatin may increase disease activity in multiple sclerosis. Neurology 2008 Oct 28; 71(18): 1390–5

    Article  PubMed  CAS  Google Scholar 

  13. Hunter CA. New IL-12-family members: IL-23 and IL-27, cytokines with divergent functions. Nat Rev Immunol 2005 Jul; 5(7): 521–31

    Article  PubMed  CAS  Google Scholar 

  14. Kikly K, Liu L, Na S, et al. The IL-23/Th(17) axis: therapeutic targets for autoimmune inflammation. Curr Opin Immunol 2006 Dec; 18(6): 670–5

    Article  PubMed  CAS  Google Scholar 

  15. Smith T, Hewson AK, Kingsley CL, et al. Interleukin-12 induces relapse in experimental allergic encephalomyelitis in the Lewis rat. Am J Pathol 1997 Jun; 150(6): 1909–17

    PubMed  CAS  Google Scholar 

  16. Gran B, Zhang GX, Rostami A. Role of the IL-12/IL-23 system in the regulation of T-cell responses in central nervous system inflammatory demyelination. Crit Rev Immunol 2004; 24(2): 111–28

    Article  PubMed  CAS  Google Scholar 

  17. Brok HP, van Meurs M, Blezer E, et al. Prevention of experimental autoimmune encephalomyelitis in common marmosets using an anti-IL-12p40 monoclonal antibody. J Immunol 2002 Dec 1; 169(11): 6554–63

    PubMed  CAS  Google Scholar 

  18. Aranami T, Yamamura T. Th17 Cells and autoimmune encephalomyelitis (EAE/MS). Allergol Int 2008 Jun; 57(2): 115–20

    Article  PubMed  CAS  Google Scholar 

  19. Cooper AM, Khader SA. IL-12p40: an inherently agonistic cytokine. Trends Immunol 2007 Jan; 28(1): 33–8

    Article  PubMed  CAS  Google Scholar 

  20. Holscher C. The power of combinatorial immunology: IL-12 and IL-12-related dimeric cytokines in infectious diseases. Med Microbiol Immunol 2004 Feb; 193(1): 1–17

    Article  PubMed  CAS  Google Scholar 

  21. Mattner F, Fischer S, Guckes S, et al. The interleukin-12 subunit p40 specifically inhibits effects of the interleukin-12 heterodimer. Eur J Immunol 1993 Sep; 23(9): 2202–8

    Article  PubMed  CAS  Google Scholar 

  22. Ling P, Gately MK, Gubler U, et al. Human IL-12 p40 homodimer binds to the IL-12 receptor but does not mediate biologic activity. J Immunol 1995 Jan 1; 154(1): 116–27

    PubMed  CAS  Google Scholar 

  23. Yoshimoto T, Takeda K, Tanaka T, et al. IL-12 up-regulates IL-18 receptor expression on T cells, Th1 cells, and B cells: synergism with IL-18 for IFN-gamma production. J Immunol 1998 Oct 1; 161(7): 3400–7

    PubMed  CAS  Google Scholar 

  24. Costa GL, Sandora MR, Nakajima A, et al. Adoptive immunotherapy of experimental autoimmune encephalomyelitis via T cell delivery of the IL-12 p40 subunit. J Immunol 2001 Aug 15; 167(4): 2379–87

    PubMed  CAS  Google Scholar 

  25. Sommer N, Loschmann PA, Northoff GH, et al. The antidepressant rolipram suppresses cytokine production and prevents autoimmune encephalomyelitis. Nat Med 1995 Mar; 1(3): 244–8

    Article  PubMed  CAS  Google Scholar 

  26. Bielekova B, Orlowski R, Howard T, et al. Treatment of MS patients with selective PDE-4 inhibitor rolipram inhibits Th1/Th17 T cell responses, but fails to inhibit brain inflammatory activity. American Academy of Neurology 60th Annual Meeting; 2008 Apr 12–19; Chicago (IL)

  27. Zhang HT. Cyclic AMP-specific phosphodiesterase-4 as a target for the development of antidepressant drugs. Curr Pharm Des 2009; 15(14): 1688–98

    Article  PubMed  CAS  Google Scholar 

  28. Kwak B, Mulhaupt F, Myit S, et al. Statins as a newly recognized type of immunomodulator. Nat Med 2000 Dec; 6(12): 1399–402

    Article  PubMed  CAS  Google Scholar 

  29. Zamvil SS, Steinman L. Cholesterol-lowering statins possess anti-inflammatory activity that might be useful for treatment of MS. Neurology 2002 Oct 8; 59(7): 970–1

    Article  PubMed  Google Scholar 

  30. Zhang X, Jin J, Peng X, et al. Simvastatin inhibits IL-17 secretion by targeting multiple IL-17-regulatory cytokines and by inhibiting the expression of IL-17 transcription factor RORC in CD4+ lymphocytes. J Immunol 2008 May 15; 180(10): 6988–96

    PubMed  CAS  Google Scholar 

  31. Youssef S, Stuve O, Patarroyo JC, et al. The HMG-CoA reductase inhibitor, atorvastatin, promotes a Th2 bias and reverses paralysis in central nervous system autoimmune disease. Nature 2002 Nov 7; 420(6911): 78–84

    Article  PubMed  CAS  Google Scholar 

  32. Stanislaus R, Gilg AG, Singh AK, et al. Immunomodulation of experimental autoimmune encephalomyelitis in the Lewis rats by Lovastatin. Neurosci Lett 2002 Nov 29; 333(3): 167–70

    Article  PubMed  CAS  Google Scholar 

  33. Stanislaus R, Singh AK, Singh I. Lovastatin treatment decreases mononuclear cell infiltration into the CNS of Lewis rats with experimental allergic encephalomyelitis. J Neurosci Res 2001 Oct 15; 66(2): 155–62

    Article  PubMed  CAS  Google Scholar 

  34. Ifergan I, Wosik K, Cayrol R, et al. Statins reduce human blood-brain barrier permeability and restrict leukocyte migration: relevance to multiple sclerosis. Ann Neurol 2006 Jul; 60(1): 45–55

    Article  PubMed  CAS  Google Scholar 

  35. Nath N, Giri S, Prasad R, et al. Potential targets of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor for multiple sclerosis therapy. J Immunol 2004 Jan 15; 172(2): 1273–86

    PubMed  CAS  Google Scholar 

  36. Vollmer T, Key L, Durkalski V, et al. Oral simvastatin treatment in relapsing-remitting multiple sclerosis. Lancet 2004 May 15; 363(9421): 1607–8

    Article  PubMed  CAS  Google Scholar 

  37. Goldman MD, Cohen JA. Statins to treat multiple sclerosis: friend or foe? Neurology 2008 Oct 28; 71(18): 1386–7

    Article  PubMed  Google Scholar 

  38. Neuhaus O, Strasser-Fuchs S, Fazekas F, et al. Statins as immunomodulators: comparison with interferon-beta 1b in MS. Neurology 2002 Oct 8; 59(7): 990–7

    Article  PubMed  CAS  Google Scholar 

  39. Sellner J, Greeve I, Findling O, et al. Effect of interferon-beta and atorvastatin on Th1/Th2 cytokines in multiple sclerosis. Neurochem Int 2008 Jul; 53(1–2): 17–21

    Article  PubMed  CAS  Google Scholar 

  40. Kieseier BC, Archelos JJ, Hartung HP. Different effects of simvastatin and interferon beta on the proteolytic activity of matrix metalloproteinases. Arch Neurol 2004 Jun; 61(6): 929–32

    Article  PubMed  Google Scholar 

  41. Miron VE, Zehntner SP, Kuhlmann T, et al. Statin therapy inhibits remyelination in the central nervous system. Am J Pathol 2009 May; 174(5): 1880–90

    Article  PubMed  CAS  Google Scholar 

  42. Frauwirth KA, Thompson CB. Activation and inhibition of lymphocytes by costimulation. J Clin Invest 2002 Feb; 109(3): 295–9

    PubMed  CAS  Google Scholar 

  43. Kobata T, Azuma M, Yagita H, et al. Role of costimulatory molecules in autoimmunity. Rev Immunogenet 2000; 2(1): 74–80

    PubMed  CAS  Google Scholar 

  44. Salomon B, Bluestone JA. Complexities of CD28/B7: CTLA-4 costimulatory pathways in autoimmunity and transplantation. Annu Rev Immunol 2001; 19: 225–52

    Article  PubMed  CAS  Google Scholar 

  45. Anderson DE, Sharpe AH, Hafler DA. The B7-CD28/CTLA-4 costimulatory pathways in autoimmune disease of the central nervous system. Curr Opin Immunol 1999 Dec; 11(6): 677–83

    Article  PubMed  CAS  Google Scholar 

  46. Anderson DE, Bieganowska KD, Bar-Or A, et al. Paradoxical inhibition of T-cell function in response to CTLA-4 blockade: heterogeneity within the human T-cell population. Nat Med 2000 Feb; 6(2): 211–4

    Article  PubMed  CAS  Google Scholar 

  47. Buck D, Kroner A, Rieckmann P, et al. Analysis of the C/T(−1) single nucleotide polymorphism in the CD40 gene in multiple sclerosis. Tissue Antigens 2006 Oct; 68(4): 335–8

    Article  PubMed  CAS  Google Scholar 

  48. Maurer M, Loserth S, Kolb-Maurer A, et al. A polymorphism in the human cytotoxic T-lymphocyte antigen 4 (CTLA4) gene (exon 1 + 49) alters T-cell activation. Immunogenetics 2002 Apr; 54(1): 1–8

    Article  PubMed  CAS  Google Scholar 

  49. Westhovens R, Verschueren P. Translating co-stimulation blockade into clinical practice [abstract]. Arthritis Res Ther 2008; 10Suppl. 1: S4

    Article  PubMed  CAS  Google Scholar 

  50. Viglietta V, Bourcier K, Buckle GJ, et al. CTLA4Ig treatment in patients with multiple sclerosis: an open-label, phase 1 clinical trial. Neurology 2008 Sep 16; 71(12): 917–24

    Article  PubMed  CAS  Google Scholar 

  51. Fieschi C. A phase II randomised, double-blind, placebo-controlled study to evaluate the preliminary efficacy and safety of abatacept, a selective costimulation modulator, in patients with relapsing-remitting multiple sclerosis [abstract no. 0140]. 15th Meeting of the European Neurological Society; 2005 Jun 18–22; Vienna

  52. Dumont FJ. IDEC-131: IDEC/Eisai. Curr Opin Investig Drugs 2002 May; 3(5): 725–34

    PubMed  CAS  Google Scholar 

  53. Couzin J. Drug discovery: magnificent obsession. Science 2005 Mar 18; 307(5716): 1712–5

    Article  PubMed  CAS  Google Scholar 

  54. Pershadsingh HA. Peroxisome proliferator-activated receptor-gamma: therapeutic target for diseases beyond diabetes: quo vadis? Expert Opin Investig Drugs 2004 Mar; 13(3): 215–28

    Article  PubMed  CAS  Google Scholar 

  55. Shevach EM. CD4+ CD25+ suppressor T cells: more questions than answers. Nat Rev Immunol 2002 Jun; 2(6): 389–400

    PubMed  CAS  Google Scholar 

  56. Hurwitz AA, Sullivan TJ, Krummel MF, et al. Specific blockade of CTLA-4/B7 interactions results in exacerbated clinical and histologic disease in an actively-induced model of experimental allergic encephalomyelitis. J Neuroimmunol 1997 Mar; 73(1–2): 57–62

    Article  PubMed  Google Scholar 

  57. Hurwitz AA, Sullivan TJ, Sobel RA, et al. Cytotoxic T lymphocyte antigen-4 (CTLA-4) limits the expansion of encephalitogenic T cells in experimental autoimmune encephalomyelitis (EAE)-resistant BALB/c mice. Proc Natl Acad Sci U S A 2002 Mar 5; 99(5): 3013–7

    Article  PubMed  CAS  Google Scholar 

  58. Karandikar NJ, Eagar TN, Vanderlugt CL, et al. CTLA-4 downregulates epitope spreading and mediates remission in relapsing experimental autoimmune encephalomyelitis. J Neuroimmunol 2000 Sep 22; 109(2): 173–80

    Article  PubMed  CAS  Google Scholar 

  59. Ligers A, Xu C, Saarinen S, et al. The CTLA-4 gene is associated with multiple sclerosis. J Neuroimmunol 1999 Jun 1; 97(1–2): 182–90

    Article  PubMed  CAS  Google Scholar 

  60. Fukazawa T, Yanagawa T, Kikuchi S, et al. CTLA-4 gene polymorphism may modulate disease in Japanese multiple sclerosis patients. J Neurol Sci 1999 Dec 1; 171(1): 49–55

    Article  PubMed  CAS  Google Scholar 

  61. Linsley PS, Brady W, Urnes M, et al. CTLA-4 is a second receptor for the B cell activation antigen B7. J Exp Med 1991 Sep 1; 174(3): 561–9

    Article  PubMed  CAS  Google Scholar 

  62. Bluestone JA, St Clair EW, Turka LA. CTLA4Ig: bridging the basic immunology with clinical application. Immunity 2006 Mar; 24(3): 233–8

    Article  PubMed  CAS  Google Scholar 

  63. Arnason B. The role of cytokines in multiple sclerosis. Neurology 1995 Jun; 45(6 Suppl. 6): S54–5

    Article  PubMed  CAS  Google Scholar 

  64. Bluestone JA. CTLA-4Ig is finally making it: a personal perspective. Am J Transplant 2005 Mar; 5(3): 423–4

    Article  PubMed  CAS  Google Scholar 

  65. Quezada SA, Jarvinen LZ, Lind EF, et al. CD40/CD154 interactions at the interface of tolerance and immunity. Annu Rev Immunol 2004; 22: 307–28

    Article  PubMed  CAS  Google Scholar 

  66. Daoussis D, Andonopoulos AP, Liossis SN. Targeting CD40L: a promising therapeutic approach. Clin Diagn Lab Immunol 2004 Jul; 11(4): 635–41

    PubMed  CAS  Google Scholar 

  67. Howard LM, Miga AJ, Vanderlugt CL, et al. Mechanisms of immunotherapeutic intervention by anti-CD40L (CD 154) antibody in an animal model of multiple sclerosis. J Clin Invest 1999 Jan; 103(2): 281–90

    Article  PubMed  CAS  Google Scholar 

  68. Kawai T, Andrews D, Colvin RB, et al. Thromboembolic complications after treatment with monoclonal antibody against CD40 ligand [letter]. Nat Med 2000 Feb; 6(2): 114

    Article  CAS  Google Scholar 

  69. Pershadsingh HA, Heneka MT, Saini R, et al. Effect of pioglitazone treatment in a patient with secondary multiple sclerosis. J Neuroinflammation 2004 Apr 20; 1(1): 3

    Article  PubMed  Google Scholar 

  70. Dello Russo C, Gavrilyuk V, Weinberg G, et al. Peroxisome proliferator-activated receptor gamma thiazolidinedione agonists increase glucose metabolism in astrocytes. J Biol Chem 2003 Feb 21; 278(8): 5828–36

    Article  Google Scholar 

  71. Storer PD, Xu J, Chavis J, et al. Peroxisome proliferator-activated receptor-gamma agonists inhibit the activation of microglia and astrocytes: implications for multiple sclerosis. J Neuroimmunol 2005 Apr; 161(1–2): 113–22

    Article  PubMed  CAS  Google Scholar 

  72. Dormandy JA, Charbonnel B, Eckland DJ, et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet 2005 Oct 8; 366(9493): 1279–89

    Article  PubMed  CAS  Google Scholar 

  73. Diab A, Deng C, Smith JD, et al. Peroxisome proliferator-activated receptor-gamma agonist 15-deoxy-Delta(12,14)-prostaglandin J(2) ameliorates experimental autoimmune encephalomyelitis. J Immunol 2002 Mar 1; 168(5): 2508–15

    PubMed  CAS  Google Scholar 

  74. Feinstein DL, Galea E, Gavrilyuk V, et al. Peroxisome proliferator-activated receptor-gamma agonists prevent experimental autoimmune encephalomyelitis. Ann Neurol 2002 Jun; 51(6): 694–702

    Article  PubMed  CAS  Google Scholar 

  75. Lovett-Racke AE, Hussain RZ, Northrop S, et al. Peroxisome proliferator-activated receptor alpha agonists as therapy for autoimmune disease. J Immunol 2004 May 1; 172(9): 5790–8

    PubMed  CAS  Google Scholar 

  76. Klotz L, Schmidt M, Giese T, et al. Proinflammatory stimulation and pioglitazone treatment regulate peroxisome proliferator-activated receptor gamma levels in peripheral blood mononuclear cells from healthy controls and multiple sclerosis patients. J Immunol 2005 Oct 15; 175(8): 4948–55

    PubMed  CAS  Google Scholar 

  77. Kaiser CC, Shukla DK, Stebbins GT, et al. A pilot test of pioglitazone as an add-on in patients with relapsing remitting multiple sclerosis. J Neuroimmunol 2009 Jun 25; 211(1–2): 124–30

    Article  PubMed  CAS  Google Scholar 

  78. GlaxoSmithKline Clinical Study Register. Study No. 49653/452: A randomized, double-blind, parallel group, placebo-controlled study to investigate the safety, tolerability and efficacy of six months' administration of AVANDIA (rosiglitazone maleate) in subjects with Relapsing-Remitting Multiple Sclerosis (MS) [online]. Available from URL: http://www.gskclinicalstudyregister.com/files/pdf/23034.pdf [Accessed 2010 Jun 13]

  79. Baggiolini M. Chemokines and leukocyte traffic. Nature 1998 Apr 9; 392(6676): 565–8

    Article  PubMed  CAS  Google Scholar 

  80. Engelhardt B, Ransohoff RM. The ins and outs of T-lymphocyte trafficking to the CNS: anatomical sites and molecular mechanisms. Trends Immunol 2005 Sep; 26(9): 485–95

    Article  PubMed  CAS  Google Scholar 

  81. Charo IF, Ransohoff RM. The many roles of chemokines and chemokine receptors in inflammation. N Engl J Med 2006 Feb 9; 354(6): 610–21

    Article  PubMed  CAS  Google Scholar 

  82. Columba-Cabezas S, Serafini B, Ambrosini E, et al. Induction of macrophage-derived chemokine/CCL22 expression in experimental autoimmune encephalomyelitis and cultured microglia: implications for disease regulation. J Neuroimmunol 2002 Sep; 130(1–2): 10–21

    Article  PubMed  CAS  Google Scholar 

  83. Sorensen TL, Trebst C, Kivisakk P, et al. Multiple sclerosis: a study of CXCL10 and CXCR3 co-localization in the inflamed central nervous system. J Neuroimmunol 2002 Jun; 127(1–2): 59–68

    Article  PubMed  CAS  Google Scholar 

  84. Omari KM, John GR, Sealfon SC, et al. CXC chemokine receptors on human oligodendrocytes: implications for multiple sclerosis. Brain 2005 May; 128 (Pt 5): 1003–15

    Article  PubMed  Google Scholar 

  85. Omari KM, John G, Lango R, et al. Role for CXCR2 and CXCL1 on glia in multiple sclerosis. Glia 2006 Jan 1; 53(1): 24–31

    Article  PubMed  Google Scholar 

  86. Sorensen TL, Tani M, Jensen J, et al. Expression of specific chemokines and chemokine receptors in the central nervous system of multiple sclerosis patients. J Clin Invest 1999 Mar; 103(6): 807–15

    Article  PubMed  CAS  Google Scholar 

  87. Ubogu EE, Cossoy MB, Ransohoff RM. The expression and function of chemokines involved in CNS inflammation. Trends Pharmacol Sci 2006 Jan; 27(1): 48–55

    Article  PubMed  CAS  Google Scholar 

  88. Gaupp S, Pitt D, Kuziel WA, et al. Experimental autoimmune encephalomyelitis (EAE) in CCR2(−/−) mice: susceptibility in multiple strains. Am J Pathol 2003 Jan; 162(1): 139–50

    Article  PubMed  Google Scholar 

  89. Fox RJ, Ransohoff RM. New directions in MS therapeutics: vehicles of hope. Trends Immunol 2004 Dec; 25(12): 632–6

    Article  PubMed  CAS  Google Scholar 

  90. Ransohoff RM, Liu L, Cardona AE. Chemokines and chemokine receptors: multipurpose players in neuroinflammation. Int Rev Neurobiol 2007; 82: 187–204

    Article  PubMed  CAS  Google Scholar 

  91. Clucas AT, Shah A, Zhang YD, et al. Phase I evaluation of the safety, pharmacokinetics and pharmacodynamics of CP-481,715. Clin Pharmacokinet 2007; 46(9): 757–66

    Article  PubMed  CAS  Google Scholar 

  92. Zipp F, Hartung HP, Hillert J, et al. Blockade of chemokine signaling in patients with multiple sclerosis. Neurology 2006 Nov 28; 67(10): 1880–3

    Article  PubMed  CAS  Google Scholar 

  93. ReuX R, Schreiber V, Klein A, et al. Oral CCR1 antagonist BX 471 increases ICAM-3 expresion on RR-MS patients' CD14+ myelomonocytic cells [abstract]. 16th Meeting of the European Neurological Society; 2006 May 27–31; Lausanne

  94. Bowen JD, Petersdorf SH, Richards TL, et al. Phase I study of a humanized anti-CD11/CD18 monoclonal antibody in multiple sclerosis. Clin Pharmacol Ther 1998 Sep; 64(3): 339–46

    Article  PubMed  CAS  Google Scholar 

  95. Minagar A, Alexander JS, Schwendimann RN, et al. Combination therapy with interferon beta-1a and doxycycline in multiple sclerosis: an open-label trial. Arch Neurol 2008 Feb; 65(2): 199–204

    Article  PubMed  Google Scholar 

  96. Yong VW, Zabad RK, Agrawal S, et al. Elevation of matrix metalloproteinases (MMPs) in multiple sclerosis and impact of immunomodulators. J Neurol Sci 2007 Aug 15; 259(1–2): 79–84

    Article  PubMed  CAS  Google Scholar 

  97. Zhang Y, Metz LM, Yong VW, et al. Pilot study of minocycline in relapsing-remitting multiple sclerosis. Can J Neurol Sci 2008 May; 35(2): 185–91

    PubMed  CAS  Google Scholar 

  98. Zabad RK, Metz LM, Todoruk TR, et al. The clinical response to minocycline in multiple sclerosis is accompanied by beneficial immune changes: a pilot study. Mult Scler 2007 May; 13(4): 517–26

    PubMed  CAS  Google Scholar 

  99. Yadav V, Marracci G, Lovera J, et al. Lipoic acid in multiple sclerosis: a pilot study. Mult Scler 2005 Apr; 11(2): 159–65

    Article  PubMed  CAS  Google Scholar 

  100. Elices MJ. BX-471 Berlex. Curr Opin Investig Drugs 2002 Jun; 3(6): 865–9

    PubMed  CAS  Google Scholar 

  101. Dhami H, Fritz CE, Gankin B, et al. The chemokine system and CCR5 antagonists: potential in HIV treatment and other novel therapies. J Clin Pharm Ther 2009 Apr; 34(2): 147–60

    Article  PubMed  CAS  Google Scholar 

  102. Bartholomaus I, Kawakami N, Odoardi F, et al. Effector T cell interactions with meningeal vascular structures in nascent autoimmune CNS lesions. Nature 2009 Nov 5; 462(7269): 94–8

    Article  PubMed  CAS  Google Scholar 

  103. Simmons DL, Buckley CD. Some new, and not so new, anti-inflammatory targets. Curr Opin Pharmacol 2005 Aug; 5(4): 394–7

    Article  CAS  Google Scholar 

  104. Rychly J, Nebe B. Therapeutic strategies in autoimmune diseases by interfering with leukocyte endothelium interaction. Curr Pharm Des 2006; 12(29): 3799–806

    Article  PubMed  CAS  Google Scholar 

  105. Polman CH, O'Connor PW, Havrdova E, et al. A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med 2006 Mar 2; 354(9): 899–910

    Article  PubMed  CAS  Google Scholar 

  106. Steinman L. Blocking adhesion molecules as therapy for multiple sclerosis: natalizumab. Nat Rev Drug Discov 2005 Jun; 4(6): 510–8

    Article  PubMed  CAS  Google Scholar 

  107. Ransohoff RM. “Thinking without thinking” about natalizumab and PML. J Neurol Sci 2007 Aug 15; 259(1–2): 50–2

    Article  PubMed  CAS  Google Scholar 

  108. European Medicines Agency (EMEA). EU-wide recall of Raptiva (efalizumab) to be intiated [press release]. London: EMEA, 2009 Jun 8 [online]. Available from URL: http://www.ema.europa.eu/humandocs/PDFs/EPAR/raptiva/34625509en.pdf [Accessed 2010 May 31]

  109. Yong VW, Power C, Forsyth P, et al. Metalloproteinases in biology and pathology of the nervous system. Nat Rev Neurosci 2001 Jul; 2(7): 502–11

    Article  PubMed  CAS  Google Scholar 

  110. Kieseier BC, Kiefer R, Clements JM, et al. Matrix metalloproteinase-9 and -7 are regulated in experimental autoimmune encephalomyelitis. Brain 1998 Jan; 121 (Pt 1): 159–66

    Article  PubMed  Google Scholar 

  111. Marracci GH, Jones RE, McKeon GP, et al. Alpha lipoic acid inhibits T cell migration into the spinal cord and suppresses and treats experimental autoimmune encephalomyelitis. J Neuroimmunol 2002 Oct; 131(1–2): 104–14

    Article  PubMed  CAS  Google Scholar 

  112. Orsucci D, Calsolaro V, Mancuso M, et al. Neuroprotective effects of tetracyclines: molecular targets, animal models and human disease. CNS Neurol Disord Drug Targets 2009 Jun; 8(3): 222–31

    Article  PubMed  CAS  Google Scholar 

  113. Metz LM, Li D, Traboulsee A, et al. Glatiramer acetate in combination with minocycline in patients with relapsing-remitting multiple sclerosis: results of a Canadian, multicenter, double-blind, placebo-controlled trial. Mult Scler 2009 Oct; 15(10): 1183–94

    Article  PubMed  CAS  Google Scholar 

  114. Correale J, Farez M, Gilmore W. CNS Vaccines for multiple sclerosis: progress to date. Drugs 2008; 22(3): 175–98

    CAS  Google Scholar 

  115. Burt RK, Loh Y, Cohen B, et al. Autologous non-myeloablative haemopoietic stem cell transplantation in relapsing-remitting multiple sclerosis: a phase I/II study. Lancet Neurol 2009 Mar; 8(3): 244–53

    Article  PubMed  CAS  Google Scholar 

  116. Saccardi R, Kozak T, Bocelli-Tyndall C, et al. Autologous stem cell transplantation for progressive multiple sclerosis: update of the European Group for Blood and Marrow Transplantation autoimmune diseases working party database. Mult Scler 2006 Dec; 12(6): 814–23

    Article  PubMed  CAS  Google Scholar 

  117. Daumer M, Griffith LM, Meister W, et al. Survival, and time to an advanced disease state or progression, of untreated patients with moderately severe multiple sclerosis in a multicenter observational database: relevance for design of a clinical trial for high dose immunosuppressive therapy with autologous hematopoietic stem cell transplantation. Mult Scler 2006 Apr; 12(2): 174–9

    Article  PubMed  CAS  Google Scholar 

  118. Roccatagliata L, Rocca M, Valsasina P, et al. The long-term effect of AHSCT on MRI measures of MS evolution: a five-year follow-up study. Mult Scler 2007 Sep; 13(8): 1068–70

    Article  PubMed  CAS  Google Scholar 

  119. Shevchenko YL, Novik AA, Kuznetsov AN, et al. High-dose immunosuppressive therapy with autologous hematopoietic stem cell transplantation as a treatment option in multiple sclerosis. Exp Hematol 2008 Aug; 36(8): 922–8

    Article  PubMed  CAS  Google Scholar 

  120. Nash RA, Bowen JD, McSweeney PA, et al. High-dose immunosuppressive therapy and autologous peripheral blood stem cell transplantation for severe multiple sclerosis. Blood 2003 Oct 1; 102(7): 2364–72

    Article  PubMed  CAS  Google Scholar 

  121. Fassas A, Passweg JR, Anagnostopoulos A, et al. Hematopoietic stem cell transplantation for multiple sclerosis: a retrospective multicenter study. J Neurol 2002 Aug; 249(8): 1088–97

    Article  PubMed  CAS  Google Scholar 

  122. Karussis D, Kassis I, Kurkalli BG, et al. Immunomodulation and neuroprotection with mesenchymal bone marrow stem cells (MSCs): a proposed treatment for multiple sclerosis and other neuroimmunological/neurodegenerative diseases. J Neurol Sci 2008 Feb 15; 265(1–2): 131–5

    Article  PubMed  CAS  Google Scholar 

  123. Mohyeddin Bonab M, Yazdanbakhsh S, Lotfi J, et al. Does mesenchymal stem cell therapy help multiple sclerosis patients? Report of a pilot study. Iran J Immunol 2007 Mar; 4(1): 50–7

    Google Scholar 

  124. Warren KG, Catz I, Ferenczi LZ, et al. Intravenous synthetic peptide MBP8298 delayed disease progression in an HLA Class II-defined cohort of patients with progressive multiple sclerosis: results of a 24-month double-blind placebo-controlled clinical trial and 5 years of follow-up treatment. Eur J Neurol 2006 Aug; 13(8): 887–95

    Article  PubMed  CAS  Google Scholar 

  125. Garren H, Robinson WH, Krasulova E, et al. Phase 2 trial of a DNA vaccine encoding myelin basic protein for multiple sclerosis. Ann Neurol 2008 May; 63(5): 611–20

    Article  PubMed  CAS  Google Scholar 

  126. Bar-Or A, Vollmer T, Antel J, et al. Induction of antigen-specific tolerance in multiple sclerosis after immunization with DNA encoding myelin basic protein in a randomized, placebo-controlled phase 1/2 trial. Arch Neurol 2007 Oct; 64(10): 1407–15

    Article  PubMed  Google Scholar 

  127. Muraro PA, Cassiani-Ingoni R, Martin R. Using stem cells in multiple sclerosis therapies. Cytotherapy 2004; 6(6): 615–20

    Article  PubMed  CAS  Google Scholar 

  128. Burt RK, Cohen B, Rose J, et al. Hematopoietic stem cell transplantation for multiple sclerosis. Arch Neurol 2005 Jun; 62(6): 860–4

    Article  PubMed  Google Scholar 

  129. Karussis DM, Slavin S, Lehmann D, et al. Prevention of experimental autoimmune encephalomyelitis and induction of tolerance with acute immunosuppression followed by syngeneic bone marrow transplantation. J Immunol 1992 Mar 15; 148(6): 1693–8

    PubMed  CAS  Google Scholar 

  130. Burt RK, Padilla J, Begolka WS, et al. Effect of disease stage on clinical outcome after syngeneic bone marrow transplantation for relapsing experimental autoimmune encephalomyelitis. Blood 1998 Apr 1; 91(7): 2609–16

    PubMed  CAS  Google Scholar 

  131. Mancardi GL, Saccardi R, Filippi M, et al. Autologous hematopoietic stem cell transplantation suppresses Gd-enhanced MRI activity in MS. Neurology 2001 Jul 10; 57(1): 62–8

    Article  PubMed  CAS  Google Scholar 

  132. Saccardi R, Mancardi GL, Solari A, et al. Autologous HSCT for severe progressive multiple sclerosis in a multicenter trial: impact on disease activity and quality of life. Blood 2005 Mar 15; 105(6): 2601–7

    Article  PubMed  CAS  Google Scholar 

  133. Nash RA, Stuve O, Bowen JD, et al. Autologous HSCT for advanced MS: is the glass half-empty or really half-full? [letter]. Brain 2008 Feb; 131 (Pt 2): e89; author reply e90

    Article  PubMed  Google Scholar 

  134. Samijn JP, te Boekhorst PA, Mondria T, et al. Intense T cell depletion followed by autologous bone marrow transplantation for severe multiple sclerosis. J Neurol Neurosurg Psychiatry 2006 Jan; 77(1): 46–50

    Article  PubMed  CAS  Google Scholar 

  135. Sullivan KM, Muraro P, Tyndall A. Hematopoietic cell transplantation for autoimmune disease: updates from Europe and the United States. Biol Blood Marrow Transplant 2010 Jan; 16(1 Suppl.): S48–56

    Article  PubMed  Google Scholar 

  136. Northwestern University. Stem cell therapy for patients with multiple sclerosis failing interferon A randomized study [ClinicalTrials.gov identifier: NCT00273364]. US National Institutes of Health, ClinicalTrials.gov [online]. Available from URL: http://www.clinicaltrials.gov [Accessed 2010 Jun 3]

  137. Mondria T, Lamers CH, te Boekhorst PA, et al. Bone-marrow transplantation fails to halt intrathecal lymphocyte activation in multiple sclerosis. J Neurol Neurosurg Psychiatry 2008 Sep; 79(9): 1013–5

    Article  PubMed  CAS  Google Scholar 

  138. Metz I, Lucchinetti CF, Openshaw H, et al. Autologous haematopoietic stem cell transplantation fails to stop demyelination and neurodegeneration in multiple sclerosis. Brain 2007 May; 130 (Pt 5): 1254–62

    Article  PubMed  Google Scholar 

  139. Kassis I, Grigoriadis N, Gowda-Kurkalli B, et al. Neuroprotection and immunomodulation with mesenchymal stem cells in chronic experimental autoimmune encephalomyelitis. Arch Neurol 2008 Jun; 65(6): 753–61

    Article  PubMed  Google Scholar 

  140. Karussis D, Kassis I. The potential use of stem cells in multiple sclerosis: an overview of the preclinical experience. Clin Neurol Neurosurg 2008 Nov; 110(9): 889–96

    Article  PubMed  Google Scholar 

  141. Bai L, Lennon DP, Eaton V, et al. Human bone marrow-derived mesenchymal stem cells induce Th2-polarized immune response and promote endogenous repair in animal models of multiple sclerosis. Glia 2009 Aug 15; 57(11): 1192–203

    Article  PubMed  Google Scholar 

  142. Aharonowiz M, Einstein O, Fainstein N, et al. Neuroprotective effect of transplanted human embryonic stem cell-derived neural precursors in an animal model of multiple sclerosis. PLoS One 2008; 3(9): e3145

    Article  PubMed  CAS  Google Scholar 

  143. Slavin S, Kurkalli BG, Karussis D. The potential use of adult stem cells for the treatment of multiple sclerosis and other neurodegenerative disorders. Clin Neurol Neurosurg 2008 Nov; 110(9): 943–6

    Article  PubMed  Google Scholar 

  144. University of Cambridge. Mesenchymal Stem Cells in Multiple Sclerosis (MSCIMS) [ClinicalTrials.gov identifier: NCT00395200]. US National Institutes of Health, ClinicalTrials.gov [online]. Available from URL: http://www.clinicaltrials.gov [Accessed 2010 Jun 3]

  145. Freedman MS, Bar-Or A, Atkins HL, et al. The therapeutic potential of mesenchymal stem cell transplantation as a treatment for multiple sclerosis: consensus report of the International MSCT Study Group. Mult Scler 2010 Apr; 16(4): 503–10

    Article  PubMed  Google Scholar 

  146. Hohol MJ, Khoury SJ, Cook SL, et al. Three-year open protocol continuation study of oral tolerization with myelin antigens in multiple sclerosis and design of a phase III pivotal trial. Ann N Y Acad Sci 1996 Feb 13; 778: 243–50

    Article  PubMed  CAS  Google Scholar 

  147. Darlington C. MBP-8298, a synthetic peptide analog of myelin basic protein for the treatment of multiple sclerosis. Curr Opin Mol Ther 2007 Aug; 9(4): 398–402

    PubMed  CAS  Google Scholar 

  148. Dirucotide does not meet primary endpoint in phase III MAESTRO-01 trial: in secondary progressive multiple sclerosis [press release]. BioMS [online]. Available from URL: http://www.biomsmedical.com/display-press-release.php?id=198 [Accessed 2010 Jun 3]

  149. MosesJr H, Sriram S. An infectious basis for multiple sclerosis: perspectives on the role of Chlamydia pneumoniae and other agents. BioDrugs 2001; 15(3): 199–206

    Article  PubMed  Google Scholar 

  150. Lycke J, Svennerholm B, Hjelmquist E, et al. Acyclovir treatment of relapsing-remitting multiple sclerosis: a randomized, placebo-controlled, double-blind study. J Neurol 1996 Mar; 243(3): 214–24

    Article  PubMed  CAS  Google Scholar 

  151. Friedman JE, Zabriskie JB, Plank C, et al. A randomized clinical trial of valacyclovir in multiple sclerosis. Mult Scler 2005 Jun; 11(3): 286–95

    Article  PubMed  CAS  Google Scholar 

  152. Bech E, Lycke J, Gadeberg P, et al. A randomized, double-blind, placebo-controlled MRI study of anti-herpes virus therapy in MS. Neurology 2002 Jan 8; 58(1): 31–6

    Article  PubMed  CAS  Google Scholar 

  153. Sriram S, Yao SY, Stratton C, et al. Pilot study to examine the effect of antibiotic therapy on MRI outcomes in RRMS. J Neurol Sci 2005 Jul 15; 234(1–2): 87–91

    Article  PubMed  CAS  Google Scholar 

  154. Baumhackl U, Kappos L, Radue EW, et al. A randomized, double-blind, placebo-controlled study of oral hydrolytic enzymes in relapsing multiple sclerosis. Mult Scler 2005 Apr; 11(2): 166–8

    Article  PubMed  CAS  Google Scholar 

  155. Ascherio A, Munger KL, Lennette ET, et al. Epstein-Barr virus antibodies and risk of multiple sclerosis: a prospective study. JAMA 2001; 286(24): 3083–8

    Article  PubMed  CAS  Google Scholar 

  156. Sibley WA, Bamford CR, Clark K. Clinical viral infections and multiple sclerosis. Lancet 1985; 1(8441): 1313–5

    Article  PubMed  CAS  Google Scholar 

  157. Ascherio A, Munger KL. Environmental risk factors for multiple sclerosis: part I. The role of infection. Ann Neurol 2007 Apr; 61(4): 288–99

    Article  PubMed  Google Scholar 

  158. Giovannoni G, Cutter GR, Lunemann J, et al. Infectious causes of multiple sclerosis. Lancet Neurol 2006 Oct; 5(10): 887–94

    Article  PubMed  Google Scholar 

  159. Lunemann JD, Kamradt T, Martin R, et al. Epstein-barr virus: environmental trigger of multiple sclerosis? J Virol 2007 Jul; 81(13): 6777–84

    Article  PubMed  CAS  Google Scholar 

  160. Cepok S, Zhou D, Srivastava R, et al. Identification of Epstein-Barr virus proteins as putative targets of the immune response in multiple sclerosis. J Clin Invest 2005 May; 115(5): 1352–60

    PubMed  CAS  Google Scholar 

  161. Lunemann JD, Edwards N, Muraro PA, et al. Increased frequency and broadened specificity of latent EBV nuclear antigen-1-specific T cells in multiple sclerosis. Brain 2006 Jun; 129 (Pt 6): 1493–506

    Article  PubMed  Google Scholar 

  162. Sospedra M, Zhao Y, zur Hausen H, et al. Recognition of conserved amino acid motifs of common viruses and its role in autoimmunity. PLoS Pathog 2005 Dec; 1(4): e41

    Article  PubMed  CAS  Google Scholar 

  163. Sriram S, Mitchell W, Stratton C. Multiple sclerosis associated with Chlamydia pneumoniae infection of the CNS. Neurology 1998 Feb; 50(2): 571–2

    Article  PubMed  CAS  Google Scholar 

  164. Bashir K, Kaslow RA. Chlamydia pneumoniae and multiple sclerosis: the latest etiologic candidate. Epidemiology 2003 Mar; 14(2): 133–4

    PubMed  Google Scholar 

  165. Munger KL, Peeling RW, Hernan MA, et al. Infection with Chlamydia pneumoniae and risk of multiple sclerosis. Epidemiology 2003 Mar; 14(2): 141–7

    PubMed  Google Scholar 

  166. Munger KL, DeLorenze GN, Levin LI, et al. A prospective study of Chlamydia pneumoniae infection and risk of MS in two US cohorts. Neurology 2004 May 25; 62(10): 1799–803

    Article  PubMed  CAS  Google Scholar 

  167. Griggs RC. Chlamydia: conflict and controversy [letter]. Neurology 2001 May 8; 56(9): 1130

    Article  PubMed  CAS  Google Scholar 

  168. Yong VW, Wells J, Giuliani F, et al. The promise of minocycline in neurology. Lancet Neurol 2004 Dec; 3(12): 744–51

    Article  PubMed  Google Scholar 

  169. Metz LM, Zhang Y, Yeung M, et al. Minocycline reduces gadolinium-enhancing magnetic resonance imaging lesions in multiple sclerosis [letter]. Ann Neurol 2004 May; 55(5): 756

    Article  PubMed  Google Scholar 

  170. Maier K, Merkler D, Gerber J, et al. Multiple neuroprotective mechanisms of minocycline in autoimmune CNS inflammation. Neurobiol Dis 2007 Mar; 25(3): 514–25

    Article  PubMed  CAS  Google Scholar 

  171. Brundula V, Rewcastle NB, Metz LM, et al. Targeting leukocyte MMPs and transmigration: minocycline as a potential therapy for multiple sclerosis. Brain 2002 Jun; 125 (Pt 6): 1297–308

    Article  PubMed  Google Scholar 

  172. Kozik M. Activity of hydrolytic enzymes in a case of subacute multiple sclerosis. Pathol Eur 1973; 8(2): 143–7

    PubMed  CAS  Google Scholar 

  173. Baumhackl U, Fodermair S. Enzymtherapie bei Multipler Sklerose. Allgemeinmedizin 1990; 19: 169–72

    Google Scholar 

  174. Castell JV, Friedrich G, Kuhn CS, et al. Intestinal absorption of undegraded proteins in men: presence of bromelain in plasma after oral intake. Am J Physiol 1997 Jul; 273 (1 Pt 1): G139–46

    PubMed  CAS  Google Scholar 

  175. Targoni OS, Tary-Lehmann M, Lehmann PV. Prevention of murine EAE by oral hydrolytic enzyme treatment. J Autoimmun 1999 May; 12(3): 191–8

    Article  PubMed  CAS  Google Scholar 

  176. Lugaresi A, Caporale C, Farina D, et al. Low-dose oral methotrexate treatment in chronic progressive multiple sclerosis. Neurol Sci 2001 Apr; 22(2): 209–10

    Article  PubMed  CAS  Google Scholar 

  177. Calabresi PA, Wilterdink JL, Rogg JM, et al. An open-label trial of combination therapy with interferon beta-1a and oral methotrexate in MS. Neurology 2002 Jan 22; 58(2): 314–7

    Article  PubMed  CAS  Google Scholar 

  178. Gray OM, McDonnell GV, Forbes RB. A systematic review of oral methotrexate for multiple sclerosis. Mult Scler 2006 Aug; 12(4): 507–10

    Article  PubMed  CAS  Google Scholar 

  179. Gray O, McDonnell GV, Forbes RB. Methotrexate for multiple sclerosis. Cochrane Database Syst Rev 2004 (2): CD003208

  180. Cohen JA, Calabresi PA, Chakraborty S, et al. Avonex combination trial in relapsing-remitting MS: rationale, design and baseline data. Mult Scler 2008 Apr; 14(3): 370–82

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

No sources of funding were used to assist in the preparation of this review. The authors declare the following: Jochen C. Ulzheimer has received consulting fees, honoraria for lecturing, and travel expenses from Biogen Idec Inc., Merck Serono S.A., Sanofi-Aventis S.A., and Novartis S.A. Stefan Bittner has received travel expenses for attending meetings from Merck Serono and Bayer Schering. Christoph Kleinschnitz has received honoraria for lectures from Biogen Idec, Bayer Schering, Teva, Merck Serono, and Novartis. Bernd C. Kieseier has received honoraria for lectures from Biogen Idec, Bayer Schering, Teva, Merck Serono, and Novartis. Sven G. Meuth has received honoraria for lectures from Biogen Idec, Bayer Schering, Teva, Merck Serono, and Novartis. Heinz Wiendl has received honoraria for lectures from Biogen Idec, Bayer Schering, Teva, Merck Serono, and Novartis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinz Wiendl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ulzheimer, J.C., Meuth, S.G., Bittner, S. et al. Therapeutic Approaches to Multiple Sclerosis. BioDrugs 24, 249–274 (2010). https://doi.org/10.2165/11537160-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11537160-000000000-00000

Keywords

Navigation