Dietary Supplements and Team-Sport Performance

Abstract

A well designed diet is the foundation upon which optimal training and performance can be developed. However, as long as competitive sports have existed, athletes have attempted to improve their performance by ingesting a variety of substances. This practice has given rise to a multi-billion-dollar industry that aggressively markets its products as performance enhancing, often without objective, scientific evidence to support such claims. While a number of excellent reviews have evaluated the performance-enhancing effects of most dietary supplements, less attention has been paid to the performance-enhancing claims of dietary supplements in the context of teamsport performance. Dietary supplements that enhance some types of athletic performance may not necessarily enhance team-sport performance (and vice versa). Thus, the first aim of this review is to critically evaluate the ergogenic value of the most common dietary supplements used by team-sport athletes. The term dietary supplements will be used in this review and is defined as any product taken by the mouth, in addition to common foods, that has been proposed to have a performance-enhancing effect; this review will only discuss substances that are not currently banned by the World Anti-Doping Agency. Evidence is emerging to support the performance-enhancing claims of some, but not all, dietary supplements that have been proposed to improve team-sport-related performance. For example, there is good evidence that caffeine can improve single-sprint performance, while caffeine, creatine and sodium bicarbonate ingestion have all been demonstrated to improve multiple- sprint performance. The evidence is not so strong for the performanceenhancing benefits of β-alanine or colostrum. Current evidence does not support the ingestion of ribose, branched-chain amino acids or β-hydroxy-β-methylbutyrate, especially in well trained athletes. More research on the performance-enhancing effects of the dietary supplements highlighted in this review needs to be conducted using team-sport athletes and using team-sportrelevant testing (e.g. single- and multiple-sprint performance). It should also be considered that there is no guarantee that dietary supplements that improve isolated performance (i.e. single-sprint or jump performance) will remain effective in the context of a team-sport match. Thus, more research is also required to investigate the effects of dietary supplements on simulated or actual team-sport performance. A second aim of this review was to investigate any health issues associated with the ingestion of the more commonly promoted dietary supplements. While most of the supplements described in the review appear safe when using the recommended dose, the effects of higher doses (as often taken by athletes) on indices of health remain unknown, and further research is warranted. Finally, anecdotal reports suggest that team-sport athletes often ingest more than one dietary supplement and very little is known about the potential adverse effects of ingesting multiple supplements. Supplements that have been demonstrated to be safe and efficacious when ingested on their own may have adverse effects when combined with other supplements. More research is required to investigate the effects of ingesting multiple supplements (both on performance and health).

This is a preview of subscription content, access via your institution.

Fig. 1
Table I
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Tokish JM, Kocher MS, Hawkins RJ. Ergogenic aids: a review of basic science, performance, side effects, andstatus in sports. Am J Sports Med 2004 Sep 1; 32 (6): 1543–53

    PubMed  Article  Google Scholar 

  2. 2.

    Lattavo A, Kopperud A, Rogers PD. Creatine and other supplements. Pediatr Clin North Am 2007; 54 (4): 735–60

    PubMed  Article  Google Scholar 

  3. 3.

    Juhn M. Popular sports supplements and ergogenic aids. Sports Med 2003; 33 (12): 921–39

    PubMed  Article  Google Scholar 

  4. 4.

    Williams MH. The ergogenics edge. 1st ed. Champaign, (IL): Human Kinetics, 1998

    Google Scholar 

  5. 5.

    Enoka RM, Stuart DG. Neurobiology of muscle fatigue. J Appl Physiol 1992; 72 (5): 1631–48

    PubMed  CAS  Google Scholar 

  6. 6.

    Gandevia SC. Spinal and supraspinal factors in human muscle fatigue. Physiol Rev 2001 Oct 1; 81 (4): 1725–89

    PubMed  CAS  Google Scholar 

  7. 7.

    Racinais S, Bishop D, Denis R, et al. Muscle deoxygenation and neural drive to the muscle during repeated sprintcycling. Med Sci Sports Exerc 2007 Feb; 39 (2): 268–74

    PubMed  Article  Google Scholar 

  8. 8.

    Spencer M, Bishop D, Dawson B, et al. Physiological and metabolic responses of repeated-sprint activities: specificto field-based team sports. Sports Med 2005; 35: 1025–44

    PubMed  Article  Google Scholar 

  9. 9.

    Bangsbo J, Nörregaard L, Thors F. Activity profile of competitive soccer. Can J Sport Sci 1991; 16: 110–6

    PubMed  CAS  Google Scholar 

  10. 10.

    Balsom PD, Seger JY, Sjodin B, et al. Maximal-intensity intermittent exercise: effect of recovery duration. Int J Sports Med 1992; 13 (7): 528–33

    PubMed  CAS  Article  Google Scholar 

  11. 11.

    FitzSimons M, Dawson B, Ward D, et al. Cycling and running tests of repeated sprint ability. Aust J Sci Med Sport 1993; 25 (4): 82–7

    Google Scholar 

  12. 12.

    Bishop D, Claudius B. Effects of induced metabolic alkalosis on prolonged intermittent-sprint performance. Med Sci Sports Exerc 2005; 37 (5): 759–67

    PubMed  CAS  Article  Google Scholar 

  13. 13.

    Balsom PD, Seger JY, Sjodin B, et al. Physiological responses to maximal intensity intermittent exercise. Eur JAppl Physiol 1992; 65: 144–9

    CAS  Article  Google Scholar 

  14. 14.

    Spencer M, Fitzsimons M, Dawson B, et al. Reliability of a repeated-sprint test for field-hockey. J Sci Med Sport 2006; 9 (1-2): 181–4

    PubMed  CAS  Article  Google Scholar 

  15. 15.

    Edge J, Bishop D, Goodman C. Effects of high- and moderate intensity training on metabolism and repeated sprints. Med Sci Sports Exerc 2005; 37 (11): 1975–82

    PubMed  Article  Google Scholar 

  16. 16.

    Wisloff U, Castagna C, Helgerud J, et al. Strong correlation of maximal squat strength with sprint performanceand vertical jump height in elite soccer players. Br J Sports Med 2004 Jun; 38 (3): 285–8

    PubMed  CAS  Article  Google Scholar 

  17. 17.

    Hoffman JR, Tenenbaum G, Maresh CM, et al. Relationship between athletic performance tests and playing timein elite college basketball players. J Strength Cond Res 1996; 10 (2): 67–71

    Google Scholar 

  18. 18.

    Osgnach C, Poser S, Bernardini R, et al. Energy cost and metabolic power in elite soccer: a new match analysis approach. Med Sci Sports Exerc 2010; 42 (1): 170–8

    PubMed  Article  Google Scholar 

  19. 19.

    Glaister M. Multiple sprint work: physiological responses, mechanisms of fatigue and the influence of aerobic fitness. Sports Med 2005; 35 (9): 757–77

    PubMed  Article  Google Scholar 

  20. 20.

    Mendez-Villanueva A, Hamer P, Bishop D. Fatigue responses during repeated sprints matched for initial mechanicaloutput. Med Sci Sports Exerc 2007 Dec; 39 (12): 2219–25

    PubMed  Article  Google Scholar 

  21. 21.

    Mendez-Villanueva A, Hamer P, Bishop D. Fatigue in repeated-sprint exercise is related to muscle power factorsand reduced neuromuscular activity. Eur J Appl Physiol2008 Mar 103: 411–9

  22. 22.

    Delecluse C, Van Coppenolle H, Willems E, et al. Influence of high-resistance and high-velocity training on sprint performance. Med Sci Sports Exerc 1995; 27 (8): 1203–9

    PubMed  CAS  Google Scholar 

  23. 23.

    Delecluse C. Influence of strength training on sprint running performance: current findings and implications fortraining. Sports Med 1997; 24 (3): 147–56

    PubMed  CAS  Article  Google Scholar 

  24. 24.

    Newman MA, Tarpenning KM, Marino FE. Relationships between isokinetic knee strength, single-sprint performance,and repeated-sprint ability in football players. J Strength Cond Res 2004 Nov; 18 (4): 867–72

    PubMed  Google Scholar 

  25. 25.

    Billaut F, Bishop D. Muscle fatigue in males and females during multiple-sprint exercise. Sports Med 2008; 39 (4): 257–78

    Article  Google Scholar 

  26. 26.

    Dorsch KD, Bell A. Dietary supplement use in adolescents. Curr Opin Pediatr 2005 Oct; 17 (5): 653–7

    PubMed  Article  Google Scholar 

  27. 27.

    Gross M, Kormann B, Zollner N. Ribose administration during exercise: effects on substrates and products of energymetabolism in healthy subjects and a patient withmyoadenylate deaminase deficiency. Klin Wochenschr1991 Feb 69 (4): 151–5

  28. 28.

    Gross M, Reiter S, Zollner N. Metabolism of D-ribose administered continuously to healthy persons and to patients with myoadenylate deaminase deficiency. Klin Wochenschr 1989 Dec; 67 (23): 1205–13

    PubMed  CAS  Article  Google Scholar 

  29. 29.

    Op’t Eijnde B, Van Leemputte M, Brouns F, et al. No effects of oral ribose supplementation on repeated maximalexercise and de novo ATP resynthesis. J Appl Physiol 2001 Nov 91 (5): 2275–81

    Google Scholar 

  30. 30.

    Kerksick C, Rasmussen C, Bowden R, et al. Effects of ribose supplementation prior to and during intense exerciseon anaerobic capacity and metabolic markers. Int J Sport Nutr Exerc Metab 2005 Dec; 15 (6): 653–64

    PubMed  CAS  Google Scholar 

  31. 31.

    Kreider RB, Melton C, Greenwood M, et al. Effects of oral D-ribose supplementation on anaerobic capacity and selectedmetabolic markers in healthy males. Int J Sport Nutr Exerc Metab 2003 Mar; 13 (1): 76–86

    PubMed  CAS  Google Scholar 

  32. 32.

    Berardi JM, Ziegenfuss TN. Effects of ribose supplementation on repeated sprint performance in men. J Strength Cond Res 2003 Feb; 17 (1): 47–52

    PubMed  Google Scholar 

  33. 33.

    Hellsten Y, Skadhauge L, Bangsbo J. Effect of ribose supplementation on resynthesis of adenine nucleotides afterintense intermittent training in humans. Am J Physiol Regul Integr Comp Physiol 2004 Jan 1; 286 (1): R182–8

    Article  Google Scholar 

  34. 34.

    Sheehan TG, Tully ER. Purine biosynthesis de novo in rat skeletal muscle. Biochem J 1983 Dec 15; 216 (3): 605–10

    PubMed  CAS  Google Scholar 

  35. 35.

    Boer P, Sperling O. Role of cellular ribose-5-phosphate content in the regulation of 5-phosphoribosyl-1-pyrophosphateand de novo purine synthesis in a human hepatomacell line. Metabolism 1995 Nov; 44 (11): 1469–74

    PubMed  CAS  Article  Google Scholar 

  36. 36.

    Brault JJ, Terjung RL. Purine salvage to adenine nucleotides in different skeletal muscle fiber types. J Appl Physiol2001 Jul 91 (1): 231–8

  37. 37.

    Van Gammeren D, Falk D, Antonio J. The effects of four weeks of ribose supplementation on body compositionand exercise performance in healthy, young, male recreationalbodybuilders: a double-blind, placebo-controlledtrial. Curr Ther Res 2002; 63 (8): 486–95

    Article  Google Scholar 

  38. 38.

    Sinclair CJ, Geiger JD. Caffeine use in sports: a pharmacological review. J Sports Med Phys Fitness 2000 Mar; 40 (1): 71–9

    PubMed  CAS  Google Scholar 

  39. 39.

    George AJ. Central nervous system stimulants. Baillieres Best Pract Res Clin Endocrinol Metab 2000 Mar; 14 (1): 79–88

    PubMed  CAS  Article  Google Scholar 

  40. 40.

    Tarnopolsky MA. Caffeine and endurance performance. Sports Med 1994; 18 (2): 109–25

    PubMed  CAS  Article  Google Scholar 

  41. 41.

    Bell DG, McLellan TM. Exercise endurance 1, 3 and 6 h after caffeine ingestion in caffeine users and nonusers. J Appl Physiol 2002; 93: 1227–34

    PubMed  CAS  Google Scholar 

  42. 42.

    Schneiker KT, Bishop D, Dawson B, et al. Effects of caffeine on prolonged intermittent-sprint ability in teamsportathletes. Med Sci Sports Exerc 2006 Mar; 38 (3): 578–85

    PubMed  CAS  Article  Google Scholar 

  43. 43.

    Wiles JD, Bird SR, Hopkins J, et al. Effect of caffeinated coffee on running speed, respiratory factors, blood lactateand perceived exertion during 1500-m treadmill running. Br J Sports Med 1992 Jun; 26 (2): 116–20

    PubMed  CAS  Article  Google Scholar 

  44. 44.

    Kovaks E, Stegan J, Brouns F. Effect of caffeinated drinks on substrate metabolism, caffeine excretion, and performance. J Appl Physiol 1998; 85: 709–15

    Google Scholar 

  45. 45.

    Graham TE, Spriet LL. Performance and metabolic responses to a high caffeine dose during prolonged exercise. J Appl Physiol 1991; 71 (6): 2292–8

    PubMed  CAS  Google Scholar 

  46. 46.

    Haskell CF, Kennedy DO, Wesnes KA, et al. Cognitive and mood improvements of caffeine in habitual consumersand habitual non-consumers of caffeine. Psychopharmacology(Berl) 2005; 179 (4): 813–25

    CAS  Article  Google Scholar 

  47. 47.

    Graham TE, Hibbert E, Sathasivam P. Metabolic and exercise endurance effects of coffee and caffeine ingestion. J Appl Physiol 1998 Sep 1; 85 (3): 883–9

    PubMed  CAS  Google Scholar 

  48. 48.

    Fredholm BB, Bättig K, Holmen J, et al. Actions of caffeine in the brain with special reference to factors thatcontribute to its widespread use. Pharmacol Rev 1999; 51 (1): 83–133

    PubMed  CAS  Google Scholar 

  49. 49.

    Williams JH. Caffeine, neuromuscular function and highintensity exercise performance. J Sports Med Phys Fitness 1991; 31 (3): 481–9

    PubMed  CAS  Google Scholar 

  50. 50.

    Lindinger MI, Graham TE, Spriet LL. Caffeine attenuates the exercise-induced increase in plasma [K+] in humans. J Appl Physiol 1993; 74 (3): 1149–55

    PubMed  CAS  Google Scholar 

  51. 51.

    Sinclair GI, Geiger JD. Caffeine use in sports: a pharmacological review. J Sports Med Phys Fitness 2000; 40: 71–9

    PubMed  CAS  Google Scholar 

  52. 52.

    Mazzeo RS. Catecholamine responses to acute and chronic exercise. Med Sci Sports Exerc 1991; 23 (7): 839–45

    PubMed  CAS  Google Scholar 

  53. 53.

    Graham TE. Caffeine and exercise: metabolism, endurance and performance. Sports Med 2001; 31 (11): 785–807

    PubMed  CAS  Article  Google Scholar 

  54. 54.

    Spriet LL. Caffeine and performance. Int J Sport Nutr 1995; 5: S84–99

    PubMed  Google Scholar 

  55. 55.

    Doherty M, Smith PM. Effects of caffeine ingestion on rating of perceived exertion during and after exercise: ameta-analysis. Scand J Med Sci Sports 2005; 15 (2): 69–78

    PubMed  CAS  Article  Google Scholar 

  56. 56.

    Anselme F, Collomp K, Mercier B, et al. Caffeine increases maximal anaerobic power and blood lactate concentration. Eur J Appl Physiol Occup Physiol 1992; 65 (2): 188–91

    PubMed  CAS  Article  Google Scholar 

  57. 57.

    Glaister M, Howatson G, Abraham CS, et al. Caffeine supplementation and multiple sprint running performance. Med Sci Sports Exerc 2008 Oct; 40 (10): 1835–40

    PubMed  CAS  Article  Google Scholar 

  58. 58.

    Stuart G, Hopkins W, Cook C, et al. Multiple effects of caffeine on simulated high-intensity team-sport performance. Med Sci Sports Exerc 2005; 37 (11): 1998–2005

    PubMed  CAS  Article  Google Scholar 

  59. 59.

    Paton CD, Hopkins WG, Vollebregt L. Little effect of caffeine ingestion on repeated sprints in team-sport athletes. Med Sci Sports Exerc 2001; 33 (5): 822–5

    PubMed  CAS  Google Scholar 

  60. 60.

    Allen DG, Lamb GD, Westerblad H. Skeletal muscle fatigue: cellular mechanisms. Physiol Rev 2008 Jan; 88 (1): 287–332

    PubMed  CAS  Article  Google Scholar 

  61. 61.

    Greer F, McLean C, Graham TE. Caffeine, performance, and metabolism during repeated wingate tests. J ApplPhysiol 1998; 85 (4): 1504–8

    Google Scholar 

  62. 62.

    Hespel P, Maughan RJ, Greenhaff PL. Dietary supplements for football. J Sports Sci 2006; 24 (7): 749–61

    PubMed  CAS  Article  Google Scholar 

  63. 63.

    Schneiker K. The effects of caffeine ingestion on repeatedsprint performance and choice reaction time in team-sportplayers. Perth (WA): University ofWestern Australia, 2003

    Google Scholar 

  64. 64.

    Kruk B, Chmura J, Krzeminski K, et al. Influence of caffeine, cold and exercise on multiple choice reaction time. Psychopharmacology (Berl) 2001 Sep; 157 (2): 197–201

    CAS  Article  Google Scholar 

  65. 65.

    Ciocca M. Medication and supplement use by athletes. Clin Sports Med 2005 Jul; 24 (3): 719–38, x-xi

    PubMed  Article  Google Scholar 

  66. 66.

    Lombardo JA. Supplements and athletes. South Med J 2004 Sep; 97 (9): 877–9

    PubMed  Article  Google Scholar 

  67. 67.

    Vandenberghe K, Gillis N, Van Leemputte M, et al. Caffeine counteracts the ergogenic action of muscle creatineloading. J Appl Physiol 1996 Feb 1; 80 (2): 452–7

    PubMed  CAS  Google Scholar 

  68. 68.

    Thong FSL, Derave W, Kiens B, et al. Caffeine-induced impairment of insulin action but not insulin signaling inhuman skeletal muscle is reduced by exercise. Diabetes 2002 Mar; 51 (3): 583–90

    PubMed  CAS  Article  Google Scholar 

  69. 69.

    Pedersen DJ, Lessard SJ, Coffey V, et al. High rates of muscle glycogen resynthesis after exhaustive exercisewhen carbohydrate is coingested with caffeine. J Appl Physiol 2008; 105 (1): 7–13

    PubMed  CAS  Article  Google Scholar 

  70. 70.

    Harris RC, Soderlund K, Hultman E. Elevation of creatine in resting and exercised muscle of normal subjects by creatinesupplementation. Clin Sci (Lond) 1992 Sep; 83 (3): 367–74

    CAS  Google Scholar 

  71. 71.

    Hultman E, Soderlund K, Timmons JA, et al. Muscle creatine loading in men. J Appl Physiol 1996 Jul; 81 (1): 232–7

    PubMed  CAS  Google Scholar 

  72. 72.

    van Loon LJC, Oosterlaar AM, Hartgens F, et al. Effects of creatine loading and prolonged creatine supplementationon body composition, fuel selection, sprint and enduranceperformance in humans. Clin Sci 2003 Feb; 104 (2): 153–62

    PubMed  Article  Google Scholar 

  73. 73.

    Steenge GR, Simpson EJ, Greenhaff PL. Protein- and carbohydrate-induced augmentation of whole body creatineretention in humans. J Appl Physiol 2000 Sep 1; 89 (3): 1165–71

    PubMed  CAS  Google Scholar 

  74. 74.

    Derave W, Eijnde BO, Hespel P. Creatine supplementation in health and disease: what is the evidence for long-termefficacy? Mol Cell Biochem 2003; 244 (1): 49–55

    PubMed  CAS  Article  Google Scholar 

  75. 75.

    Snow RJ, McKenna MJ, Selig SE, et al. Effect of creatine supplementation on sprint exercise performance and musclemetabolism. J Appl Physiol 1998 May 1; 84 (5): 1667–73

    PubMed  CAS  Google Scholar 

  76. 76.

    McKenna MJ, Morton J, Selig SE, et al. Creatine supplementation increases muscle total creatine but not maximalintermittent exercise performance. J Appl Physiol 1999 Dec 1; 87 (6): 2244–52

    PubMed  CAS  Google Scholar 

  77. 77.

    Preen D, Dawson B, Goodman C, et al. The effect of oral creatine supplementation on 80 minutes of repeatedsprintexercise. Med Sci Sports Exerc 2001; 33 (5): 814–25

    PubMed  CAS  Google Scholar 

  78. 78.

    Greenhaff PL, Bodin K, Soderlund K, et al. Effect of oral creatine supplementation on skeletal muscle phosphocreatineresynthesis. Am J Physiol 1994; 266: E725–30

    PubMed  CAS  Google Scholar 

  79. 79.

    Yquel RJ, Arsac LM, Thiaudiere E, et al. Effect of creatine supplementation on phosphocreatine resynthesis, inorganicphosphate accumulation and pH during intermittentmaximal exercise. J Sports Sci 2002; 20: 427–37

    PubMed  CAS  Article  Google Scholar 

  80. 80.

    Balsom PD, Ekblom B, Soderlund K, et al. Creatine supplementation and dynamic high-intensity intermittentexercise. Scand J Med Sci Sports 1993; 3: 143–9

    Article  Google Scholar 

  81. 81.

    Rico-Sanz J, Mendez-Marco MT. Creatine enhances oxygen uptake and performance during alternating intensity exercise. Med Sci Sports Exerc 2000; 32 (2): 379–85

    PubMed  CAS  Article  Google Scholar 

  82. 82.

    Robinson TM, Sewell DA, Hultman E, et al. Role of submaximal exercise in promoting creatine and glycogen accumulationin human skeletal muscle. J Appl Physiol 1999 Aug 1; 87 (2): 598–604

  83. 83.

    Skare OC, Skadberg O, Wisnes AR. Creatine supplementation improves sprint performance in male sprinters. Scand J Med Sci Sports 2001; 11: 96–102

    PubMed  CAS  Article  Google Scholar 

  84. 84.

    Cox G, Mujika I, Tumilty D, et al. Acute creatine supplementation and performance during a field test simulatingmatch play in elite female soccer players. Int J Sport Nutr Exerc Metab 2002 Mar; 12 (1): 33–46

    PubMed  CAS  Google Scholar 

  85. 85.

    Mujika I, Padilla S, Ibanez J, et al. Creatine supplementation and sprint performance in soccer players. Med Sci Sports Exerc 2000 Feb; 32 (2): 518–25

    PubMed  CAS  Article  Google Scholar 

  86. 86.

    Wiroth J, Bermon S, Andrei S, et al. Effects of oral creatine supplementation on maximal pedalling performance inolder adults. Eur J Appl Physiol 2001; 84: 533–9

    PubMed  CAS  Article  Google Scholar 

  87. 87.

    Delecluse C, Diels R, Goris M. Effect of creatine supplementation on intermittent sprint running performance inhighly trained athletes. J Strength Cond Res 2003; 17 (3): 446–54

    PubMed  Google Scholar 

  88. 88.

    Barnett C, Hinds M, Jenkins DG. Effects of oral creatine supplementation on multiple sprint cycle performance. Aust J Sci Med Sport 1996; 28 (1): 35–9

    PubMed  CAS  Google Scholar 

  89. 89.

    Cornish SM, Chilibeck PD, Burke DG. The effect of creatine monohydrate supplementation on sprint skating inice-hockey players. J Sports Med Phys Fitness 2006 Mar; 46 (1): 90–8

    PubMed  CAS  Google Scholar 

  90. 90.

    Glaister M, Lockey RA, Abraham CS, et al. Creatine supplementation and multiple sprint running performance. J Strength Cond Res 2006 May; 20 (2): 273–7

    PubMed  Google Scholar 

  91. 91.

    Kinugasa R, Akima H, Ota A, et al. Short-term creatine supplementation does not improve muscle activation orsprint performance in humans. Eur J Appl Physiol 2004 Mar; 91 (2-3): 230–7

    PubMed  CAS  Article  Google Scholar 

  92. 92.

    Javierre C, Barbany JR, Bonjorn VM, et al. Creatine supplementation and performance in 6 consecutive 60 metersprints. J Physiol Biochem 2004 Dec; 60 (4): 265–71

    PubMed  CAS  Article  Google Scholar 

  93. 93.

    Spencer M, Lawrence S, Rechichi C, et al. Time-motion analysis of elite field hockey, with special reference torepeated-sprint activity. J Sports Sci 2004; 22 (9): 843–50

    PubMed  Article  Google Scholar 

  94. 94.

    Peyrebrune MC, Nevill ME, Donaldson FJ, et al. The effects of oral creatine supplementation on performance insingle and repeated sprint swimming. J Sports Sci 1998; 16: 271–9

    PubMed  CAS  Article  Google Scholar 

  95. 95.

    Branch JD. Effect of creatine supplementation on body composition and performance: a meta-analysis. Int JSport Nutr Exerc 2003; 13: 198–226

    CAS  Google Scholar 

  96. 96.

    Maganaris CN, Maughan RJ. Creatine supplementation enhances maximum voluntary isometric force and endurancecapacity in resistance trained men. Acta Physiol Scand 1998 Jul; 163 (3): 279–87

    PubMed  CAS  Article  Google Scholar 

  97. 97.

    Kreider RB, Ferreira M, Wilson M, et al. Effects of creatine supplementation on body composition, strength, andsprint performance. Med Sci Sports Exerc 1998 Jan; 30 (1): 73–82

    PubMed  CAS  Article  Google Scholar 

  98. 98.

    Volek JS, Duncan ND, Mazzetti SA, et al. Performance and muscle fiber adaptations to creatine supplementationand heavy resistance training. Med Sci Sports Exerc 1999 Aug; 31 (8): 1147–56

    PubMed  CAS  Article  Google Scholar 

  99. 99.

    Terjung RL, Clarkson P, Eichner ER, et al. American College of Sports Medicine roundtable: the physiologicaland health effects of oral creatine supplementation. Med Sci Sports Exerc 2000 Mar; 32 (3): 706–17

    PubMed  CAS  Article  Google Scholar 

  100. 100.

    Schroeder C, Potteiger J, Randall J, et al. The effects of creatine dietary supplementation on anterior compartmentpressure in the lower leg during rest and followingexercise. Clin J Sport Med 2001 Apr; 11 (2): 87–95

    PubMed  CAS  Article  Google Scholar 

  101. 101.

    Poortmans JR, Francaux M. Long-term oral creatine supplementation does not impair renal function in healthyathletes. Med Sci Sports Exerc 1999 Aug; 31 (8): 1108–10

    PubMed  CAS  Article  Google Scholar 

  102. 102.

    Poortmans JR, Auquier H, Renaut V, et al. Effect of shortterm creatine supplementation on renal responses in men. Eur J Appl Physiol Occup Physiol 1997; 76 (6): 566–7

    PubMed  CAS  Article  Google Scholar 

  103. 103.

    Mesa JL, Ruiz JR, Gonzalez-Gross MM, et al. Oral creatine supplementation and skeletal muscle metabolism inphysical exercise. Sports Med 2002; 32 (14): 903–44

    PubMed  Article  Google Scholar 

  104. 104.

    Blomstrand E, Mller K, Secher NH, et al. Effect of carbohydrate ingestion on brain exchange of amino acids duringsustained exercise in human subjects. Acta Physiol Scand 2005; 185 (3): 203–9

    PubMed  CAS  Article  Google Scholar 

  105. 105.

    Blomstrand E. A role for branched-chain amino acids in reducing central fatigue. J Nutr 2006 Feb 1; 136 (2): 544S–7S

    PubMed  CAS  Google Scholar 

  106. 106.

    van Hall G, Raaymakers JS, Saris WH, et al. Ingestion of branched-chain amino acids and tryptophan during sustainedexercise in man: failure to affect performance. J Physiol 1995 Aug 1; 486 (Pt3): 789–94

    PubMed  Google Scholar 

  107. 107.

    Davis JM, Welsh RS, De Volve KL, et al. Effects of branched-chain amino acids and carbohydrate on fatigueduring intermittent, high-intensity running. Int J Sports Med 1999 Jul; 20 (5): 309–14

    PubMed  CAS  Article  Google Scholar 

  108. 108.

    Davis JM, Bailey SP, Woods JA, et al. Effects of carbohydrate feedings on plasma free tryptophan and branchedchainamino acids during prolonged cycling. Eur J Appl Physiol Occup Physiol 1992; 65 (6): 513–9

    PubMed  CAS  Article  Google Scholar 

  109. 109.

    Newsholme E, Ackworth I, Blomstrand E. Amino acids, brain neurotransmitters and a function link betweenmuscle and brain that is important in sustained exercise. In: Benzi G, editor. Advances in myochemistry. London: John Libbey Eurotext, 1987: 127–33

    Google Scholar 

  110. 110.

    Meeusen R, Watson P, Dvorak J. The brain and fatigue: new opportunities for nutritional interventions? J Sports Sci 2006; 24 (7): 773–82

    PubMed  Article  Google Scholar 

  111. 111.

    Shimomura Y, Murakami T, Nakai N, et al. Exercise promotes BCAA catabolism: effects of BCAA supplementationon skeletal muscle during exercise. J Nutr 2004 Jun 1; 134 (6): 1583S–7

    PubMed  CAS  Google Scholar 

  112. 112.

    Ohtani M, Sugita M, Maruyama K. Amino acid mixture improves training efficiency in athletes. J Nutr 2006 Feb 1; 136 (2): 538S–43S

    PubMed  CAS  Google Scholar 

  113. 113.

    Blomstrand E, Hassmen P, Newsholme EA. Effect of branched-chain amino acid supplementation on mentalperformance. Acta Physiol Scand 1991 Oct; 143 (2): 225–6

    PubMed  CAS  Article  Google Scholar 

  114. 114.

    Struder HK, Hollmann W, Platen P, et al. Influence of paroxetine, branched-chain amino acids and tyrosine onneuroendocrine system responses and fatigue in humans. Horm Metab Res 1998 Apr; 30 (4): 188–94

    PubMed  CAS  Article  Google Scholar 

  115. 115.

    Blomstrand E, Andersson S, Hassmen P, et al. Effect of branched-chain amino acid and carbohydrate supplementationon the exercise-induced change in plasma andmuscle concentration of amino acids in human subjects. Acta Physiol Scand 1995 Feb; 153 (2): 87–96

    PubMed  CAS  Article  Google Scholar 

  116. 116.

    Blomstrand E, Hassmen P, Ek S, et al. Influence of ingesting a solution of branched-chain amino acids on perceived exertion during exercise. Acta Physiol Scand 1997 Jan; 159 (1): 41–9

    PubMed  CAS  Article  Google Scholar 

  117. 117.

    Varnier M, Sarto P, Martines D, et al. Effect of infusing branched-chain amino acid during incremental exercisewith reduced muscle glycogen content. Eur J Appl Physiol Occup Physiol 1994; 69 (1): 26–31

    PubMed  CAS  Article  Google Scholar 

  118. 118.

    Matson LG, Tran ZV. Effects of sodium bicarbonate ingestion on anaerobic performance: a meta-analytic review. Int J Sport Nutr 1993; 3: 2–28

    PubMed  CAS  Google Scholar 

  119. 119.

    Gao J, Costill DL, Horswill CA, et al. Sodium bicarbonate ingestion improves performance in interval swimming. Eur J Appl Physiol 1988; 58: 171–4

    CAS  Article  Google Scholar 

  120. 120.

    Horswill CA, Costill DL, Fink WJ, et al. Influence of sodium bicarbonate on sprint performance: relationship todosage. Med Sci Sports Exerc 1988; 20: 566–9

    PubMed  CAS  Google Scholar 

  121. 121.

    Jones NL, Sutton JR, Taylor R, et al. Effect of pH on cardiorespiratory and metabolic responses to exercise. J Appl Physiol 1977; 43 (6): 959–64

    PubMed  CAS  Google Scholar 

  122. 122.

    McNaughton L, Thompson D. Acute versus chronic sodium bicarbonate ingestion and anaerobic work andpower output. J Sports Med Phys Fitness 2001; 41: 456–62

    CAS  Google Scholar 

  123. 123.

    Bishop D, Edge J, Davis C, et al. Induced metabolic alkalosis affects muscle metabolism and repeated-sprint ability. Med Sci Sports Exerc 2004; 36 (5): 807–13

    PubMed  CAS  Google Scholar 

  124. 124.

    Edge J, Bishop D, Goodman C. Effects of chronic NaHCO3 ingestion during interval training on changes tomuscle buffer capacity, metabolism, and short-term enduranceperformance. J Appl Physiol 2006 Sep 1; 101 (3): 918–25

    PubMed  CAS  Article  Google Scholar 

  125. 125.

    McNaughton L, Backx K, Palmer G, et al. Effects of chronic bicarbonate ingestion on the performance ofhigh-intensity work. Eur J Appl Physiol 1999; 80: 333–6

    CAS  Article  Google Scholar 

  126. 126.

    Mainwood GW, Worseley-Brown P. The effect of extracellular pH and buffer concentration on the efflux of lactatefrom frog sartorius muscle. J Physiol (Lond) 1975; 250: 1–22

    CAS  Google Scholar 

  127. 127.

    Hirche H, Hornbach V, Langohr HD, et al. Lactic acid permeation rate in working gastrocnemii of dogs duringmetabolic alkalosis and acidosis. Pflugers Archiv 1976; 356: 209–22

    Google Scholar 

  128. 128.

    Street D, Nielsen J-J, Bangsbo J, et al. Metabolic alkalosis reduces exercise-induced acidosis and potassium accumulationin human skeletal muscle interstitium. J Physiol 2005; 566 (2): 481–9

    PubMed  CAS  Article  Google Scholar 

  129. 129.

    Sostaric SM, Skinner SL, Brown MJ, et al. Alkalosis increases muscle K+ release, but lowers plasma [K+] anddelays fatigue during dynamic forearm exercise. J Physiol 2006 Jan; 570 (Pt1): 185–205

    PubMed  CAS  Google Scholar 

  130. 130.

    Lavender G, Bird SR. Effect of sodium bicarbonate ingestion upon repeated sprints. Br J Sports Med 1989; 23 (1): 41–5

    PubMed  CAS  Article  Google Scholar 

  131. 131.

    Gaitanos GC, Nevill ME, Brooks S, et al. Repeated bouts of sprint running after induced alkalosis. J Sports Sci 1991; 9: 355–69

    PubMed  CAS  Article  Google Scholar 

  132. 132.

    Price M, Moss P, Rance S. Effects of sodium bicarbonate ingestion on prolonged intermittent exercise. Med Sci Sports Exerc 2003; 35 (8): 1303–8

    PubMed  CAS  Article  Google Scholar 

  133. 133.

    Oopik V, Saaremets I, Medijainen L, et al. Effects of sodium citrate ingestion before exercise on endurance performancein well trained college runners. Br J Sports Med 2003; 37: 485–9

    PubMed  CAS  Article  Google Scholar 

  134. 134.

    Bates N. Poisoning: sodium chloride and sodium bicarbonate. Emerg Nurse 2003 May; 11 (2): 33–7

    PubMed  Google Scholar 

  135. 135.

    Derave W, Everaert I, Beeckman S, et al. Muscle carnosine metabolism and b-alanine supplementation in relation toexercise and training. Sports Med 2010; 40 (3): 247–63

    PubMed  Article  Google Scholar 

  136. 136.

    Harris RC, Tallon MJ, Dunnett M, et al. The absorption of orally supplied b-alanine and its effect on muscle carnosinesynthesis in human vastus lateralis. Amino Acids 2006; 30 (3): 279–89

    PubMed  CAS  Article  Google Scholar 

  137. 137.

    Hill CA, Harris RC, Kim HJ, et al. Influence of b-alanine supplementation on skeletal muscle carnosine concentrationsand high intensity cycling capacity. Amino Acids 2007; 32 (2): 225–33

    PubMed  CAS  Article  Google Scholar 

  138. 138.

    Parkhouse WS, McKenzie DC, Hochachka PW, et al. Buffering capacity of deproteinized human vastus lateralismuscle. J Appl Physiol 1985; 58 (1): 14–7

    PubMed  CAS  Google Scholar 

  139. 139.

    Harris RC, Marlin DJ, Dunnett M, et al. Muscle buffering capacity and dipeptide content in the thoroughbred horse,greyhound dog and man. Comp Biochem Physiol 1990; 97A (2): 249–51

    CAS  Article  Google Scholar 

  140. 140.

    Smith EC. The buffering of muscle in rigor; protein, phosphate and carnosine. J Physiol 1938; 92: 336–43

    PubMed  CAS  Google Scholar 

  141. 141.

    Bishop D, Edge J, Mendez-Villanueva A, et al. Highintensity exercise decreases muscle buffer capacity via adecrease in protein buffering in human skeletal muscle. Pflugers Arch 2009 Sep; 458 (5): 929–36

    PubMed  CAS  Article  Google Scholar 

  142. 142.

    Bishop D, Edge J, Thomas C, et al. High-intensity exercise acutely decreases the membrane content of MCT1 andMCT4 and buffer capacity in human skeletal muscle. J Appl Physiol 2007; 102 (2): 616–21

    PubMed  CAS  Article  Google Scholar 

  143. 143.

    Kendrick IP, Harris RC, Kim HJ, et al. The effects of 10 weeks of resistance training combined with b-alanine supplementation on whole body strength, force production, muscular endurance and body composition. Amino Acids 2008; 34 (4): 547–54

    PubMed  CAS  Article  Google Scholar 

  144. 144.

    Kendrick IP, Kim HJ, Harris RC, et al. The effect of 4 weeks of b-alanine supplementation and isokinetictraining on carnosine concentration in type I and type IIhuman skeletal muscle fibres. Eur J Appl Physiol 2009; 106: 131–8

    PubMed  CAS  Article  Google Scholar 

  145. 145.

    Baguet A, Reyngoudt H, Pottier A, et al. Carnosine loading and washout in human skeletal muscles. J Appl Physiol 2009 Mar; 106 (3): 837–42

  146. 146.

    Derave W, Ozdemir MS, Harris RC, et al. b-Alanine supplementation augments muscle carnosine content andattenuates fatigue during repeated isokinetic contractionbouts in trained sprinters. J Appl Physiol 2007; 103 (5): 1736–43

    PubMed  CAS  Article  Google Scholar 

  147. 147.

    Fitts RH. Cellular mechanisms of muscle fatigue. Physiol Rev 1994 Jan; 74 (1): 49–94

    PubMed  CAS  Article  Google Scholar 

  148. 148.

    Harris R, Sahlin K, Hultman E. Phosphagen and lactate contents of m. quadriceps femoris of man after exercise. J Appl Physiol 1977; 43 (5): 852–7

    PubMed  CAS  Google Scholar 

  149. 149.

    Spriet L, Lindinger M, McKelvie R, et al. Muscle glycogenolysis and H+ concentration during maximal intermittentcycling. J Appl Physiol 1989; 66 (1): 8–13

    PubMed  CAS  Google Scholar 

  150. 150.

    Spriet L, Soderlund K, So derlund K, et al. Skeletal muscle glycogenolysis, glycolysis, and pH during electrical stimulationin men. J Appl Physiol 1987; 62 (2): 616–21

    PubMed  CAS  Google Scholar 

  151. 151.

    Bishop D, Edge J. Determinants of repeated-sprint ability in females matched for single-sprint performance. Eur JAppl Physiol 2006; 97 (4): 373–9

    Article  Google Scholar 

  152. 152.

    Schneiker K, Kelley B, Bishop D. Muscle buffer capacity and aerobic fitness are associated with the performance of prolonged intermittent-sprint ability [abstract no. 106]. Science and Nutrition in Exercise and Sport Conference; 2008 Mar 2730; Melbourne (VIC)

    Google Scholar 

  153. 153.

    Stout JR, Cramer JT, Zoeller RF, et al. Effects of b-alanine supplementation on the onset of neuromuscular fatigueand ventilatory threshold in women. Amino Acids 2007; 32 (3): 381–6

    PubMed  CAS  Article  Google Scholar 

  154. 154.

    Zoeller RF, Stout JR, O’Kroy J, et al. Effects of 28 days of b-alanine and creatine monohydrate supplementation onaerobic power, ventilatory and lactate thresholds, andtime to exhaustion. Amino Acids 2007 Sep; 33 (3): 505–10

    PubMed  CAS  Article  Google Scholar 

  155. 155.

    Van Thienen R, Van Proeyen K, Vanden Eynde B, et al. Effects of 28 days of β-alanine improves sprint performance in endurance cycling. Med Sci Sports Exerc 2009 Apr; 41 (4): 898–903

    PubMed  Article  CAS  Google Scholar 

  156. 156.

    Sweeney K, Wright G, Brice AG, et al. The effect of b-alanine supplementation on power production duringrepeated sprint activity. J Strength Cond Res 2010; 24 (1): 79–87

    PubMed  Article  Google Scholar 

  157. 157.

    Grosvenor CE, Picciano MF, Baumrucker CR. Hormones and growth factors in milk. Endocr Rev 1993 Dec; 14 (6): 710–28

    PubMed  CAS  Google Scholar 

  158. 158.

    Buckley JD, Abbott MJ, Brinkworth GD, et al. Bovine colostrum supplementation during endurance running training improves recovery, but not performance. J Sci Med Sport 2002; 5 (2): 65–79

    PubMed  CAS  Article  Google Scholar 

  159. 159.

    Brinkworth GD, Buckley JD. Bovine colostrum supplementation does not affect plasma buffer capacity or haemoglobincontent in elite female rowers. Eur J Appl Physiol 2004 Mar; 91 (2-3): 353–6

    PubMed  CAS  Article  Google Scholar 

  160. 160.

    Brinkworth GD, Buckley JD, Bourdon PC, et al. Oral bovine colostrum supplementation enhances buffer capacitybut not rowing performance in elite female rowers. Int JSport Nutr Exerc Metab 2002 Sep; 12 (3): 349–65

    Google Scholar 

  161. 161.

    Hofman Z, Smeets R, Verlaan G, et al. The effect of bovine colostrum supplementation on exercise performance inelite field hockey players. Int J Sport Nutr Exerc Metab 2002 Dec; 12 (4): 461–9

  162. 162.

    Shing CM, Jenkins DG, Stevenson L, et al. The influence of bovine colostrum supplementation on exercise performancein highly trained cyclists. Br J Sports Med 40 (9): 797–801

  163. 163.

    Coombes JS, Conacher M, Austen SK, et al. Dose effects of oral bovine colostrum on physical work capacity in cyclists. Med Sci Sports Exerc 2002 Jul; 34 (7): 1184–8

    PubMed  Article  Google Scholar 

  164. 164.

    Mero A, Miikkulainen H, Riski J, et al. Effects of bovine colostrum supplementation on serum IGF-I, IgG, hormone,and saliva IgA during training. J Appl Physiol 1997 Oct 1; 83 (4): 1144–51

  165. 165.

    Kelly D, Coutts AG. Early nutrition and the development of immune function in the neonate. Proc Nutr Soc 2000; 59: 177–85

    PubMed  CAS  Article  Google Scholar 

  166. 166.

    Anderson O. Bioenervi™ floods Finland, but can it really cut recuperation times [letter]? Run Res News 1994; 10: 11

    Google Scholar 

  167. 167.

    Burrin DG, Davis TA, Ebner S, et al. Nutrient-independent and nutrient-dependent factors stimulate protein synthesisin colostrum-fed newborn pigs. Pediatr Res 1995 May; 37 (5): 593–9

    PubMed  CAS  Article  Google Scholar 

  168. 168.

    Liu JP, Baker J, Perkins AS, et al. Mice carrying null mutations of the genes encoding insulin-like growth factor I(Igf-1) and type 1 IGF receptor (Igf1r). Cell 1993 Oct 8; 75 (1): 59–72

    PubMed  CAS  Google Scholar 

  169. 169.

    Bishop D, Lawrence S, Spencer M. Predictors of repeatedsprint ability in elite female hockey players. J Sci Med Sport 2003; 6 (2): 199–209

    PubMed  CAS  Article  Google Scholar 

  170. 170.

    Van Koevering M, Nissen S. Oxidation of leucine and alpha-ketoisocaproate to b-hydroxy-b-methylbutyratein vivo. Am J Physiol 1992 Jan; 262 (1Pt1): E27–31

    PubMed  Google Scholar 

  171. 171.

    Gallagher PM, Carrithers JA, Carrithers JA, et al. b-hydroxyb- methylbutyrate ingestion, part II: effects on hematology,hepatic and renal function. Med Sci Sports Exerc 2000 Dec; 32 (12): 2116–9

  172. 172.

    Nissen S, Sharp R, Ray M, et al. Effect of leucine metabolite b-hydroxy-b-methylbutyrate on muscle metabolismduring resistance-exercise training. J Appl Physiol 81 (5): 2095–104

  173. 173.

    Rice DE, Sharp R, Rathmacher J. Role of b-hydroxyb- methylbutyrate (HMB) during acute exercise-inducedproteolysis [abstract]. Med Sci Sports Exerc 1995; 27: S220

    Google Scholar 

  174. 174.

    Jowko E, Ostaszewski P, Jank M, et al. Creatine and b-hydroxy-b-methylbutyrate (HMB) additively increaselean body mass and muscle strength during a weighttrainingprogram. Nutrition 2001 Jul-Aug; 17 (7-8): 558–66

    PubMed  CAS  Article  Google Scholar 

  175. 175.

    Panton LB, Rathmacher JA, Baier S, et al. Nutritional supplementation of the leucine metabolite b-hydroxyb-methylbutyrate (HMB) during resistance training. Nutrition 2000 Sep; 16 (9): 734–9

    PubMed  CAS  Article  Google Scholar 

  176. 176.

    Knitter AE, Panton L, Rathmacher JA, et al. Effects of b-hydroxy-b-methylbutyrate on muscle damage after aprolonged run. J Appl Physiol 2000; 89 (4): 1340–4

    PubMed  CAS  Google Scholar 

  177. 177.

    Hoffman JR, Cooper J, Wendell M, et al. Effects of b-hydroxy b-methylbutyrate on power performance andindices of muscle damage and stress during high-intensitytraining. J Strength Cond Res 2004 Nov; 18 (4): 747–52

    PubMed  Google Scholar 

  178. 178.

    Kreider RB, Ferreira M, Greenwood M, et al. Effects of calcium b-HMB supplementation during training on markersof catabolism, body composition, strength and sprintperformance. J Exerc Physiol-online 2000; 3 (4): 48–59

    Google Scholar 

  179. 179.

    Slater GJ, Jenkins D. b-hydroxy-b-methylbutyrate (HMB) supplementation and the promotion of muscle growthand strength. Sports Med 2000 Aug; 30 (2): 105–16

    PubMed  CAS  Article  Google Scholar 

  180. 180.

    Nissen S, Sharp RL, Panton L, et al. b-hydroxy-b-methylbutyrate (HMB) supplementation in humans is safe andmay decrease cardiovascular risk factors. J Nutr 2000 Aug; 130 (8): 1937–45

    Google Scholar 

  181. 181.

    O’Connor DM, Crowe MJ. Effects of b-hydroxy-b-methylbutyrate and creatine monohydrate supplementationon the aerobic and anaerobic capacity of highly trainedathletes. J Sports Med Phys Fitness 2003 Mar; 43 (1): 64–8

    PubMed  Google Scholar 

  182. 182.

    O’Connor DM, Crowe MJ. Effects of six weeks of bhydroxy- b-methylbutyrate (HMB) and HMB/creatine supplementationon strength, power, and anthropometry ofhighly trained athletes. J Strength Cond Res 2007 May; 21 (2): 419–23

    PubMed  Google Scholar 

  183. 183.

    Vukovich MD, Dreifort GD. Effect of b-hydroxy b-methylbutyrate on the onset of blood lactate accumulation andVO2 peak in endurance-trained cyclists. J Strength Cond Res 2001 Nov; 15 (4): 491–7

    PubMed  CAS  Google Scholar 

  184. 184.

    Nissen SL, Sharp RL. Effect of dietary supplements on lean mass and strength gains with resistance exercise: a metaanalysis. J Appl Physiol 2003 Feb 1; 94 (2): 651–9

    PubMed  CAS  Google Scholar 

  185. 185.

    Ransone J, Neighbors K, Lefavi R, et al. The effect of b-hydroxy b-methylbutyrate on muscular strength andbody composition in collegiate football players. J Strength Cond Res 2003 Feb; 17 (1): 34–9

    PubMed  Google Scholar 

  186. 186.

    Kreider RB, Ferreira M, Ferreira M, et al. Effects of calcium b-hydroxy-b-methylbutyrate (HMB) supplementationduring resistance-training on markers of catabolism, bodycomposition and strength. Int J Sports Med 1999 Nov; 20 (8): 503–9

    PubMed  CAS  Article  Google Scholar 

  187. 187.

    Crowe MJ, O’Connor DM, Lukins JE. The effects of b-hydroxy-b-methylbutyrate (HMB) and HMB/creatinesupplementation on indices of health in highly trainedathletes. Int J Sport Nutr Exerc Metab 2003; 13 (2): 184–97

    PubMed  CAS  Google Scholar 

  188. 188.

    Green GA, Catlin DH, Starcevic B. Analysis of over-thecounter dietary supplements. Clin J Sport Med 2001 Oct; 11 (4): 254–9

    PubMed  CAS  Article  Google Scholar 

  189. 189.

    Maughan RJ. Contamination of dietary supplements and positive drug tests in sport. J Sports Sci 2005 Sep; 23 (9): 883–9

    PubMed  CAS  Article  Google Scholar 

  190. 190.

    Baume N, Mahler N, Kamber M, et al. Research of stimulants and anabolic steroids in dietary supplements. Scand J Med Sci Sports 2006 Feb; 16 (1): 41–8

    PubMed  CAS  Article  Google Scholar 

  191. 191.

    Striegel H, Rassner D, Simon P, et al. The World Anti- Doping Code 2003: consequences for physicians associatedwith elite athletes. Int J Sports Med 2005; 26 (03): 238–43

    PubMed  CAS  Article  Google Scholar 

  192. 192.

    Bishop D. An applied research model for the sport sciences. Sports Med 2008; 38 (3): 253–63

    PubMed  Article  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this review. The author has no conflicts of interest that are directly relevant to the content of this review.

Author information

Affiliations

Authors

Corresponding author

Correspondence to David Bishop.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bishop, D. Dietary Supplements and Team-Sport Performance. Sports Med 40, 995–1017 (2010). https://doi.org/10.2165/11536870-000000000-00000

Download citation

Keywords

  • Sprint Performance
  • Ergogenic Effect
  • Bovine Colostrum
  • BCAA Supplementation
  • Bovine Colostrum Supplementation