Skip to main content
Log in

Therapeutic Interventions to Enhance Apolipoprotein A-I-Mediated Cardioprotection

  • Leading Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

The principal function of high-density lipoprotein (HDL) is to facilitate the reverse cholesterol transport (RCT) and inhibition of atheroma formation. Epidemiological studies and interventional trials have suggested that HDL has cardioprotective properties. However, increasing HDL concentration may not necessarily increase RCT, especially if the increase in HDL levels is the result of inhibiting HDL cholesterol (HDL-C) flux. The results of recent phase III clinical trials utilizing a cholesterol ester transfer protein (CETP) inhibitor to increase HDL-C levels in hypoalphalipoproteinaemia have shown that this approach of elevating HDL-C levels is insufficient to combat atherosclerosis and reduce the risk of cardiovascular disease. Although there are several interventions that increase HDL-C by preventing its turnover in the circulation, a more desirable approach is to enhance de novo production of HDL in the liver and/or small intestine. To this end, our acquired knowledge of the apolipoprotein-I (apo A-I) gene promoter as well as the signalling pathways that modulate its expression, has fuelled the development of novel therapeutic strategies to increase HDL-C flux. Promising pharmacological agents that selectively regulate transcription of the apo A-I gene, therapeutic strategies to de-repress apo A-I gene expression, and infusion of recombinant apo A-I or apo A-I mimetics are under development and may be clinically beneficial in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Fig. 1
Fig 2
Table II

Similar content being viewed by others

References

  1. Franceschini G, Maderna P, Sirtori CR. Reverse cholesterol transport: physiology and pharmacology. Atheroscler 1991; 88: 99–107

    Article  CAS  Google Scholar 

  2. Johnson WJ, Mahlberg FH, Rothblat GH, et al. Cholesterol transport between cells and high-density lipoproteins. Biochim Biophys Acta 1991; 1085: 273–98

    Article  PubMed  CAS  Google Scholar 

  3. Sviridov D, Nestel P. Dynamics of reverse cholesterol transport: protection against atherosclerosis. Atheroscler 2002; 161: 245–54

    Article  CAS  Google Scholar 

  4. Brewer Jr HB, Santamarina-Fojo S. New insights into the role of the adenosine triphosphate-binding cassette transporters in high-density metabolism and reverse cholesterol transport. Am J Cardiol 2003; 91: 3E-11E

    Article  CAS  Google Scholar 

  5. Santamarina-Fojo S, Gonzalez-Navarro H, Greeman L, et al. Hepatic lipase, lipoprotein metabolism, and atherogenesis. Arterioscler Thromb Vasc Biol 2003; 24: 1750–4

    Article  CAS  Google Scholar 

  6. Eggerman TL, Hoeg JM, Meng MS, et al. Differential tissue-specific expression of human apoA-I and apoA-II. J Lipid Res 1991; 32: 821–8

    PubMed  CAS  Google Scholar 

  7. Rye KA, Barter PJ. Formation and metabolism of pre-beta-migrating, lipid-poor apolipoprotein A-I. Arterioscler Thromb Vasc Biol 2004; 24: 421–8

    Article  PubMed  CAS  Google Scholar 

  8. Mulya A, Lee JY, Gebre AK, et al. Minimal lipidation of pre-beta HDL by ABCA1 results in reduced ability to interact with ABCA1. Arterioscler Thromb Vasc Biol 2007; 27: 1838–46

    Article  CAS  Google Scholar 

  9. Duong PT, Weibel GL, Lund-Katz S, et al. Characterization and properties of pre-beta-HDL particles formed by ABCA1-mediated cellular lipid efflux to apoA-I. J Lipid Res 2008; 49: 1006–14

    Article  PubMed  CAS  Google Scholar 

  10. Favari E, Calabresi L, Adorni MP, et al. Small discoidal pre-b1 HDL particles are efficient acceptors of cell cholesterol via ABCA1 and ABCG1. Biochem 2009; 48: 11067–74

    Article  CAS  Google Scholar 

  11. Asztalos BF, Schaefer EJ, Horvath KV, et al. Role of LCAT in HDL remodeling: investigation of LCAT deficiency states. J Lipid Res 2007; 48: 592–9

    Article  PubMed  CAS  Google Scholar 

  12. Tall AR. Plasma lipid transfer proteins. J Lipid Res 1986; 27: 361–7

    PubMed  CAS  Google Scholar 

  13. von Eckardstein A, Huang Y, Assmann G. Physiological role and clinical relevance of high-density lipoprotein subclasses. Curr Opin Lipidol 1994; 5: 404–16

    Article  Google Scholar 

  14. Asztalos BF, de la Llera-Moya M, Dallal GE, et al. Differential effects of HDL subpopulations on cellular ABCA1 and SR-B1-mediated cholesterol efflux. J Lipid Res 2005; 46: 2246–53

    Article  PubMed  CAS  Google Scholar 

  15. Zhang XK, Lehmann J, Hoffmann B, et al. Homodimer formation of retinoid X receptor induced by 9-cis-retinoic acid. Nature 1992; 358: 587–91

    Article  PubMed  CAS  Google Scholar 

  16. Vu-Dac N, Chopin-Delannoy S, Gervois P, et al. The nuclear receptors peroxisome proliferator-activated receptor a and Rev-erbα mediate the species-specific regulation of apolipoprotein A-I expression by fibrates. J Biol Chem 1998; 273: 25713–20

    Article  PubMed  CAS  Google Scholar 

  17. Huuskonen J, Vishnu M, Chau P, et al. Liver X receptor inhibits the synthesis and secretion of apolipoprotein AI by human liver-derived cells. Biochem 2006; 45: 15068–74

    Article  CAS  Google Scholar 

  18. Shaw JA, Bobik A, Murphey A, et al. Infusion of reconstituted high-density lipoprotein leads to acute changes in human atherosclerotic plaque. Circul Res 2008; 103: 1084–91

    Article  CAS  Google Scholar 

  19. Navab M, Schechter I, Anantharamaiah GM, et al. Structure and function of HDL mimetics. Arterioscler Thromb Vasc Biol 2010; 30: 164–8

    Article  PubMed  CAS  Google Scholar 

  20. Lebherz C, Sanmiguel J, Wilson JM, et al. Gene transfer of wild-type apoA-I and apoA-I Milano reduce atherosclerosis to a similar extent. Cardiovasc Diabetol 2007; 6: 15–22

    Article  PubMed  CAS  Google Scholar 

  21. Vu-Dac N, Schoonjans K, Laine B, et al. Negative regulation of the human apolipoprotein A-I promoter by fibrates can be attenuated by the interaction of the peroxisome proliferator-activated receptor with its response element. J Biol Chem 1994; 269: 31012–8

    PubMed  CAS  Google Scholar 

  22. Magee G, Sharpe PC. Paradoxical decreases in high-density lipoprotein cholesterol with fenofibrate: a quite common phenomenon. J Clin Pathol 2009; 62: 250–3

    Article  PubMed  CAS  Google Scholar 

  23. Staels B, Dallongeville J, Auwerx J, et al. Mechanisms of action of fibrates on lipid and lipoprotein metabolism. Circul 1998; 98: 2088–93

    Article  CAS  Google Scholar 

  24. Pineda Torra I, Gervois P, Staels B. Peroxisome proliferator-activated receptor alpha in metabolic disease, inflammation, atherosclerosis, and aging. Curr Opin Lipidol 1999; 10: 151–9

    Article  PubMed  CAS  Google Scholar 

  25. Xu Y, Mayhugh D, Saeed A, et al. Design and synthesis of a potent and selective triazolone-based peroxisome proliferator-activated receptor a agonist. J Med Chem 2003; 46: 5121–4

    Article  PubMed  CAS  Google Scholar 

  26. Nissen SE, Nicholls SJ, Wolski K, et al. Effects of a potent and selective PPAR-α agonist in patients with atherogenic dyslipidemia or hypercholesterolemia: two randomized controlled trials. JAMA 2007; 297: 1362–73

    Article  PubMed  CAS  Google Scholar 

  27. Millar JS, Duffy D, Gadi R, et al. Potent and selective PPAR-α agonist LY518674 upregulates both apoA-I production and catabolism in human subjects with the metabolic syndrome. Arterioscler Thromb Vasc Biol 2009; 29: 140–6

    Article  PubMed  CAS  Google Scholar 

  28. Sierra ML, Beneton V, Boullay AB, et al. Substituted 2-[(4-aminomethyl)phenoxy-2-methylprotionic acid PPARd agonists, 1: discovery of a novel series of potent HDLc raising agents. J Med Chem 2007; 50: 685–95

    Article  PubMed  CAS  Google Scholar 

  29. Sakamoto J, Kimura H, Moriyama S, et al. Activation of human peroxisome proliferator-activated receptor (PPAR) subtypes by pioglitazone. Biochem Biophys Res Comm 2000; 278: 704–11

    Article  PubMed  CAS  Google Scholar 

  30. Qin S, Liu T, Kamanna VS, et al. Pioglitazone stimulates apolipoprotein A-I production without affecting HDL removal in HepG2 cells: involvement of PPAR-α. Arterioscler Thromb Vasc Biol 2007; 27: 2428–34

    Article  PubMed  CAS  Google Scholar 

  31. Lehmann JM, Moore LB, Smith-Oliver TA, et al. An anti-diabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor γ (PPARg). J Biol Chem 1995; 270: 12953–6

    Article  PubMed  CAS  Google Scholar 

  32. Willson TM, Cobb JE, Cowan DJ, et al. The structure-activity relationship between peroxisome proliferator-activated receptor γ agonism and the antihyperglycemic activity of thiazolidinediones. J Med Chem 1996; 3: 665–8

    Article  Google Scholar 

  33. Matthews L, Berry A, Tersigni M, et al. Thiazolidinediones are partial agonists for the glucocorticoid receptor. Endocrinol 2009; 150: 75–86

    Article  CAS  Google Scholar 

  34. Wang YX, Lee CH, Tsiep S, et al. Peroxisome-proliferator-activated receptor delta activates fat metabolism to prevent obesity. Cell 2003; 113: 159–70

    Article  PubMed  CAS  Google Scholar 

  35. Oliver Jr WR, Shenk JL, Snaith MR, et al. A selective peroxisome proliferator-activated receptor delta agonist promotes reverse cholesterol transport. Proc Natl Acad Sci U S A 2001;98: 5306–11

    Article  PubMed  CAS  Google Scholar 

  36. Liebowitz MD, Fievet C, Hennuyer N, et al. Activation of PPARdelta alters lipid metabolism in db/db mice. FEBS Lett 2000; 473: 333–6

    Article  Google Scholar 

  37. van der Hoorn JW, Jukema JW, Havekes LM, et al. The dual PPARalpha/gamma agonist tesaglitazar blocks progression of pre-existing atherosclerosis in APOE*3Leiden: CETP transgenic mice. Br J Pharmacol 2009; 156: 1067–75

    Article  PubMed  CAS  Google Scholar 

  38. Saad MF, Greco S, Osei K, et al. Ragaglitazar improves glycemic control and lipid profile in type 2 diabetic subjects: a 12-week, double-blind, placebo-controlled dose-ranging study with an open pioglitazone arm. Diabetes Care 2004; 27: 1324–9

    Article  PubMed  CAS  Google Scholar 

  39. Goldstein BJ, Rosenstock J, Anzalone D, et al. Effect of tesaglitazar, a dual PPARa/g agonist, on glucose and lipid abnormalities in patients with type 2 diabetes: a 12-week dose-ranging trial. Curr Med Res Opin 2006; 22: 2575–90

    Article  PubMed  CAS  Google Scholar 

  40. Oleksiewicz MB, Southgate J, Iversen L, et al. Rat urinary bladder carcinogenesis by dual-acting PPARalpha + gamma agonists. PPAR Res 2008; 2008: 103167

    Article  PubMed  Google Scholar 

  41. Lovas K, Rost TH, Skorve J, et al. Tetradecylthioacetic acid attenuates dyslipidemia in mal patients with type 2 diabetes mellitus, possibly by dual PPAR-a/d activation and increased mitochondrial fatty acid oxidation. Diabetes Obes Metab 2008; 11: 304–14

    Article  CAS  Google Scholar 

  42. Grav HJ, Tronstad KJ, Gudbrandsen OA, et al. Changed energy state and increased mitochondrial beta-oxidation rate in liver or rats associated with lowered proton electrochemical potential and stimulated uncoupling protein 2 (UCP-2) expression: evidence for peroxisome proliferator-activated receptor-alpha independent induction of UCP-2 expression. J Biol Chem 2003; 278: 30525–33

    Article  PubMed  CAS  Google Scholar 

  43. Shen L, Zhang Y, Wang A, et al. Synthesis and identification of [1,2,4]thiadiazole derivatives as a new series of potent and orally active dual agonists of peroxisome proliferator-activated receptors a and d. J Med Chem 2007; 50: 3954–63

    Article  PubMed  CAS  Google Scholar 

  44. Shen L, Zhang Y, Wang A, et al. Synthesis and structure-activity relationships of thiadiazole-derivatives as potent and orally active peroxisome proliferator-activated receptors a/d dual agonists. Bioorganic Med Chem 2008; 16: 3321–41

    Article  CAS  Google Scholar 

  45. Goldenberg I, Benderly M, Goldbourt U, et al. Secondary prevention with bezafibrate therapy for the treatment of dyslipidemia: an extended follow-up of the BIP trial. J Am Coll Cardiol 2008; 51: 459–65

    Article  PubMed  CAS  Google Scholar 

  46. Goldenberg I, Boyko V, Tennenbaum A, et al. Long-term benefit of high-density lipoprotein cholesterol-raising therapy with bezafibrate. Arch Intern Med 2009; 169: 508–14

    Article  PubMed  CAS  Google Scholar 

  47. Nakajima T, Tanaka N, Kanbe H, et al. Bezafibrate at clinically relevant doses decreases serum/liver triglycerides via down-regulation of a sterol regulatory element-binding protein-1c in mice: a novel peroxisome proliferator-activated receptor alpha-independent mechanism. Mol Pharmacol 2009; 75: 782–92

    Article  PubMed  CAS  Google Scholar 

  48. Schmitz G, Langmann T. Transcriptional regulatory networks in lipid metabolism control ABCA1 expression. Biochim Biophys Acta 2005; 1735: 1–19

    Article  PubMed  CAS  Google Scholar 

  49. Pinaire JA, Reifel-Miller A. Therapeutic potential of retinoid X receptor modulators for the treatment of the metabolic syndrome. PPAR Res 2007; 2007: 94156

    Article  PubMed  Google Scholar 

  50. Leibowitz MD, Ardecky RJ, Boehm MF, et al. Biological characterization of a heterodimer-selective retinoid X receptor modulator: potential benefits for the treatment of type 2 diabetes. Endocrinol 2006; 147: 1044–53

    Article  CAS  Google Scholar 

  51. Bramlett KS, Houck KA, Borchert KM, et al. A natural product ligand of the oxysterol receptor, liver X receptor. J Pharm Exp Therap 2003; 307: 291–6

    Article  CAS  Google Scholar 

  52. Venkateswaran A, Laffitte BA, Joseph SB, et al. Control of cellular cholesterol efflux by the nuclear oxysterol receptor LXR alpha. Proc Natl Acad Sci U S A 2000; 97: 12097–102

    Article  PubMed  CAS  Google Scholar 

  53. Taylor AH, Raymond J, Dionne JM, et al. Glucocorticoid increases rat apolipoprotein A-I promoter activity. J Lipid Res 1996; 37: 2232–43

    PubMed  CAS  Google Scholar 

  54. De Bosscher K, Haegeman G. Latest perspectives on anti-inflammatory actions of glucocorticoids. Mol Endocrinol 2009; 23: 281–91

    Article  PubMed  CAS  Google Scholar 

  55. Kassel O, Sancono A, Kratzschmar J, et al. Glucocorticoids inhibit MAP kinase via increased expression and decreased degradation of MKP-1. EMBO J 2001; 20: 7108–16

    Article  PubMed  CAS  Google Scholar 

  56. Beers A, Haas MJ, Wong NCW, et al. Inhibition of apolipoprotein AI gene expression by tumor necrosis factor: roles for MEK/ERK and JNK signaling. Biochem 2006; 34: 2408–13

    Google Scholar 

  57. De Bosscher K, Vanden Berghe W, Haegeman G. The interplay between the glucocorticoid receptor and nuclear factor kB or activator protein-1: molecular mechanisms for gene repression. Endocr Rev 2003; 24: 488–522

    Article  PubMed  CAS  Google Scholar 

  58. Morishima A, Ohkubo N, Maeda N, et al. NFkB regulates plasma apolipoprotein A-I and high density lipoprotein cholesterol through inhibition of peroxisome proliferator-activated receptor a. J Biol Chem 2003; 278: 38188–93

    Article  PubMed  CAS  Google Scholar 

  59. Clark AR. Anti-inflammatory functions of glucocorticoid-induced genes. Mol Cell Endocrinol 2007; 275: 79–97

    Article  PubMed  CAS  Google Scholar 

  60. Dewint P, Gossye V, De Bosscher K, et al. A plant-derived ligand favoring monomeric glucocorticoid receptor conformation with impaired transactivation potential attenuates collagen-induced arthritis. J Immunol 2008; 180: 2608–15

    PubMed  CAS  Google Scholar 

  61. O’Brien T, Katz K, Hodge D, et al. The effect of treatment of hypothyroidism and hyperthyroidism on plasma lipids and apolipoproteins AI, AII and E. Clin Endocrinol 1997; 46: 17–20

    Article  Google Scholar 

  62. Romney JS, Chen J, Carr FE, et al. Identification of the thyroid hormone responsive messenger RNA spot11 as apolipoprotein A1 messenger RNA and effects of the hormone on the promoter. Mol Endocrinol 1992; 6: 943–50

    Article  PubMed  CAS  Google Scholar 

  63. Taylor AH, Wishart P, Lawless DE, et al. Identification of functional positive and negative thyroid hormone-responsive elements in the rat apolipoprotein AI promoter. Biochem 1996; 35: 8281–8

    Article  CAS  Google Scholar 

  64. O’Shea PJ, Williams GR. Insight into the physiological actions of thyroid hormone receptors from genetically modified mice. J Endocrinol 2002; 175: 553–70

    Article  PubMed  Google Scholar 

  65. Grover GJ, Mellstrom K, Malm J. Therapeutic potential for thyroid hormone receptor-beta selective agonists for treating obesity, hyperlipidemia, and diabetes. Curr Vasc Pharmacol 2007; 5: 141–54

    Article  PubMed  CAS  Google Scholar 

  66. Murao K, Wada Y, Nakamura T, et al. Insulin and glucose regulation of apolipoprotein AI gene expression. J Biol Chem 1998; 273: 18959–65

    Article  PubMed  CAS  Google Scholar 

  67. Lam JK, Matsubara S, Mihara K, et al. Insulin induction of apolipoprotein AI: role of Sp1. Biochem 2003; 42: 2680–90

    Article  CAS  Google Scholar 

  68. Zheng X-L, Matsubara S, Diao C, et al. Epidermal growth factor induction of apolipoprotein A-I is mediated by the Ras-MAP kinase cascade and Sp1. J Biol Chem 2001; 276: 13822–9

    PubMed  CAS  Google Scholar 

  69. Zheng X-L, Matsubara S, Diao C, et al. Activation of apolipoprotein AI gene expression by protein kinase A and kinase C through transcription factor, Sp1. J Biol Chem 2000; 275: 31747–54

    Article  PubMed  CAS  Google Scholar 

  70. Wehmeier K, Beers A, Haas MJ, et al. Inhibition of apolipoprotein AI gene expression by 1,25-dihydroxyvitamin D3. Biochem Biophys Acta 2005; 1737: 16–26

    Article  PubMed  CAS  Google Scholar 

  71. Nijenhuis T, van der Eerden BCJ, Zugel U, et al. The novel vitamin D analog ZK191784 as an intestine-specific vitamin D antagonist. FASEB J 2006; 20: 2171–73

    PubMed  CAS  Google Scholar 

  72. Wang J-H, Keisala T, Solakivi T, et al. Serum cholesterol and expression of apoAI, LXRβ, and SREBP2 in vitamin D receptor knock-out mice. J Steroid Biochem Mol Biol 2009; 113: 222–6

    Article  PubMed  CAS  Google Scholar 

  73. Wehmeier KR, Mazza A, Hachem S, et al. Differential regulation of apolipoprotein A-I gene expression by vitamin D receptor modulators. Biochim Biophys Acta 2008; 1780: 264–73

    Article  PubMed  CAS  Google Scholar 

  74. Colston K, MacKay AG, James SY, et al. EB 1089: a new vitamin D analogue that inhibits the growth of breast cancer cells in vivo and in vitro. Biochem Pharmacol 1992; 44: 2273–80

    Article  PubMed  CAS  Google Scholar 

  75. Masson D, Lagrost L, Athias A, et al. Expression of the pregnane X receptor in mice antagonizes the cholic acid-mediated changes in plasma lipoprotein profile. Arterioscler Thromb Vasc Biol 2005; 25: 2164–9

    Article  PubMed  CAS  Google Scholar 

  76. Masson D, Qatanani M, Sberna AL, et al. Activation of the constitutive androstane receptor decreases HDL in wild-type and human apoA-I transgenic mice. J Lipid Res 2008; 49: 1682–91

    Article  PubMed  CAS  Google Scholar 

  77. Zhou C, King N, Chen KY, et al. Activation of pregnane X receptor induces hypercholesterolemia in wild-type and accelerates atherosclerosis in apolipoprotein E deficient mice. J Lipid Res 2009; 50: 2004–13

    Article  PubMed  CAS  Google Scholar 

  78. Harnish DC, Malik S, Kilbourne E, et al. Control of apolipoprotein AI gene expression through synergistic interactions between hepatocyte nuclear factors 3 and 4. J Biol Chem 1996; 271: 13621–8

    Article  PubMed  CAS  Google Scholar 

  79. Delerive P, Galardi CM, Bisi JE, et al. Identification of liver receptor homolog-1 as a novel regulator of apolipoprotein AI gene transcription. Mol Endocrinol 2004; 18: 2378–87

    Article  PubMed  CAS  Google Scholar 

  80. Digby JE, Lee JM, Choudhury RP. Nicotinic acid and the prevention of coronary artery disease. Curr Opin Lipidol 2009; 20: 321–6

    Article  PubMed  CAS  Google Scholar 

  81. Lai E, De Lepeleire I, Crumley TM, et al. Suppression of niacin-induced vasodilation with an antagonist to prostaglandin D2 receptor subtype 1. Clin Pharm Ther 2007; 81: 849–57

    Article  CAS  Google Scholar 

  82. van der Hoorn JWA, de Haan W, Berbee JFP, et al. Niacin increases HDL by reducing hepatic expression and plasma levels of cholesterol ester transfer protein in APOE*3 Leiden CETP mice. Arterioscler Thromb Vasc Biol 2008; 28: 2016–22

    Article  PubMed  CAS  Google Scholar 

  83. Soga T, Kamohara J, Matsumoto S, et al. Molecular identification of nicotinic acid receptor. Biochem Biophys Acta 2003; 28: 364–9

    Google Scholar 

  84. Gille A, Bodor ET, Ahmed K, et al. Nicotinic acid: pharmacological effects and mechanisms of action. Ann Rev Pharmacol Toxicol 2008; 48: 4.1-4.28

    Google Scholar 

  85. Aktories K, Jakobs KH, Schultz G. Nicotinic acid inhibits adipocyte adenylate cyclase in a hormone-like manner. FEBS Lett 1980; 115: 11–4

    Article  PubMed  CAS  Google Scholar 

  86. Taggart AK, Kero J, Gan X, et al. (D)-b-Hydroxybutyrate inhibits adipocytes lipolysis via the nicotinic acid receptor PUMA-G. J Biol Chem 2005; 280: 26649–52

    Article  PubMed  CAS  Google Scholar 

  87. Havel RJ. Conversion of plasma free fatty acids into triglycerides of plasma lipoprotein fractions in man. Metabol 1961; 10: 1031–4

    CAS  Google Scholar 

  88. Lamon-Fava LH, Diffenderfer MR, Barrett PHR, et al. Extended-release niacin alters the metabolism of plasma apolipoprotein (apo) A-I and apoB-containing lipoproteins. Arterioscler Thromb Vasc Biol 2008; 28: 1672–8

    Article  PubMed  CAS  Google Scholar 

  89. Siripurkpong P, Na-Bangchang K. Effects of niacin and chromium on the expression of ATP-biding cassette transporter A1 and apolipoprotein A-I genes in HepG2 cells. J Nutr Biochem 2009; 20: 261–8

    Article  PubMed  CAS  Google Scholar 

  90. Wu Z-H, Zhao S-P. Niacin promotes cholesterol efflux through stimulation of the PPARg-LXRa-ABCA1 pathway in 3T3-L1 adipocytes. Pharmacol 2009; 84: 282–7

    Article  CAS  Google Scholar 

  91. Blumenthal RS. Overview of the adult treatment panel (ATP) III guidelines. Adv Stud Med 2002; 2: 148–57

    Google Scholar 

  92. Gardner CD, Tribble DL, Young DR, et al. Population frequency distributions of HDL, HDL2, and HDL3 cholesterol and apolipoproteins A-I and B in healthy men and women and associations with age, gender, hormonal status, and sex hormone use: the Stanford Five City Project. Prev Med 2000; 31: 335–45

    Article  PubMed  CAS  Google Scholar 

  93. Deroo BJ, Korach KS. Estrogen receptors and human disease. J Clin Invest 2006; 116: 561–70

    Article  PubMed  CAS  Google Scholar 

  94. Huxley VA. Sex and the cardiovascular system: the intriguing tale of how women and men regulate cardiovascular function differently. Adv Physiol Educ 2007; 31: 17–22

    Article  PubMed  Google Scholar 

  95. Klos KL, Boerwinkle E, Ferrell RE, et al. ESR1 Polymorphism is associated with plasma lipid and apolipoprotein levels in Caucasians of the Rochester Family Heart Study. J Lipid Res 2008; 49: 1701–6

    Article  PubMed  CAS  Google Scholar 

  96. Deleon MJ, Horani MH, Haas MJ, et al. Effects of dehydroepiandrosterone on rat apolipoprotein AI gene expression in the human hepatoma cell line, HepG2. Metabol 2002;51: 376–9

    Article  CAS  Google Scholar 

  97. Taylor AH, Fox-Robichaud AH, Egan C, et al. Estradiol decreases apolipoprotein AI expression in adult male rats via site B. J Mol Endocrinol 2000; 25: 207–19

    Article  PubMed  CAS  Google Scholar 

  98. Harnish DC, Evans MJ, Scicchitano MS, et al. Estrogen regulation of the apolipoprotein AI gene promoter through transcription cofactor sharing. J Biol Chem 1998; 273: 9270–8

    Article  PubMed  CAS  Google Scholar 

  99. Sammartino A, Cirillo D, Mandato VD, et al. Osteoporosis and cardiovascular disease: benefit-risk of hormone replacement therapy. J Endocrinol Invest 2005; 28: 80–4

    PubMed  CAS  Google Scholar 

  100. Rossouw JE. Implications of recent clinical trials of postmenopausal hormone therapy for management of cardiovascular disease. Ann N Y Acad Sci 2006; 1089: 444–53

    Article  PubMed  CAS  Google Scholar 

  101. Joensuu H, Holli K, Oksanen H, et al. Serum lipid levels during and after adjuvant toremifene or tamoxifen therapy for breast cancer. Breast Cancer Res Treat 2000; 63: 225–34

    Article  PubMed  CAS  Google Scholar 

  102. Mastroianni A, Bellati C, Facchetti G, et al. Increased plasma HDL-cholesterol and apo A-I in breast cancer patients undergoing adjuvant tamoxifen therapy. Clin Biochem 2000; 33: 513–6

    Article  PubMed  CAS  Google Scholar 

  103. Francucci CM, Daniel e P, Iori N, et al. Effects of raloxifene on body fat distribution and lipid profile in healthy post-menopausal women. Endocrinol Invest 2005; 28: 623–31

    CAS  Google Scholar 

  104. Tam S-P, Zhang X, Cuthbert C, et al. The effects of dimethyl sulfoxide on apolipoprotein A-I in the human hepatoma cell line, HepG2. J Lipid Res 1997; 38: 2090–102

    PubMed  CAS  Google Scholar 

  105. Berrougui H, Grenier G, Loued S, et al. A new insight into resveratrol as an atheroprotective compound: inhibition of lipid peroxidation and enhancement of cholesterol efflux. Atheroscler 2009; 207: 420–7

    Article  CAS  Google Scholar 

  106. Mooradian AD, Haas MJ, Wadud K. Ascorbic acid and alpha-tocopherol down-regulate apolipoprotein A-I gene expression I HepG2 and Caco-2 cell lines. Metabol 2006; 55: 159–67

    Article  CAS  Google Scholar 

  107. Robinson I, de Serna DG, Gutierrez A, et al. Vitamin E in humans: an explanation of clinical trial failure. Endocrin Pract 2006; 12: 576–82

    Google Scholar 

  108. Moats C, Rimm EB. Vitamin intake and risk of coronary disease: observation versus intervention. Curr Atheroscler Rep 2007; 9: 508–14

    Article  PubMed  CAS  Google Scholar 

  109. Steinhubl SR. Why have antioxidants failed in clinical trials? Am J Cardiol 2008; 101: 14D-9D

    Article  CAS  Google Scholar 

  110. Anderson JW, Johnstone BM, Cook-Newell ME. Meta-analysis of the effects of soy protein intake on serum lipids. N Engl J Med 1995; 333: 276–82

    Article  PubMed  CAS  Google Scholar 

  111. Anthony MS, Clarkson TB, Hughes CL, et al. Soybean isoflavones improve cardiovascular risk factors without affecting the reproductive system of peripubertal rhesus monkeys. J Nutr 1996; 126: 43–50

    PubMed  CAS  Google Scholar 

  112. Hodgson JM, Puddey IB, Beilin LJ, et al. Supplementation with isoflavonoid phytoestrogens does not alter serum lipid concentrations: a randomized controlled trial in humans. J Nutr 1989; 128: 728–32

    Google Scholar 

  113. Lamon-Fava LH. Genistein activates apolipoprotein A-I gene expression in the human hepatoma cell line Hep G2. J Nutr 2000; 130: 2489–92

    PubMed  CAS  Google Scholar 

  114. Lamon-Fava LH, Micherone D. Regulation of apoA-I gene expression: mechanism of action of estrogen and genistein. J Lipid Res 2004; 45: 106–12

    Article  PubMed  CAS  Google Scholar 

  115. Akiyama T, Ishida J, Nakagawa S. Genistein, a specific inhibitor of tyrosine-specific protein kinases. J Biol Chem 1987; 262: 5592–6

    PubMed  CAS  Google Scholar 

  116. Urizar NL, Liverman AB, Dodds DT, et al. A natural product that lowers cholesterol as an antagonist ligand for FXR. Science 2002; 296: 1703–6

    Article  PubMed  CAS  Google Scholar 

  117. Claudel T, Sturm E, Duez H, et al. Bile acid-activated nuclear receptor FXR suppresses apolipoprotein A-I transcription via a negative FXR response element. J Clin Invest 2002; 109: 961–71

    PubMed  CAS  Google Scholar 

  118. Sharma B, Salunke R, Srivastava S, et al. Effects of gug-gulsterone isolated from Commiphora mukul in high-fat diet induced diabetic rats. Food Chem Toxicol 2009; 47: 2631–9

    Article  PubMed  CAS  Google Scholar 

  119. Szapary PO, Wolfe ML, Bloedon LT, et al. Guggulipid for the treatment of hypercholesterolemia: a randomized controlled trial. JAMA 2003; 290: 765–72

    Article  PubMed  CAS  Google Scholar 

  120. Despres J-C, Golay A, Sjostrom L, et al. Effects of rimonabant on metabolic risk factors in overweight patients with dyslipidemia. N Engl J Med 2005; 353: 2121–34

    Article  PubMed  CAS  Google Scholar 

  121. Van Gaal LF, Rissanen AM, Scheen AJ, et al. Effects of the cannabinoid-1 receptor blocker rimonabant on weight reduction and cardiovascular risk factors in overweight patients: 1-year experience from the RIO-Europe study. Lancet 2005; 365: 1389–97

    Article  PubMed  CAS  Google Scholar 

  122. Pi-Sunyer XF, Aronne LJ, Heshmati HM, et al. Effect of rimonabant, a cannabinoid-1 receptor blocker, on weight and cardiometabolic risk factors in overweight or obese patients; RIO-North America: a randomized controlled trial. JAMA 2006; 295: 761–75

    Article  PubMed  CAS  Google Scholar 

  123. Scheen AJ, Finer N, Hollander P, et al. Efficacy and tolerability of rimonabant in overweight or obese patients with type 2 diabetes: a randomized controlled study. Lancet 2006; 368: 1660–72

    Article  PubMed  CAS  Google Scholar 

  124. Osei-Hyiaman D, DePetrillo M, Pacher P, et al. Endo-cannabinoid activation at hepatic CB1 receptors stimulates fatty acid synthesis and contributes to diet-induced obesity. J Clin Invest 2005; 115: 1298–305

    PubMed  CAS  Google Scholar 

  125. Bensaid M, Gary-Bobo M, Esclangon A, et al. The cannabinoid CB1 receptor antagonist SR141716 increases ACRP30 mRNA expression in adipose tissue of obese fa/fa rats and in cultured adipocytes cells. Mol Pharmacol 2003; 63: 908–14

    Article  PubMed  CAS  Google Scholar 

  126. Ligaray K, Hachem S, Mazza A, et al. Repression of apolipoprotein A-I gene expression by anandamide [abstract no. 0214-OR]. The 67th Annual Meetings of the American Diabetes Association, Chicago, IL. Diabetes 2007; 56 Suppl. 1: A56

    Google Scholar 

  127. Ettinger WH, Varma VK, Sorci-Thomas M, et al. Cytokines decrease apolipoprotein accumulation in medium from HepG2 cells. Arterioscler Thromb 1994; 14: 8–13

    Article  PubMed  CAS  Google Scholar 

  128. Song H, Saito K, Fujigaki S, et al. IL-1b and TNF-α suppress apolipoprotein (apo) E secretion and apo A-I expression in HepG2 cells. Cytokine 1998; 10: 275–80

    Article  PubMed  CAS  Google Scholar 

  129. Haas MJ, Horani M, Mreyoud A, et al. Suppression of apolipoprotein AI gene expression in HepG2 cells by TNFα and IL-1β. Biochim Biophys Acta 2003; 1623: 120–8

    Article  PubMed  CAS  Google Scholar 

  130. Tacer KF, Kuzman D, Seliskar M, et al. TNF-α interferes with lipid homeostasis and activates acute and proatherogenic processes. Physiol Genomics 2007; 31: 216–27

    Article  CAS  Google Scholar 

  131. Foldes G, von Haehling S, Anker SD. Toll-like receptor modulation in cardiovascular disease: a target for intervention? Expert Opin Investig Drugs 2006; 15: 857–71

    Article  PubMed  CAS  Google Scholar 

  132. Katsargyris A, Klonaris C, Bastounis E, et al. Toll-like receptor modulation: a novel therapeutic strategy in cardiovascular disease? Expert Opin Ther Targets 2008; 12: 1329–46

    Article  PubMed  CAS  Google Scholar 

  133. Fris-Moller N, Reiss P, Sabin CA, et al. Class of retroviral drugs and the risk of myocardial infarction. N Engl J Med 2007; 356: 1723–35

    Article  Google Scholar 

  134. van der Valk M, Kastelein JJ, Murphy RL, et al. Nevirapine-containing antiretroviral therapy in HIV-1 infected patients results in an anti-atherogenic lipid profile. AIDS 2001; 15: 2407–14

    Article  PubMed  Google Scholar 

  135. van Leth F, Phanuphak P, Stroes E, et al. Nevirapine and efavirenz elicit different changes in lipid profiles in antiretroviral-therapy-naïve patients infected with HIV-1. PLoS Med 2004; 1: e19

    Article  PubMed  CAS  Google Scholar 

  136. Franssen R, Sankatsing RR, Hassink E, et al. Nevirapine increases high-density lipoprotein cholesterol concentrations by stimulation of apolipoprotein A-I production. Aterioscler Thromb Vasc Biol 2009; 29: 1336–41

    Article  CAS  Google Scholar 

  137. Sirtori C, Calabresi L, Franceschini G, et al. Cardiovascular status of carriers of the apolipoprotein A-I Milano mutant, the Limone sul Garda study. Circulation 2001; 103: 1949–54

    Article  PubMed  CAS  Google Scholar 

  138. Calabresi L, Canavesi M, Bernini F, et al. Cell cholesterol efflux to reconstituted high-density lipoproteins containing the apolipoprotein A-I Milano dimer. Biochemistry 1999; 38: 16307–14

    Article  PubMed  CAS  Google Scholar 

  139. Nissen SE, Tsunoda T, Tuzcu EM, et al. Effect of recombinant apo A-I Milano on coronary atherosclerosis in patients with acute coronary syndromes: a randomized controlled trial. JAMA 2003; 290: 2292–300

    Article  PubMed  CAS  Google Scholar 

  140. Bielicki JK, McCall MR, Stolzfus LJ, et al. Evidence that apolipoprotein A-IMilano has reduced capacity, compared with wild-type apolipoprotein A-I, to recruit membrane cholesterol. Arterioscler Thromb Vasc Biol 1997; 17: 1637–43

    Article  PubMed  CAS  Google Scholar 

  141. Weibel GL, Alexander ET, Joshi MR, et al. Wild-type apo A-I and the Milano variant have similar abilities to stimulate cellular lipid mobilization and efflux. Arterioscler Thromb Vasc Biol 2007; 27: 2022–9

    Article  PubMed  CAS  Google Scholar 

  142. Anantharamaiah GM, Jones JL, Brouillette CG, et al. Studies of synthetic peptide analogs of amphipathic helix I: structure of peptide/DMPC complexes. J Biol Chem 1985; 260: 10248–55

    PubMed  CAS  Google Scholar 

  143. Datta B, Chaddha M, Hama S, et al. Effects of increasing hydrophobicity on the physical-chemical and biological properties of a class A amphipathic helical peptide. J Lipid Res 2001; 42: 1096–104

    PubMed  CAS  Google Scholar 

  144. Gomaraschi M, Calabresi L, Rossoni G, et al. Anti-inflammatory and cardioprotective activities of synthetic high-density lipoprotein containing apolipoprotein A-I mimetic peptides. J Pharmacol Exp Therap 2008; 324: 776–83

    Article  CAS  Google Scholar 

  145. Datta G, White CR, Dashti N, et al. Anti-inflammatory and recycling properties of an apolipoprotein mimetic peptide, Ac-hE18-NH2. Atherosclerosis 2010; 208: 134–41

    Article  PubMed  CAS  Google Scholar 

  146. Rubin EM, Krauss RM, Spangler EA, et al. Inhibition of early atherogenesis in transgenic mice by human apolipoprotein AI. Nature 1991; 353: 265–7

    Article  PubMed  CAS  Google Scholar 

  147. Plump AS, Scott CJ, Breslow JL. Human apolipoprotein A-I gene expression increases high-density lipoprotein and suppresses atherosclerosis in the apolipoprotein E-deficient mouse. Proc Natl Acad Sci U S A 1994; 91: 9607–11

    Article  PubMed  CAS  Google Scholar 

  148. Duverger N, Kruth H, Emmanuel F, et al. Inhibition of atherosclerosis development in cholesterol-fed human apolipoprotein A-I-transgenic rabbits. Circulation 1996; 94: 713–7

    Article  PubMed  CAS  Google Scholar 

  149. Benoit P, Emmanuel F, Caillaud JM, et al. Somatic gene transfer of human apo A-I inhibits atherosclerosis progression in mouse models. Circulation 1999; 99: 105–10

    Article  PubMed  CAS  Google Scholar 

  150. Tangirala RK, Tsukamoto K, Chun SH, et al. Regression of atherosclerosis induced by liver-directed gene transfer of apolipoprotein A-I in mice. Circulation 1999; 100: 1816–22

    Article  PubMed  CAS  Google Scholar 

  151. Cimmino G, Chen W, Speidl WS, et al. Safe and sustained over-expression of functional apoA-I/HDL in apoA-I null mice by muscular AAV8 gene transfer. J Cardiovasc Pharmacol 2009; 54: 405–11

    Article  PubMed  CAS  Google Scholar 

  152. Kitajima K, Marchadier DH, Burstein H, et al. Persistent liver expression of murine apo A-I using vectors based on adeno-associated viral vectors serotypes 5 and 1. Atherosclerosis 2006; 186: 65–73

    Article  PubMed  CAS  Google Scholar 

  153. Gao GP, Alvira MR, Wang L, et al. Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc Natl Acad Sci U S A 2002; 99: 11854–9

    Article  PubMed  CAS  Google Scholar 

  154. Cabana VG, Lukens JR, Rice KS, et al. HDL content and composition in acute phase response in three species: triglyceride enrichment of HDL a factor in its decrease. J Lipid Res 1996; 37: 2662–74

    PubMed  CAS  Google Scholar 

  155. Van Lenten BJ, Hama SY, de Beer FC, et al. Anti-inflammatory HDL becomes pro-inflammatory during the acute phase response: loss of protective effect of HDL against LDL oxidation in aortic wall cocultures. J Clin Invest 1995; 96: 2758–67

    Article  PubMed  Google Scholar 

  156. Ansell BJ. The two faces of ’good’ cholesterol. Cleveland Clin J Med 2007; 74: 697–705

    Article  Google Scholar 

  157. Kathiresan S, Willer CJ, Peloso GM, et al. Common variants at 30 loci contribute to polygenic dyslipidemia. Nat Genet 2009; 41: 56–65

    Article  PubMed  CAS  Google Scholar 

  158. Brooks-Wilson A, Marcil M, Clee SM, et al. Mutations in ABCA1 in Tangier disease and familial high-density lipoprotein deficiency. Nat Genet 1999; 22: 336–45

    Article  PubMed  CAS  Google Scholar 

  159. Altmann SW, Davis HR, Zhu L, et al. Niemann-Pick C1-Like1 protein is critical for intestinal cholesterol absorption. Science 2004; 303: 1201–4

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the University of Florida — Jacksonville College of Medicine research grant to Michael Haas. The authors declare that no conflicts of interest exist that prejudice the impartiality of this review article, and that there are no financial or other conflicts of interest associated with the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Haas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haas, M.J., Mooradian, A.D. Therapeutic Interventions to Enhance Apolipoprotein A-I-Mediated Cardioprotection. Drugs 70, 805–821 (2010). https://doi.org/10.2165/11535410-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11535410-000000000-00000

Keywords

Navigation