Skip to main content
Log in

Antidiabetic Oral Treatment in Older People

Does Frailty Matter?

  • Review Article
  • Published:
Drugs & Aging Aims and scope Submit manuscript

Abstract

Life expectancy has significantly increased over the past 30 years, with a greater prevalence of diverse disease states, especially type 2 diabetes mellitus. As older persons are a very heterogeneous group with an increased prevalence of comorbidities and a relative inability to tolerate the adverse effects of oral antidiabetic agents, the treatment of type 2 diabetes is particularly demanding. The principles of its management are similar to those in younger patients, but with special considerations linked to comorbidities and clinical status. The available oral antidiabetic drugs include insulin secretagogues (meglitinides and sulfonylureas), biguanides (metformin), α-glucosidase inhibitors, thiazolidinediones and newly introduced inhibitors of glucagon-like peptide 1 degrading enzyme dipeptidyl peptidase 4 (DPP-4). In addition, clinical aspects complicate diabetes care in the elderly, including cognitive disorders, physical disability and geriatric syndromes, such as frailty. The European Diabetes Working Party for Older Persons has increased glycaemic recommendations for target haemoglobin A1c from <7% to ≤8% in the presence of frailty. This working party updated their guidelines in 2008 and their aim is to ensure that older Europeans with type 2 diabetes have high-quality diabetes care throughout their lives. The working party has created guidelines for the use of many drugs, and we will discuss some of these guidelines on the use of oral antidiabetic agents and their importance in the presence of frailty. Furthermore, as type 2 diabetes progresses in older persons, polypharmacy intensification is usually required to reach adequate glycaemic control, with the risk of adverse effects. In particular, clinical evidence shows that the use of sulfonylureas is associated with a greater risk of hypoglycaemica, whereas metformin and α-glucosidase inhibitors are associated with an increased risk of adverse gastrointestinal effects. The adverse effects of the recently introduced DPP-4 inhibitors are nasopharyngitis and/or upper respiratory tract infections. The literature suggests that oral antidiabetic agents are suitable for older persons; however, underappreciated risk factors, such as cognitive decline in frail individuals, have an important impact on oral antidiabetic treatment options.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I

Similar content being viewed by others

References

  1. Harris MI, Flegal KM, Cowie CC, et al. Prevalence of diabetes, impaired fasting glucose, and impaired glucose tolerance in U.S. adults: the third National Health and Nutrition Examination Survey, 1988–1994. Diabetes Care 1998; 21: 518–24

    Article  PubMed  CAS  Google Scholar 

  2. Gossain VV, Carella MJ, Rovner DR. Management of diabetes in the elderly: a clinical perspective. J Assoc Acad Minority Phys 1994; 5: 22–31

    CAS  Google Scholar 

  3. Gregg EW, Beckles GL, Williamson DF, et al. Diabetes and physical disability among older U.S. adults. Diabetes Care 2000; 23(9): 1272–7

    Article  PubMed  CAS  Google Scholar 

  4. Volpato S, Blaum C, Resnick H, et al., Women’s Health and Aging Study. Comorbidities and impairments explaining the association between diabetes and lower extremity disability: The Women’s Health and Aging Study. Diabetes Care 2002; 25(4): 678–83

    Article  PubMed  Google Scholar 

  5. Schwartz AV, Hillier TA, Sellmeyer DE, et al. Older women with diabetes have a higher risk of falls: a prospective study. Diabetes Care 2002; 25; 10: 1749–54

    Article  PubMed  Google Scholar 

  6. Volpato S, Ferrucci L, Blaum C, et al. Progression of lower-extremity disability in older women with diabetes: the Women’s Health and Aging Study. Diabetes Care 2003; 1: 70–5

    Article  Google Scholar 

  7. Wu JH, Haan MN, Liang J, et al. Diabetes as a predictor of change in functional status among older Mexican Americans. Diabetes Care 2003; 26: 314–9

    Article  PubMed  Google Scholar 

  8. Wray LA, Ofstedal MB, Langa KM, et al. The effect of diabetes on disability in middle-aged and older adults. J Gerontol A Biol Sci Med Sci 2005; 60: 1206–11

    Article  PubMed  Google Scholar 

  9. Abbatecola AM, Rizzo MR, Barbieri M, et al. Post-prandial plasma glucose excursions and cognitive functioning in aged type 2 diabetics. Neurology 2006; 67(2): 235–40

    Article  PubMed  CAS  Google Scholar 

  10. Sinclair A. Institute of Diabetes for Older People Available from: http://www.instituteofdiabetes.org/wp-content/themes/IDOP/other/diabetes_guidelines_for_older_people.pdf [Accessed 2009 Aug 5]

  11. Bortz II WM. The physics of frailty. J Am Geriatr Soc 1993; 41: 1004–8

    PubMed  Google Scholar 

  12. Hamerman D. Toward an understanding of frailty. Ann Intern Med 1999; 130: 945–50

    PubMed  CAS  Google Scholar 

  13. Morley JE. Diabetes, sarcopenia, and frailty. Clin Geriatr Med 2008 Aug; 24(3): 455–69

    Article  PubMed  Google Scholar 

  14. Walston J, Hadley EC, Ferrucci L, et al. Research agenda for frailty in older adults: toward a better understanding of physiology and etiology: summary from the American Geriatrics Society/National Institute on Aging Research Conference on Frailty in Older Adults. Am Geriatr Soc 2006 Jun; 54(6): 991–1001

    Article  Google Scholar 

  15. Vanitallie TB. Frailty in the elderly: contributions of sarcopenia and visceral protein depletion. Metabolism 2003; 52: 22–6

    Article  PubMed  Google Scholar 

  16. Walston J, McBurnie MA, Newman A, et al. Frailty and activation of the inflammation and coagulation systems with and without clinical comorbidities: results from the Cardiovascular Health Study. Arch Intern Med 2002; 162(20): 2333–41

    Article  PubMed  Google Scholar 

  17. Nathan DM, Buse JB, Davidson MB, et al. Medical management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 2009 Jan; 32(1): 193–203

    Article  PubMed  CAS  Google Scholar 

  18. Bailey CJ, Turner RC. Metformin. N Engl J Med 1996 Feb 29; 334(9): 574–9

    Article  PubMed  CAS  Google Scholar 

  19. Radziuk J, Bailey CJ, Wiernsperger NF, et al. Metformin and its liver targets in the treatment of type 2 diabetes. Curr Drug Targets Immune Endocr Metabol Disord 2003 Jun; 3(2): 151–69

    Article  PubMed  CAS  Google Scholar 

  20. Johnson JA, Majumdar SR, Simpson SH, et al. Decreased mortality associated with the use of metformin compared with sulfonylurea monotherapy in type 2 diabetes. Diabetes Care 2002; 25: 2244–8

    Article  PubMed  CAS  Google Scholar 

  21. UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet 1998 Sept 12; 352(9131): 854–65. Erratum in: Lancet 1998 Nov 7; 352 (9139): 1558

    Article  Google Scholar 

  22. Turner RC, Cull CA, Frighi V, et al. Glycemic control with diet, sulfonylurea, metformin, or insulin in patients with type 2 diabetes mellitus: progressive requirement for multiple therapies (UKPDS 49). UK Prospective Diabetes Study (UKPDS) Group. JAMA 1999 Jun 2; 281(21): 2005–12

    Article  PubMed  CAS  Google Scholar 

  23. Shaw JS, Wilmot RL, Kilpatrick ES. Establishing pragmatic estimated GFR thresholds to guide metformin prescribing. Diabet Med 2007 Oct; 24(10): 1160–3

    Article  PubMed  CAS  Google Scholar 

  24. Crepaldi G, Fioretto P. Gliclazide modified release: its place in the therapeutic armamentarium. Metabolism 2000 Oct; 49 (10 Suppl. 2): 21–5

    Article  PubMed  CAS  Google Scholar 

  25. Cayea D, Boyd C, Durso SC. Individualising therapy for older adults with diabetes mellitus. Drugs & Aging 2007; 24(10): 851–63

    Article  CAS  Google Scholar 

  26. Patel A, MacMahon S, Chalmers J, et al., ADVANCE Collaborative Group. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med 2008 Jun 12; 358(24): 2560–72

    Article  PubMed  CAS  Google Scholar 

  27. Kahn SE, Haffner SM, Heise MA, et al., ADOPT Study Group. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med 2006 Dec 7; 355(23): 2427–43

    Article  PubMed  CAS  Google Scholar 

  28. Malaisse WJ. Pharmacology of the meglitinide analogs: new treatment options for type 2 diabetes mellitus. Treat Endocrinol 2003; 2(6): 401–14

    Article  PubMed  CAS  Google Scholar 

  29. Rosenstock J, Hassman DR, Madder RD, et al., Repaglinide Versus Nateglinide Comparison Study Group. Repaglinide versus nateglinide monotherapy: a randomized, multicenter study. Diabetes Care 2004 Jun; 27(6): 1265–70

    Article  PubMed  CAS  Google Scholar 

  30. Papa G, Fedele V, Rizzo MR, et al. Safety of type 2 diabetes treatment with repaglinide compared with glibenclamide in elderly people: a randomized, open-label, two-period, cross-over trial. Diabetes Care 2006; 29(8): 1918–20

    Article  PubMed  CAS  Google Scholar 

  31. Sakharova OV, Inzucchi SE. Treatment of diabetes in the elderly. Addressing its complexities in this high-risk group. Postgrad Med 2005 Nov; 118(5): 19–26, 29

    Article  PubMed  Google Scholar 

  32. van de Laar FA, Lucassen PL, Akkermans RP, et al. Alpha-glucosidase inhibitors for patients with type 2 diabetes: results from a Cochrane systematic review and meta-analysis. Diabetes Care 2005 Jan; 28(1): 154–63

    Article  PubMed  Google Scholar 

  33. Chiasson JL, Josse RG, Gomis R, et al., STOP-NIDDM Trial Research Group. Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance: the STOP-NIDDM trial. JAMA 2003 Jul 23; 290(4): 486–94

    Article  PubMed  CAS  Google Scholar 

  34. Masoudi FA, Inzucchi SE, Wang Y, et al. Thiazolidinediones, metformin, and outcomes in older patients with diabetes and heart failure: an observational study. Circulation 2005; 111(5): 583–90

    Article  PubMed  CAS  Google Scholar 

  35. Home PD, Pocock SJ, Beck-Nielsen H, et al., RECORD Study Group. Rosiglitazone evaluated for cardiovascular outcomes — an interim analysis. N Engl J Med 2007 Jul 5; 357(1): 28–38

    Article  PubMed  CAS  Google Scholar 

  36. Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med 2007 Jun 14; 356(24): 2457–71

    Article  PubMed  CAS  Google Scholar 

  37. Singh S, Loke YK, Furberg CD. Long-term risk of cardiovascular events with rosiglitazone: a meta-analysis. JAMA 2007 Sept 12; 298(10): 1189–95

    Article  PubMed  CAS  Google Scholar 

  38. Dormandy JA, Charbonnel B, Eckland DJ, et al., PROactive investigators. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macro-Vascular Events): a randomised controlled trial. Lancet 2005 Oct 8; 366(9493): 1279–89

    Article  PubMed  CAS  Google Scholar 

  39. Lincoff AM, Wolski K, Nicholls SJ, et al. Pioglitazone and risk of cardiovascular events in patients with type 2 diabetes mellitus: a meta-analysis of randomized trials. JAMA 2007 Sep 12; 298(10): 1180–8

    Article  PubMed  CAS  Google Scholar 

  40. Grey A, Bolland M, Gamble G, et al. The peroxisome-proliferator-activated receptor-gamma agonist rosiglitazone decreases bone formation and bone mineral density in healthy postmenopausal women: a randomized, controlled trial. J Clin Endocrinol Metab 2007; 92(4): 1305–10

    Article  PubMed  CAS  Google Scholar 

  41. Orskov C, Wettergren A, Holst JJ. Biological effects and metabolic rates of glucagonlike peptide-1 7–36 amide and glucagonlike peptide-1 7–37 in healthy subjects are indistinguishable. Diabetes 1993 May; 42(5): 658–61

    Article  PubMed  CAS  Google Scholar 

  42. Drucker DJ, Nauck MA. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 2006 Nov 11; 368(9548): 1696–705

    Article  PubMed  CAS  Google Scholar 

  43. Kendall DM, Riddle MC, Rosenstock J, et al. Effects of exenatide (exendin-4) on glycemic control over 30 weeks in patients with type 2 diabetes treated with metformin and a sulfonylurea. Diabetes Care 2005 May; 28(5): 1083–91

    Article  PubMed  CAS  Google Scholar 

  44. DeFronzo RA, Ratner RE, Han J, et al. Effects of exenatide (exendin-4) on glycemic control and weight over 30 weeks in metformin-treated patients with type 2 diabetes. Diabetes Care 2005 May; 28(5): 1092–100

    Article  PubMed  CAS  Google Scholar 

  45. Buse JB, Henry RR, Han J, et al. Exenatide-113 Clinical Study Group. Effects of exenatide (exendin-4) on glycemic control over 30 weeks in sulfonylurea-treated patients with type 2 diabetes. Diabetes Care 2004 Nov; 27(11): 2628–35

    Article  PubMed  CAS  Google Scholar 

  46. Abbatecola AM, Maggi S, Paolisso G. New approaches to treating type 2 diabetes mellitus in the elderly: role of incretin therapies. Drugs Aging 2008; 25(11): 913–25

    Article  PubMed  CAS  Google Scholar 

  47. Goldstein BJ, Feinglos MN, Lunceford JK, et al., Sitagliptin 036 Study Group. Effect of initial combination therapy with sitagliptin, a dipeptidyl peptidase-4 inhibitor, and metformin on glycemic control in patients with type 2 diabetes. Diabetes Care 2007 Aug; 30(8): 1979–87

    Article  PubMed  CAS  Google Scholar 

  48. Richter B, Bandeira-Echtler E, Bergerhoff K, et al. Dipeptidyl peptidase-4 (DPP-4) inhibitors for type 2 diabetes mellitus. Cochrane Database Syst Rev 2008 Apr 16; (2): CD006739

    Google Scholar 

  49. Fontbonne A, Berr C, Ducimetiere P, et al. Changes in cognitive abilities over a 4-year period are unfavourably affected in elderly diabetic subjects: results of the Epidemiology of Vascular Aging Study. Diabetes Care 2001; 24: 366–70

    Article  PubMed  CAS  Google Scholar 

  50. Biessels GJ, van der Heide LP, Kamal A, et al. Ageing and diabetes: implications for brain function. Eur J Pharmacol 2002; 441: 1–14

    Article  PubMed  CAS  Google Scholar 

  51. Ott A, Stolk RP, Hofman A, et al. Association of diabetes mellitus and dementia: the Rotterdam Study. Diabetologia 1996; 39: 1392–7

    Article  PubMed  CAS  Google Scholar 

  52. Luchsinger JA, Tang M, Stern Y, et al. Diabetes mellitus and risk of Alzheimer’s disease and dementia with stroke in a multiethnic cohort. Am J Epidemiol 2001; 154: 635–41

    Article  PubMed  CAS  Google Scholar 

  53. Luchsinger JA, Reitz C, Patel B, et al. Relation of diabetes to mild cognitive impairment. Arch Neurol 2007; 64: 570–5

    Article  PubMed  Google Scholar 

  54. Cukierman T, Gerstein HC, Williamson JD. Cognitive decline and dementia in diabetes — systematic overview of prospective observational studies. Diabetologia 2005 Dec; 48(12): 2460–9

    Article  PubMed  CAS  Google Scholar 

  55. Shorr RI, de Rekenkeire N, Resnick HE, et al. Glycemia and cognitive function in older adults using glucose-lowering drugs. J Nutr Health Aging 2006; 10: 297–301

    PubMed  CAS  Google Scholar 

  56. Cox DJ, Kovatchev BP, Gonder-Frederick LA, et al. Relationships between hyperglycemia and cognitive performance among adults with type 1 and type 2 diabetes. Diabetes Care 2005 Jan; 28(1): 71–7

    Article  PubMed  Google Scholar 

  57. Ryan CM, Freed MI, Rood JA, et al. Improving metabolic control leads to better working memory in adults with type 2 diabetes. Diabetes Care 2006 Feb; 29(2): 345–51

    Article  PubMed  Google Scholar 

  58. Abbatecola AM, Paolisso G. Is there a relationship between insulin resistance and frailty syndrome? Curr Pharm Des 2008; 14(4): 405–10

    Article  PubMed  CAS  Google Scholar 

  59. Cukierman-Yaffe T, Gerstein HC, Williamson JD, et al., Action to Control Cardiovascular Risk in Diabetes-Memory in Diabetes (ACCORD-MIND) Investigators. Relationship between baseline glycemic control and cognitive function in individuals with type 2 diabetes and other cardiovascular risk factors: the Action to Control Cardiovascular Risk in Diabetes-Memory in Dabetes (ACCORD-MIND) trial. Diabetes Care 2009 Feb; 32(2): 221–6

    Article  PubMed  Google Scholar 

  60. Yan SD, Chen X, Fu J, et al. RAGE and amyloid-beta peptide neurotoxicity in Alzheimer’s disease. Nature 1996; 382: 685–91

    Article  PubMed  CAS  Google Scholar 

  61. Abbatecola AM, Paolisso G, Lamponi M, et al. Insulin resistance and executive dysfunction in older persons. J Am Geriatr Soc 2004; 52: 1713–8

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this review. The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Marie Abbatecola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abbatecola, A.M., Paolisso, G., Corsonello, A. et al. Antidiabetic Oral Treatment in Older People. Drugs Aging 26 (Suppl 1), 53–62 (2009). https://doi.org/10.2165/11534660-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11534660-000000000-00000

Keywords

Navigation