Skip to main content

Carbohydrate Administration and Exercise Performance

What Are the Potential Mechanisms Involved?

Abstract

It is well established that carbohydrate (CHO) administration increases performance during prolonged exercise in humans and animals. The mechanism( s), which could mediate the improvement in exercise performance associated with CHO administration, however, remain(s) unclear. This review focuses on possible underlying mechanisms that could explain the increase in exercise performance observed with the administration of CHO during prolonged muscle contractions in humans and animals. The beneficial effect of CHO ingestion on performance during prolonged exercise could be due to several factors including (i) an attenuation in central fatigue; (ii) a better maintenance of CHO oxidation rates; (iii) muscle glycogen sparing; (iv) changes in muscle metabolite levels; (v) reduced exercise-induced strain; and (vi) a better maintenance of excitation-contraction coupling. In general, the literature indicates that CHO ingestion during exercise does not reduce the utilization of muscle glycogen. In addition, data from a meta-analysis suggest that a dose-dependent relationship was not shown between CHO ingestion during exercise and an increase in performance. This could support the idea that providing enough CHO to maintain CHO oxidation during exercise may not always be associated with an increase in performance. Emerging evidence from the literature shows that increasing neural drive and attenuating central fatigue may play an important role in increasing performance during exercise with CHO supplementation. In addition, CHO administration during exercise appears to provide protection from disrupted cell homeostasis/integrity, which could translate into better muscle function and an increase in performance. Finally, it appears that during prolonged exercise when the ability of metabolism to match energy demand is exceeded, adjustments seem to be made in the activity of the Na+/K+ pump. Therefore, muscle fatigue could be acting as a protective mechanism during prolonged contractions. This could be alleviated when CHO is administered resulting in the better maintenance of the electrical properties of the muscle fibre membrane. The mechanism(s) by which CHO administration increases performance during prolonged exercise is(are) complex, likely involving multiple factors acting at numerous cellular sites. In addition, due to the large variation in types of exercise, durations, intensities, feeding schedules and CHO types it is difficult to assess if the mechanism(s) that could explain the increase in performance with CHO administration during exercise is(are) similar in different situations. Experiments concerning the identification of potential mechanism(s) by which performance is increased with CHO administration during exercise will add to our understanding of the mechanism(s) of muscle/central fatigue. This knowledge could have significant implications for improving exercise performance.

This is a preview of subscription content, access via your institution.

Fig. 1
Table I
Fig. 2
Table II

References

  1. 1.

    Coggan AR, Coyle EF. Carbohydrate ingestion during prolonged exercise: effects on metabolism and performance. Exerc Sport Sci Rev 1991; 19: 1–40

    PubMed  CAS  Article  Google Scholar 

  2. 2.

    Coombes JS, Hamilton KL. The effectiveness of commercially available sports drinks. Sports Med 2000 Mar; 29 (3): 181–209

    PubMed  CAS  Article  Google Scholar 

  3. 3.

    el-Sayed MS, MacLaren D, Rattu AJ. Exogenous carbohydrate utilisation: effects on metabolism and exercise performance. Comp Biochem Physiol A Physiol 1997; 118 (3): 789–803

    PubMed  CAS  Article  Google Scholar 

  4. 4.

    Jeukendrup AE. Carbohydrate intake during exercise and performance. Nutrition 2004 Jul-Aug; 20 (7-8): 669–77

    PubMed  CAS  Article  Google Scholar 

  5. 5.

    Dill DB. Studies in muscular activity: factors limiting the capacity for work. J Physiol 1932; 77: 49–62

    PubMed  CAS  Google Scholar 

  6. 6.

    Bagby GJ, Green HJ, Katsuta S, et al. Glycogen depletion in exercising rats infused with glucose, lactate, or pyruvate. J Appl Physiol 1978; 45 (3): 425–9

    PubMed  CAS  Google Scholar 

  7. 7.

    Slentz CA, Davis JM, Settles DL, et al. Glucose feedings and exercise in rats: glycogen use, hormone responses, and performance. J Appl Physiol 1990; 69 (3): 989–94

    PubMed  CAS  Google Scholar 

  8. 8.

    Coyle EF, Coggan AR, Hemmert MK, et al. Muscle glycogen utilization during prolonged strenuous exercise when fed carbohydrate. J Appl Physiol 1986; 61 (1): 165–72

    PubMed  CAS  Google Scholar 

  9. 9.

    McConell G, Snow RJ, Proietto J, et al. Muscle metabolism during prolonged exercise in humans: influence of carbohydrate availability. J Appl Physiol 1999; 87 (3): 1083–6

    PubMed  CAS  Google Scholar 

  10. 10.

    Mitchell JB, Costill DL, Houmard JA, et al. Effects of carbohydrate ingestion on gastric emptying and exercise performance. Med Sci Sports Exerc 1988; 20 (2): 110–5

    PubMed  CAS  Article  Google Scholar 

  11. 11.

    Haff GG, Lehmkuhl MJ, McCoy LB, et al. Carbohydrate supplementation and resistance training. J Strength Cond Res 2003; 17 (1): 187–96

    PubMed  Google Scholar 

  12. 12.

    Lambert C. Effects of carbohydrates feeding on multiplebout resistance exercise. J Appl Sport Science Res 1991; 5 (4): 192–7

    Google Scholar 

  13. 13.

    Haff GG, Schroeder CA, Koch AJ, et al. The effects of supplemental carbohydrate ingestion on intermittent isokinetic leg exercise. J Sports Med Phys Fitness 2001; 41 (2): 216–22

    PubMed  CAS  Google Scholar 

  14. 14.

    Haff GG, Koch AJ, Potteiger JA, et al. Carbohydrate supplementation attenuates muscle glycogen loss during acute bouts of resistance exercise. Int J Sport Nutr Exerc Metab 2000 Sep; 10 (3): 326–39

    PubMed  CAS  Google Scholar 

  15. 15.

    Kulik JR, Touchberry CD, Kawamori N, et al. Supplemental carbohydrate ingestion does not improve performance of high-intensity resistance exercise. J Strength Cond Res 2008 Jul; 22 (4): 1101–7

    PubMed  Article  Google Scholar 

  16. 16.

    Abbiss CR, Peiffer JJ, Peake JM, et al. Effect of carbohydrate ingestion and ambient temperature on muscle fatigue development in endurance-trained male cyclists. J Appl Physiol 2008 Apr; 104 (4): 1021–8

    PubMed  Article  Google Scholar 

  17. 17.

    Ali A, Williams C, Nicholas CW, et al. The influence of carbohydrate-electrolyte ingestion on soccer skill performance. Med Sci Sports Exerc 2007 Nov; 39 (11): 1969–76

    PubMed  CAS  Article  Google Scholar 

  18. 18.

    Anantaraman R, Carmines AA, Gaesser GA, et al. Effects of carbohydrate supplementation on performance during 1 hour of high-intensity exercise. Int J Sports Med 1995; 16 (7): 461–5

    PubMed  CAS  Article  Google Scholar 

  19. 19.

    Andrews JL, Sedlock DA, Flynn MG, et al. Carbohydrate loading and supplementation in endurance-trained women runners. J Appl Physiol 2003 Aug; 95 (2): 584–90

    PubMed  CAS  Google Scholar 

  20. 20.

    Angus DJ, Hargreaves M, Dancey J, et al. Effect of carbohydrate or carbohydrate plus medium-chain triglyceride ingestion on cycling time trial performance. J Appl Physiol 2000; 88 (1): 113–9

    PubMed  CAS  Google Scholar 

  21. 21.

    Bacharach DW, von Duvillard SP, Rundell KW, et al. Carbohydrate drinks and cycling performance. J Sports Med Phys Fitness 1994; 34 (2): 161–8

    PubMed  CAS  Google Scholar 

  22. 22.

    Ball TC, Headley SA, Vanderburgh PM, et al. Periodic carbohydrate replacement during 50 min of high-intensity cycling improves subsequent sprint performance. Int J Sport Nutr 1995; 5 (2): 151–8

    PubMed  CAS  Google Scholar 

  23. 23.

    Below PR, Mora-Rodriguez R, Gonzalez-Alonso J, et al. Fluid and carbohydrate ingestion independently improve performance during 1 h of intense exercise. Med Sci Sports Exerc 1995; 27 (2): 200–10

    PubMed  CAS  Google Scholar 

  24. 24.

    Bjorkman O, Sahlin K, Hagenfeldt L, et al. Influence of glucose and fructose ingestion on the capacity for longterm exercise in well-trained men. Clin Physiol 1984; 4 (6): 483–94

    PubMed  CAS  Article  Google Scholar 

  25. 25.

    Brooke JD, Davies GJ, Green LF. The effects of normal and glucose syrup work diets on the performance of racing cyclists. J Sports Med Phys Fitness 1975; 15 (3): 257–65

    PubMed  CAS  Google Scholar 

  26. 26.

    Burgess WA, Davis JM, Bartoli WP, et al. Failure of low dose carbohydrate feeding to attenuate glucoregulatory hormone responses and improve endurance performance. Int J Sport Nutr 1991; 1 (4): 338–52

    PubMed  CAS  Google Scholar 

  27. 27.

    Carter J, Jeukendrup AE, Jones DA. The effect of sweetness on the efficacy of carbohydrate supplementation during exercise in the heat. Can J Appl Physiol 2005 Aug; 30 (4): 379–91

    PubMed  Article  Google Scholar 

  28. 28.

    Coggan AR, Coyle EF. Effect of carbohydrate feedings during high-intensity exercise. J Appl Physiol 1988; 65 (4): 1703–9

    PubMed  CAS  Google Scholar 

  29. 29.

    Cole KJ, Grandjean PW, Sobszak RJ, et al. Effect of carbohydrate composition on fluid balance, gastric emptying, and exercise performance. Int J Sport Nutr 1993; 3 (4): 408–17

    PubMed  CAS  Google Scholar 

  30. 30.

    Coyle EF, Hagberg JM, Hurley BF, et al. Carbohydrate feeding during prolonged strenuous exercise can delay fatigue. J Appl Physiol 1983; 55 (1Pt1): 230–5

    PubMed  CAS  Google Scholar 

  31. 31.

    Davis JM, Burgess WA, Slentz CA, et al. Effects of ingesting 6% and 12% glucose/electrolyte beverages during prolonged intermittent cycling in the heat. Eur J Appl Physiol Occup Physiol 1988; 57 (5): 563–9

    PubMed  CAS  Article  Google Scholar 

  32. 32.

    Davis JM, Jackson DA, Broadwell MS, et al. Carbohydrate drinks delay fatigue during intermittent, high-intensity cycling in active men and women. Int J Sport Nutr 1997; 7 (4): 261–73

    PubMed  CAS  Google Scholar 

  33. 33.

    Davis JM, Lamb DR, Pate RR, et al. Carbohydrate-electrolyte drinks: effects on endurance cycling in the heat. Am J Clin Nutr 1988; 48 (4): 1023–30

    PubMed  CAS  Google Scholar 

  34. 34.

    el-Sayed MS, Balmer J, Rattu AJ. Carbohydrate ingestion improves endurance performance during a 1 h simulated cycling time trial. J Sports Sci 1997; 15 (2): 223–30

    PubMed  CAS  Article  Google Scholar 

  35. 35.

    el-Sayed MS, Rattu AJ, Roberts I. Effects of carbohydrate feeding before and during prolonged exercise on subsequent maximal exercise performance capacity. Int J Sport Nutr 1995; 5 (3): 215–24

    PubMed  CAS  Google Scholar 

  36. 36.

    Febbraio MA, Chiu A, Angus DJ, et al. Effects of carbohydrate ingestion before and during exercise on glucose kinetics and performance. J Appl Physiol 2000; 89 (6): 2220–6

    PubMed  CAS  Google Scholar 

  37. 37.

    Febbraio MA, Murton P, Selig SE, et al. Effect of CHO ingestion on exercise metabolism and performance in different ambient temperatures. Med Sci Sports Exerc 1996; 28 (11): 1380–7

    PubMed  CAS  Article  Google Scholar 

  38. 38.

    Felig P, Cherif A, Minagawa A, et al. Hypoglycemia during prolonged exercise in normal men. N Engl J Med 1982; 306 (15): 895–900

    PubMed  CAS  Article  Google Scholar 

  39. 39.

    Flynn MG, Costill DL, Hawley JA, et al. Influence of selected carbohydrate drinks on cycling performance and glycogen use. Med Sci Sports Exerc 1987; 19 (1): 37–40

    PubMed  CAS  Google Scholar 

  40. 40.

    Foskett A, Williams C, Boobis L, et al. Carbohydrate availability and muscle energy metabolism during intermittent running. Med Sci Sports Exerc 2008 Jan; 40 (1): 96–103

    PubMed  CAS  Google Scholar 

  41. 41.

    Fritzsche RG, Switzer TW, Hodgkinson BJ, et al. Water and carbohydrate ingestion during prolonged exercise increase maximal neuromuscular power. J Appl Physiol 2000; 88 (2): 730–7

    PubMed  CAS  Article  Google Scholar 

  42. 42.

    Fulco CS, Zupan M, Muza SR, et al. Carbohydrate supplementation and endurance performance of moderate altitude residents at 4300 m. Int J Sports Med 2007 May; 28 (5): 437–43

    PubMed  CAS  Article  Google Scholar 

  43. 43.

    Hargreaves M, Costill DL, Coggan A, et al. Effect of carbohydrate feedings on muscle glycogen utilization and exercise performance. Med Sci Sports Exerc 1984; 16 (3): 219–22

    PubMed  CAS  Google Scholar 

  44. 44.

    Hulston CJ, Jeukendrup AE. Substrate metabolism and exercise performance with caffeine and carbohydrate intake. Med Sci Sports Exerc 2008 Dec; 40 (12): 2096–104

    PubMed  CAS  Article  Google Scholar 

  45. 45.

    Ivy JL, Costill DL, Fink WJ, et al. Influence of caffeine and carbohydrate feedings on endurance performance. Med Sci Sports 1979; 11 (1): 6–11

    PubMed  CAS  Google Scholar 

  46. 46.

    Ivy JL, Miller W, Dover V, et al. Endurance improved by ingestion of a glucose polymer supplement. Med Sci Sports Exerc 1983; 15 (6): 466–71

    PubMed  CAS  Google Scholar 

  47. 47.

    Jeukendrup A, Brouns F, Wagenmakers AJ, et al. Carbohydrate-electrolyte feedings improve 1 h time trial cycling performance. Int J Sports Med 1997; 18 (2): 125–9

    PubMed  CAS  Article  Google Scholar 

  48. 48.

    Johnson HL, Nelson RA, Consolazio CF. Effects of electrolyte and nutrient solutions on performance and metabolic balance. Med Sci Sports Exerc 1988; 20 (1): 26–33

    PubMed  CAS  Article  Google Scholar 

  49. 49.

    Kang J, Robertson RJ, Denys BG, et al. Effect of carbohydrate ingestion subsequent to carbohydrate supercompensation on endurance performance. Int J Sport Nutr 1995; 5 (4): 329–43

    PubMed  CAS  Google Scholar 

  50. 50.

    Kingwell B, McKenna MJ, Sandstrom ER, et al. Effect of glucose polymer ingestion on energy and fluid balance during exercise. J Sports Sci 1989; 7 (1): 3–8

    PubMed  CAS  Article  Google Scholar 

  51. 51.

    Langenfeld ME, Seifert JG, Rudge SR, et al. Effect of carbohydrate ingestion on performance of non-fasted cyclists during a simulated 80-mile time trial. J Sports Med Phys Fitness 1994; 34 (3): 263–70

    PubMed  CAS  Google Scholar 

  52. 52.

    Madsen K, MacLean DA, Kiens B, et al. Effects of glucose, glucose plus branched-chain amino acids, or placebo on bike performance over 100 km. J Appl Physiol 1996; 81 (6): 2644–50

    PubMed  CAS  Google Scholar 

  53. 53.

    Maughan RJ, Bethell LR, Leiper JB. Effects of ingested fluids on exercise capacity and on cardiovascular and metabolic responses to prolonged exercise in man. Exp Physiol 1996; 81 (5): 847–59

    PubMed  CAS  Google Scholar 

  54. 54.

    Maughan RJ, Fenn CE, Leiper JB. Effects of fluid, electrolyte and substrate ingestion on endurance capacity. Eur J Appl Physiol Occup Physiol 1989; 58 (5): 481–6

    PubMed  CAS  Article  Google Scholar 

  55. 55.

    Meyer F, Bar-Or O, MacDougall D, et al. Drink composition and the electrolyte balance of children exercising in the heat. Med Sci Sports Exerc 1995 Jun; 27 (6): 882–7

    PubMed  CAS  Google Scholar 

  56. 56.

    Millard-Stafford M, Sparling PB, Rosskopf LB, et al. Carbohydrate-electrolyte replacement during a simulated triathlon in the heat. Med Sci Sports Exerc 1990; 22 (5): 621–8

    PubMed  CAS  Article  Google Scholar 

  57. 57.

    Millard-Stafford ML, Sparling PB, Rosskopf LB, et al. Carbohydrate-electrolyte replacement improves distance running performance in the heat. Med Sci Sports Exerc 1992; 24 (8): 934–40

    PubMed  CAS  Google Scholar 

  58. 58.

    Mitchell JB, Costill DL, Houmard JA, et al. Influence of carbohydrate dosage on exercise performance and glycogen metabolism. J Appl Physiol 1989; 67 (5): 1843–9

    PubMed  CAS  Google Scholar 

  59. 59.

    Murray R, Bartoli WP, Eddy DE, et al. Physiological and performance responses to nicotinic-acid ingestion during exercise. Med Sci Sports Exerc 1995; 27 (7): 1057–62

    PubMed  CAS  Article  Google Scholar 

  60. 60.

    Murray R, Eddy DE, Murray TW, et al. The effect of fluid and carbohydrate feedings during intermittent cycling exercise. Med Sci Sports Exerc 1987; 19 (6): 597–604

    PubMed  CAS  Google Scholar 

  61. 61.

    Murray R, Paul GL, Seifert JG, et al. Responses to varying rates of carbohydrate ingestion during exercise. Med Sci Sports Exerc 1991; 23 (6): 713–8

    PubMed  CAS  Google Scholar 

  62. 62.

    Murray R, Seifert JG, Eddy DE, et al. Carbohydrate feeding and exercise: effect of beverage carbohydrate content. Eur J Appl Physiol Occup Physiol 1989; 59 (1-2): 152–8

    PubMed  CAS  Article  Google Scholar 

  63. 63.

    Neufer PD, Costill DL, Flynn MG, et al. Improvements in exercise performance: effects of carbohydrate feedings and diet. J Appl Physiol 1987; 62 (3): 983–8

    PubMed  CAS  Google Scholar 

  64. 64.

    Nicholas CW, Tsintzas K, Boobis L, et al. Carbohydrateelectrolyte ingestion during intermittent high-intensity running. Med Sci Sports Exerc 1999 Sep; 31 (9): 1280–6

    PubMed  CAS  Article  Google Scholar 

  65. 65.

    Nicholas CW, Williams C, Lakomy HK, et al. Influence of ingesting a carbohydrate-electrolyte solution on endurance capacity during intermittent, high-intensity shuttle running. J Sports Sci 1995; 13 (4): 283–90

    PubMed  CAS  Article  Google Scholar 

  66. 66.

    Nishibata I, Sadamoto T, Mutoh Y, et al. Glucose ingestion before and during exercise does not enhance performance of daily repeated endurance exercise. Eur J Appl Physiol Occup Physiol 1993; 66 (1): 65–9

    PubMed  CAS  Article  Google Scholar 

  67. 67.

    Osterberg KL, Zachwieja JJ, Smith JW. Carbohydrate and carbohydrate + protein for cycling time-trial performance. J Sports Sci 2008 Feb 1; 26 (3): 227–33

    PubMed  Article  Google Scholar 

  68. 68.

    Powers SK, Lawler J, Dodd S, et al. Fluid replacement drinks during high intensity exercise: effects on minimizing exercise-induced disturbances in homeostasis. Eur J Appl Physiol Occup Physiol 1990; 60 (1): 54–60

    PubMed  CAS  Article  Google Scholar 

  69. 69.

    Riley ML, Israel RG, Holbert D, et al. Effect of carbohydrate ingestion on exercise endurance and metabolism after a 1-day fast. Int J Sports Med 1988; 9 (5): 320–4

    PubMed  CAS  Article  Google Scholar 

  70. 70.

    Rogers J, Summers RW, Lambert GP. Gastric emptying and intestinal absorption of a low-carbohydrate sport drink during exercise. Int J Sport Nutr Exerc Metab 2005 Jun; 15 (3): 220–35

    PubMed  CAS  Google Scholar 

  71. 71.

    Sasaki H, Maeda J, Usui S, et al. Effect of sucrose and caffeine ingestion on performance of prolonged strenuous running. Int J Sports Med 1987; 8 (4): 261–5

    PubMed  CAS  Article  Google Scholar 

  72. 72.

    Sasaki H, Takaoka I, Ishiko T. Effects of sucrose or caffeine ingestion on running performance and biochemical responses to endurance running. Int J Sports Med 1987; 8 (3): 203–7

    PubMed  CAS  Article  Google Scholar 

  73. 73.

    Sugiura K, Kobayashi K. Effect of carbohydrate ingestion on sprint performance following continuous and intermittent exercise. Med Sci Sports Exerc 1998; 30 (11): 1624–30

    PubMed  CAS  Article  Google Scholar 

  74. 74.

    Tsintzas K, Liu R, Williams C, et al. The effect of carbohydrate ingestion on performance during a 30-km race. Int J Sport Nutr 1993; 3 (2): 127–39

    PubMed  CAS  Google Scholar 

  75. 75.

    Tsintzas OK, Williams C, Boobis L, et al. Carbohydrate ingestion and single muscle fiber glycogen metabolism during prolonged running in men. J Appl Physiol 1996; 81 (2): 801–9

    PubMed  CAS  Google Scholar 

  76. 76.

    Tsintzas OK, Williams C, Wilson W, et al. Influence of carbohydrate supplementation early in exercise on endurance running capacity. Med Sci Sports Exerc 1996; 28 (11): 1373–9

    PubMed  CAS  Article  Google Scholar 

  77. 77.

    van Essen M, Gibala MJ. Failure of protein to improve time trial performance when added to a sports drink. Med Sci Sports Exerc 2006 Aug; 38 (8): 1476–83

    PubMed  Article  CAS  Google Scholar 

  78. 78.

    Vergauwen L, Brouns F, Hespel P. Carbohydrate supplementation improves stroke performance in tennis. Med Sci Sports Exerc 1998 Aug; 30 (8): 1289–95

    PubMed  CAS  Article  Google Scholar 

  79. 79.

    Widrick JJ, Costill DL, Fink WJ, et al. Carbohydrate feedings and exercise performance: effect of initial muscle glycogen concentration. J Appl Physiol 1993; 74 (6): 2998–3005

    PubMed  CAS  Google Scholar 

  80. 80.

    Wilber RL, Moffatt RJ. Influence of carbohydrate ingestion on blood glucose and performance in runners. Int J Sport Nutr 1992; 2 (4): 317–27

    PubMed  CAS  Google Scholar 

  81. 81.

    Williams C, Nute MG, Broadbank L, et al. Influence of fluid intake on endurance running performance: a comparison between water, glucose and fructose solutions. Eur J Appl Physiol Occup Physiol 1990; 60 (2): 112–9

    PubMed  CAS  Article  Google Scholar 

  82. 82.

    Winnick JJ, Davis JM, Welsh RS, et al. Carbohydrate feedings during team sport exercise preserve physical and CNS function. Med Sci Sports Exerc 2005 Feb; 37 (2): 306–15

    PubMed  CAS  Article  Google Scholar 

  83. 83.

    Wright DA, Sherman WM, Dernbach AR. Carbohydrate feedings before, during, or in combination improve cycling endurance performance. J Appl Physiol 1991; 71 (3): 1082–8

    PubMed  CAS  Google Scholar 

  84. 84.

    Yaspelkis 3rd BB, Patterson JG, Anderla PA, et al. Carbohydrate supplementation spares muscle glycogen during variable-intensity exercise. J Appl Physiol 1993; 75 (4): 1477–85

    PubMed  CAS  Google Scholar 

  85. 85.

    Zachwieja JJ, Costill DL, Beard GC, et al. The effects of a carbonated carbohydrate drink on gastric emptying, gastrointestinal distress, and exercise performance. Int J Sport Nutr 1992; 2 (3): 239–50

    PubMed  CAS  Google Scholar 

  86. 86.

    Lipsey MW, Wilson GR. Practical meta-analysis. Vol. 49. Thousand Oaks (CA): Sage, 2001

  87. 87.

    Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. Hillsdale (NJ): Lawrence Erlbaum Associates, 1988

    Google Scholar 

  88. 88.

    Bonen A, Malcolm SA, Kilgour RD, et al. Glucose ingestion before and during intense exercise. J Appl Physiol 1981; 50 (4): 766–71

    PubMed  CAS  Google Scholar 

  89. 89.

    Mitchell JB, Braun WA, Pizza FX, et al. Pre-exercise carbohydrate and fluid ingestion: influence of glycemic response on 10-km treadmill running performance in the heat. J Sports Med Phys Fitness 2000; 40 (1): 41–50

    PubMed  CAS  Google Scholar 

  90. 90.

    Allen DG, Lamb GD, Westerblad H. Skeletal muscle fatigue: cellular mechanisms. Physiol Rev 2008 Jan; 88 (1): 287–332

    PubMed  CAS  Article  Google Scholar 

  91. 91.

    Ament W, Verkerke GJ. Exercise and fatigue. Sports Med 2009; 39 (5): 389–422

    PubMed  Article  Google Scholar 

  92. 92.

    Fitts RH. Cellular mechanisms of muscle fatigue. Physiol Rev 1994; 74 (1): 49–94

    PubMed  CAS  Article  Google Scholar 

  93. 93.

    Dumke CL, McBride JM, Nieman DC, et al. Effect of duration and exogenous carbohydrate on gross efficiency during cycling. J Strength Cond Res 2007 Nov; 21 (4): 1214–9

    PubMed  Google Scholar 

  94. 94.

    Newsholme EA, Acworth IN, Blomstrand E. Amino acids, brain neurotransmitters and a functional link between muscle and brain that is important in sustained exercise. London: John Libby Eurotext, 1987

    Google Scholar 

  95. 95.

    Bequet F, Gomez-Merino D, Berthelot M, et al. Exerciseinduced changes in brain glucose and serotonin revealed by microdialysis in rat hippocampus: effect of glucose supplementation. Acta Physiol Scand 2001; 173 (2): 223–30

    PubMed  CAS  Article  Google Scholar 

  96. 96.

    Davis JM, Bailey SP. Possible mechanisms of central nervous system fatigue during exercise. Med Sci Sports Exerc 1997; 29 (1): 45–57

    PubMed  CAS  Article  Google Scholar 

  97. 97.

    Curzon G, Friedel J, Knott PJ. The effect of fatty acids on the binding of tryptophan to plasma protein. Nature 1973; 242 (5394): 198–200

    PubMed  CAS  Article  Google Scholar 

  98. 98.

    Davis JM, Bailey SP, Woods JA, et al. Effects of carbohydrate feedings on plasma free tryptophan and branched-chain amino acids during prolonged cycling. Eur J Appl Physiol Occup Physiol 1992; 65 (6): 513–9

    PubMed  CAS  Article  Google Scholar 

  99. 99.

    Dalsgaard MK, Secher NH. The brain at work: a cerebral metabolic manifestation of central fatigue? J Neurosci Res 2007 Nov 15; 85 (15): 3334–9

    PubMed  CAS  Article  Google Scholar 

  100. 100.

    Pardridge WM. Brain metabolism: a perspective from the blood-brain barrier. Physiol Rev 1983 Oct; 63 (4): 1481–535

    PubMed  CAS  Google Scholar 

  101. 101.

    Koslowski S, Brzezinska K, Nazae E, et al. Carbohydrate availability for the brain and muscle as a factor modifying sympathetic activity during exercise in dogs. In: Poortmans J, Niset G, editors. Biochemistry of exercise. Baltimore (MD): University Park Press, 1981: 54–62

    Google Scholar 

  102. 102.

    Nybo L. CNS fatigue and prolonged exercise: effect of glucose supplementation. Med Sci Sports Exerc 2003; 35 (4): 589–94

    PubMed  CAS  Article  Google Scholar 

  103. 103.

    Horowitz JF, Coyle EF. Metabolic responses to preexercise meals containing various carbohydrates and fat. Am J Clin Nutr 1993 Aug; 58 (2): 235–41

    PubMed  CAS  Google Scholar 

  104. 104.

    King P, Kong MF, Parkin H, et al. Well-being, cerebral function, and physical fatigue after nocturnal hypoglycemia in IDDM. Diabetes Care 1998 Mar; 21 (3): 341–5

    PubMed  CAS  Article  Google Scholar 

  105. 105.

    Claassen A, Lambert EV, Bosch AN, et al. Variability in exercise capacity and metabolic response during endurance exercise after a low carbohydrate diet. Int J Sport Nutr Exerc Metab 2005 Apr; 15 (2): 97–116

    PubMed  CAS  Google Scholar 

  106. 106.

    Collardeau M, Brisswalter J, Vercruyssen F, et al. Single and choice reaction time during prolonged exercise in trained subjects: influence of carbohydrate availability. Eur J Appl Physiol 2001; 86 (2): 150–6

    PubMed  CAS  Article  Google Scholar 

  107. 107.

    Welsh RS, Davis JM, Burke JR, et al. Carbohydrates and physical/mental performance during intermittent exercise to fatigue. Med Sci Sports Exerc 2002; 34 (4): 723–31

    PubMed  Article  Google Scholar 

  108. 108.

    Carter JM, Jeukendrup AE, Jones DA. The effect of carbohydrate mouth rinse on 1-h cycle time trial performance. Med Sci Sports Exerc 2004 Dec; 36 (12): 2107–11

    PubMed  CAS  Google Scholar 

  109. 109.

    Chambers ES, Bridge MW, Jones DA. Carbohydrate sensing in the human mouth: effects on exercise performance and brain activity. J Physiol 2009 Apr 15; 587 (Pt8): 1779–94

    PubMed  CAS  Article  Google Scholar 

  110. 110.

    Pottier A, Bouckaert J, Gilis W, et al. Mouth rinse but not ingestion of a carbohydrate solution improves 1-h cycle time trial performance. Scand J Med Sci Sports. Epub 2008 Nov 3

    Google Scholar 

  111. 111.

    Coggan AR, Coyle EF. Reversal of fatigue during prolonged exercise by carbohydrate infusion or ingestion. J Appl Physiol 1987 Dec; 63 (6): 2388–95

    PubMed  CAS  Google Scholar 

  112. 112.

    Currell K, Jeukendrup AE. Superior endurance performance with ingestion of multiple transportable carbohydrates. Med Sci Sports Exerc 2008 Feb; 40 (2): 275–81

    PubMed  CAS  Article  Google Scholar 

  113. 113.

    Conlee RK. Muscle glycogen and exercise endurance: a twenty-year perspective. Exerc Sport Sci Rev 1987; 15: 1–28

    PubMed  CAS  Article  Google Scholar 

  114. 114.

    Tsintzas K, Williams C. Human muscle glycogen metabolism during exercise: effect of carbohydrate supplementation. Sports Med 1998; 25 (1): 7–23

    PubMed  CAS  Article  Google Scholar 

  115. 115.

    Bergstrom J, Hultman E. A study of the glycogen metabolism during exercise in man. Scand J Clin Lab Invest 1967; 19 (3): 218–28

    PubMed  CAS  Article  Google Scholar 

  116. 116.

    Arkinstall MJ, Bruce CR, Nikolopoulos V, et al. Effect of carbohydrate ingestion on metabolism during running and cycling. J Appl Physiol 2001; 91 (5): 2125–34

    PubMed  CAS  Google Scholar 

  117. 117.

    Chryssanthopoulos C, Williams C, Nowitz A. Influence of a carbohydrate-electrolyte solution ingested during running on muscle glycogen utilisation in fed humans. Int J Sports Med 2002; 23 (4): 279–84

    PubMed  CAS  Article  Google Scholar 

  118. 118.

    Coggan AR, Coyle EF. Reversal of fatigue during prolonged exercise by carbohydrate infusion or ingestion. J Appl Physiol 1987; 63 (6): 2388–95

    PubMed  CAS  Google Scholar 

  119. 119.

    Coyle EF, Hamilton MT, Alonso JG, et al. Carbohydrate metabolism during intense exercise when hyperglycemic. J Appl Physiol 1991; 70 (2): 834–40

    PubMed  CAS  Google Scholar 

  120. 120.

    Febbraio MA, Keenan J, Angus DJ, et al. Preexercise carbohydrate ingestion, glucose kinetics, and muscle glycogen use: effect of the glycemic index. J Appl Physiol 2000; 89 (5): 1845–51

    PubMed  CAS  Google Scholar 

  121. 121.

    Febbraio MA, Stewart KL. CHO feeding before prolonged exercise: effect of glycemic index on muscle glycogenolysis and exercise performance. J Appl Physiol 1996; 81 (3): 1115–20

    PubMed  CAS  Google Scholar 

  122. 122.

    Hargreaves M, Briggs CA. Effect of carbohydrate ingestion on exercise metabolism. J Appl Physiol 1988; 65 (4): 1553–5

    PubMed  CAS  Google Scholar 

  123. 123.

    Hargreaves M, Costill DL, Fink WJ, et al. Effect of preexercise carbohydrate feedings on endurance cycling performance. Med Sci Sports Exerc 1987; 19 (1): 33–6

    PubMed  CAS  Google Scholar 

  124. 124.

    Gorski J, Zendzian-Piotrowska M, Gorska M, et al. Effect of hyperglycaemia on muscle glycogen mobilization during muscle contractions in the rat. Eur J Appl Physiol Occup Physiol 1990; 61 (5-6): 408–12

    PubMed  CAS  Article  Google Scholar 

  125. 125.

    Hargreaves M, Costill DL, Coggan A, et al. Effect of carbohydrate feedings on muscle glycogen utilization and exercise performance. Med Sci Sports Exerc 1984 Jun; 16 (3): 219–22

    PubMed  CAS  Google Scholar 

  126. 126.

    Bjorkman O, Sahlin K, Hagenfeldt L, et al. Influence of glucose and fructose ingestion on the capacity for longterm exercise in well-trained men. Clin Physiol 1984 Dec; 4 (6): 483–94

    PubMed  CAS  Article  Google Scholar 

  127. 127.

    Tsintzas OK, Williams C, Boobis L, et al. Carbohydrate ingestion and glycogen utilization in different muscle fibre types in man. J Physiol 1995; 489 (Pt1): 243–50

    PubMed  CAS  Google Scholar 

  128. 128.

    Tsintzas K, Williams C, Constantin-Teodosiu D, et al. Phosphocreatine degradation in type I and type II muscle fibres during submaximal exercise in man: effect of carbohydrate ingestion. J Physiol 2001; 537 (Pt1): 305–11

    PubMed  CAS  Article  Google Scholar 

  129. 129.

    Chin ER, Allen DG. Effects of reduced muscle glycogen concentration on force, Ca2+ release and contractile protein function in intact mouse skeletal muscle. J Physiol 1997 Jan 1; 498 (Pt1): 17–29

    PubMed  CAS  Google Scholar 

  130. 130.

    Helander I, Westerblad H, Katz A. Effects of glucose on contractile function, [Ca2+]i, and glycogen in isolated mouse skeletal muscle. Am J Physiol Cell Physiol 2002 Jun; 282 (6): C1306–12

    Google Scholar 

  131. 131.

    Goodman C, Blazev R, Stephenson G. Glycogen content and contractile responsiveness to T-system depolarization in skinned muscle fibres of the rat. Clin Exp Pharmacol Physiol 2005 Sep; 32 (9): 749–56

    PubMed  CAS  Article  Google Scholar 

  132. 132.

    Stephenson DG, Nguyen LT, Stephenson GM. Glycogen content and excitation-contraction coupling in mechanically skinned muscle fibres of the cane toad. J Physiol 1999 Aug 15; 519 (Pt1): 177–87

    PubMed  CAS  Article  Google Scholar 

  133. 133.

    Sahlin K, Tonkonogi M, Soderlund K. Energy supply and muscle fatigue in humans. Acta Physiol Scand 1998; 162 (3): 261–6

    PubMed  CAS  Article  Google Scholar 

  134. 134.

    Westerblad H, Allen DG, Lannergren J. Muscle fatigue: lactic acid or inorganic phosphate the major cause? News Physiol Sci 2002; 17: 17–21

    PubMed  CAS  Google Scholar 

  135. 135.

    Allen DG, Lamb GD, Westerblad H. Impaired calciumrelease during fatigue. J Appl Physiol 2008 Jan; 104 (1): 296–305

    PubMed  CAS  Article  Google Scholar 

  136. 136.

    Lewis SF, Haller RG. The pathophysiology of McArdle’s disease: clues to regulation in exercise and fatigue. J Appl Physiol 1986; 61 (2): 391–401

    PubMed  CAS  Google Scholar 

  137. 137.

    Snow RJ, Carey MF, Stathis CG, et al. Effect of carbohydrate ingestion on ammonia metabolism during exercise in humans. J Appl Physiol 2000; 88 (5): 1576–80

    PubMed  CAS  Google Scholar 

  138. 138.

    Spencer MK, Yan Z, Katz A. Carbohydrate supplementation attenuates IMP accumulation in human muscle during prolonged exercise. Am J Physiol 1991; 261 (1Pt1): C71–6

    Google Scholar 

  139. 139.

    Duhamel TA, Green HJ, Stewart RD, et al. Muscle metabolic, SR Ca (2+)-cycling responses to prolonged cycling, with and without glucose supplementation. J Appl Physiol 2007 Dec; 103 (6): 1986–98

    PubMed  CAS  Article  Google Scholar 

  140. 140.

    Phillips SK, Wiseman RW, Woledge RC, et al. The effect of metabolic fuel on force production and resting inorganic phosphate levels in mouse skeletal muscle. J Physiol 1993; 462: 135–46

    PubMed  CAS  Google Scholar 

  141. 141.

    Bowtell JL, Marwood S, Marwood S, et al. Tricarboxylic acid cycle intermediate pool size: functional importance for oxidative metabolismin exercising human skeletal muscle. Sports Med 2007; 37 (12): 1071–88

    PubMed  Article  Google Scholar 

  142. 142.

    Sahlin K, Katz A, Broberg S. Tricarboxylic acid cycle intermediates in human muscle during prolonged exercise. Am J Physiol 1990; 259 (5Pt1): C834–41

    Google Scholar 

  143. 143.

    Baldwin J, Snow RJ, Gibala MJ, et al. Glycogen availability does not affect the TCA cycle or TAN pools during prolonged, fatiguing exercise. J Appl Physiol 2003; 94 (6): 2181–7

    PubMed  CAS  Google Scholar 

  144. 144.

    Dawson KD, Baker DJ, Greenhaff PL, et al. An acute decrease in TCA cycle intermediates does not affect aerobic energy delivery in contracting rat skeletal muscle. J Physiol 2005 Jun 1; 565 (Pt2): 637–43

    PubMed  CAS  Article  Google Scholar 

  145. 145.

    Gibala MJ, Gonzalez-Alonso J, Saltin B. Dissociation between muscle tricarboxylic acid cycle pool size and aerobic energy provision during prolonged exercise in humans. J Physiol 2002 Dec 1; 545 (Pt2): 705–13

    PubMed  CAS  Article  Google Scholar 

  146. 146.

    Spencer MK, Yan Z, Katz A. Carbohydrate supplementation attenuates IMP accumulation in human muscle during prolonged exercise. Am J Physiol 1991 Jul; 261 (1Pt1): C71–6

    Google Scholar 

  147. 147.

    Nieman DC. Influence of carbohydrate on the immune response to intensive, prolonged exercise. Exerc Immunol Rev 1998; 4: 64–76

    PubMed  CAS  Google Scholar 

  148. 148.

    Nieman DC. Marathon training and immune function. Sports Med 2007; 37 (4-5): 412–5

    PubMed  Article  Google Scholar 

  149. 149.

    McAnulty S, McAnulty L, Nieman D, et al. Carbohydrate effect: hormone and oxidative changes. Int J Sports Med 2007 Nov; 28 (11): 921–7

    PubMed  CAS  Article  Google Scholar 

  150. 150.

    McAnulty SR, McAnulty LS, Morrow JD, et al. Influence of carbohydrate, intense exercise, and rest intervals on hormonal and oxidative changes. Int J Sport Nutr Exerc Metab 2007 Oct; 17 (5): 478–90

    PubMed  CAS  Google Scholar 

  151. 151.

    Febbraio MA, Mesa JL, Chung J, et al. Glucose ingestion attenuates the exercise-induced increase in circulating heat shock protein 72 and heat shock protein 60 in humans. Cell Stress Chaperones 2004 Winter; 9 (4): 390–6

    PubMed  CAS  Article  Google Scholar 

  152. 152.

    Akerstrom TC, Birk JB, Klein DK, et al. Oral glucose ingestion attenuates exercise-induced activation of 50-AMP activated protein kinase in human skeletal muscle. Biochem Biophys Res Commun 2006 Apr 14; 342 (3): 949–55

    PubMed  CAS  Article  Google Scholar 

  153. 153.

    Scharhag J, Meyer T, Auracher M, et al. Effects of graded carbohydrate supplementation on the immune response in cycling. Med Sci Sports Exerc 2006 Feb; 38 (2): 286–92

    PubMed  CAS  Article  Google Scholar 

  154. 154.

    McAnulty SR, McAnulty LS, Nieman DC, et al. Effect of resistance exercise and carbohydrate ingestion on oxidative stress. Free Radic Res 2005 Nov; 39 (11): 1219–24

    PubMed  CAS  Article  Google Scholar 

  155. 155.

    McAnulty SR, McAnulty LS, Nieman DC, et al. Influence of carbohydrate ingestion on oxidative stress and plasma antioxidant potential following a 3 h run. Free Radic Res 2003 Aug; 37 (8): 835–40

    PubMed  CAS  Article  Google Scholar 

  156. 156.

    Vasankari T, Kujala U, Sarna S, et al. Effects of ascorbic acid and carbohydrate ingestion on exercise induced oxidative stress. J Sports Med Phys Fitness 1998 Dec; 38 (4): 281–5

    PubMed  CAS  Google Scholar 

  157. 157.

    Lee-Young RS, Palmer MJ, Linden KC, et al. Carbohydrate ingestion does not alter skeletal muscle AMPK signaling during exercise in humans. Am J Physiol Endocrinol Metab 2006 Sep; 291 (3): E566–73

    PubMed  CAS  Article  Google Scholar 

  158. 158.

    Nielsen OB, Clausen T. The Na+/K(+)-pump protects muscle excitability and contractility during exercise. Exerc Sport Sci Rev 2000; 28 (4): 159–64

    PubMed  CAS  Google Scholar 

  159. 159.

    Overgaard K, Nielsen OB, Flatman JA, et al. Relations between excitability and contractility in rat soleus muscle: role of the Na+-K+ pump and Na+/K+ gradients. J Physiol 1999; 518 (Pt1): 215–25

    PubMed  CAS  Article  Google Scholar 

  160. 160.

    Allen DG, Lannergren J, Westerblad H. The use of caged adenine nucleotides and caged phosphate in intact skeletal muscle fibres of the mouse. Acta Physiol Scand 1999; 166 (4): 341–7

    PubMed  CAS  Article  Google Scholar 

  161. 161.

    Okamoto K, Wang W, Rounds J, et al. ATP from glycolysis is required for normal sodium homeostasis in resting fast-twitch rodent skeletal muscle. Am J Physiol Endocrinol Metab 2001; 281 (3): E479–88

    Google Scholar 

  162. 162.

    Karelis AD, Peronnet F, Gardiner PF. Glucose infusion attenuates muscle fatigue in rat plantaris muscle during prolonged indirect stimulation in situ. Exp Physiol 2002; 87 (5): 585–92

    PubMed  CAS  Article  Google Scholar 

  163. 163.

    Marcil M, Karelis AD, Peronnet F, et al. Glucose infusion attenuates fatigue without sparing glycogen in rat soleus muscle during prolonged electrical stimulation in situ. Eur J Appl Physiol 2005 Mar; 93 (5-6): 569–74

    PubMed  CAS  Article  Google Scholar 

  164. 164.

    Clausen T, Andersen SL, Flatman JA. Na(+)-K+ pump stimulation elicits recovery of contractility in K(+)-paralysed rat muscle. J Physiol 1993 Dec; 472: 521–36

    PubMed  CAS  Google Scholar 

  165. 165.

    Karelis AD, Peronnet F, Gardiner PF. Insulin does not mediate the attenuation of fatigue associated with glucose infusion in rat plantaris muscle. J Appl Physiol 2003; 95 (1): 330–5

    PubMed  CAS  Google Scholar 

  166. 166.

    Stewart RD, Duhamel TA, Foley KP, et al. Protection of muscle membrane excitability during prolonged cycle exercise with glucose supplementation. J Appl Physiol 2007 Jul; 103 (1): 331–9

    PubMed  CAS  Article  Google Scholar 

  167. 167.

    Green HJ, Duhamel TA, Foley KP, et al. Glucose supplements increase human muscle in vitro Na+-K+-ATPase activity during prolonged exercise. Am J Physiol Regul Integr Comp Physiol 2007 Jul; 293 (1): R354–62

    Article  CAS  Google Scholar 

  168. 168.

    Harrison AP, Flatman JA. Measurement of force and both surface and deep M wave properties in isolated rat soleus muscles. Am J Physiol 1999; 277 (6Pt2): R1646–53

    Google Scholar 

  169. 169.

    Fitts RH, Balog EM. Effect of intracellular and extracellular ion changes on E-C coupling and skeletal muscle fatigue. Acta Physiol Scand 1996; 156 (3): 169–81

    PubMed  CAS  Article  Google Scholar 

  170. 170.

    Sejersted OM, Sjogaard G. Dynamics and consequences of potassium shifts in skeletal muscle and heart during exercise. Physiol Rev 2000; 80 (4): 1411–81

    PubMed  CAS  Google Scholar 

  171. 171.

    Karelis AD, Peronnet F, Gardiner PF. Resting membrane potential of rat plantaris muscle fibers after prolonged indirect stimulation in situ: effect of glucose infusion. Can J Appl Physiol 2005 Feb; 30 (1): 105–12

    PubMed  Article  Google Scholar 

  172. 172.

    Verburg E, Thorud HM, Eriksen M, et al. Muscle contractile properties during intermittent nontetanic stimulation in rat skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2001; 281 (6): R1952–65

    Google Scholar 

  173. 173.

    Xu KY, Zweier JL, Becker LC. Functional coupling between glycolysis and sarcoplasmic reticulum Ca2+ transport. Circ Res 1995 Jul; 77 (1): 88–97

    PubMed  CAS  Article  Google Scholar 

  174. 174.

    Ortenblad N, Stephenson DG. A novel signalling pathway originating in mitochondria modulates rat skeletal muscle membrane excitability. J Physiol 2003; 548 (Pt1): 139–45

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

JohnEric W. Smith is a research scientist for the Gatorade Company, a subsidiary of PepsiCo Inc. The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Antony D. Karelis.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Karelis, A.D., Smith, J.E.W., Passe, D.H. et al. Carbohydrate Administration and Exercise Performance. Sports Med 40, 747–763 (2010). https://doi.org/10.2165/11533080-000000000-00000

Download citation

Keywords

  • Muscle Fatigue
  • Exercise Performance
  • Extensor Digitorum Longus
  • Muscle Glycogen
  • Prolonged Exercise