Skip to main content
Log in

Intravenous Immunoglobulins as a Treatment for Alzheimer’s Disease

Rationale and Current Evidence

  • Leading Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Current treatment options for Alzheimer’s disease (AD) exert only a shortlived effect on disease symptoms. Active and passive immunotherapy have both been shown to be effective in clearing plaques, removing β-amyloid (Aβ) and improving behaviour in animal models of AD. Although the first active immunization trial in humans was discontinued because of severe adverse effects, several new approaches are currently being investigated in clinical trials. Recently, commercially available intravenous immunoglobulins (IVIG) have been used in small pilot trials for the treatment of patients with AD, based on the hypothesis that IVIG contains naturally occurring auto-antibodies (nAbs-Aβ) that specifically recognize and block the toxic effects of Ab. Furthermore, these nAbs-Aβ are reduced in AD patients compared with healthy controls, supporting the notion of replacement with IVIG. Beyond the occurrence of nAbs-Aβ, evidence for several other mechanisms associated with IVIG in AD has been reported in preclinical experiments and clinical studies. In 2009, a phase III clinical trial involving more than 360 AD patients was initiated and may provide conclusive evidence for the effect of IVIG as a treatment option for AD in 2011. In this article, we review the current knowledge and scientific rationale for using IVIG in patients with AD and other neurodegenerative disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II
Table III
Table IV
Fig. 1

Similar content being viewed by others

References

  1. Stangel M, Pul R. Basic principles of intravenous immunoglobulin (IVIg) treatment. J Neurol 2006; 253 Suppl. 5: V18–24

    Article  PubMed  CAS  Google Scholar 

  2. Gold R, Stangel M, Dalakas MC. Drug Insight: the use of intravenous immunoglobulin in neurology-therapeutic considerations and practical issues. Nat Clin Pract Neurol 2007; 3(1): 36–44

    Article  PubMed  CAS  Google Scholar 

  3. Elovaara I, Apostolski S, van Doorn P, et al. EFNS guidelines for the use of intravenous immunoglobulin in treatment of neurological diseases: EFNS task force on the use of intravenous immunoglobulin in treatment of neurological diseases. Eur J Neurol 2008; 15(9): 893–908

    Article  PubMed  CAS  Google Scholar 

  4. Neff F, Wei X, Nolker C, et al. Immunotherapy and naturally occurring autoantibodies in neurodegenerative disorders. Autoimmun Rev 2008; 7(6): 501–7

    Article  PubMed  CAS  Google Scholar 

  5. Mandelkow E, von Bergen M, Biernat J, et al. Structural principles of tau and the paired helical filaments of Alzheimer’s disease. Brain Pathol 2007; 17(1): 83–90

    Article  PubMed  CAS  Google Scholar 

  6. Hardy J. Has the amyloid cascade hypothesis for Alzheimer’s disease been proved? Curr Alzheimer Res 2006; 3(1): 71–3

    Article  PubMed  CAS  Google Scholar 

  7. Cummings JL, Doody R, Clark C. Disease-modifying therapies for Alzheimer disease: challenges to early intervention. Neurology 2007; 69(16): 1622–34

    Article  PubMed  Google Scholar 

  8. Brody DL, Holtzman DM. Active and passive immunotherapy for neurodegenerative disorders. Annu Rev Neurosci 2008; 31: 175–93

    Article  PubMed  CAS  Google Scholar 

  9. Schenk D, Barbour R, Dunn W, et al. Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 1999; 400(6740): 173–7

    Article  PubMed  CAS  Google Scholar 

  10. Morgan D, Diamond DM, Gottschall PE, et al. A beta peptide vaccination prevents memory loss in an animal model of Alzheimer’s disease. Nature 2000; 408(6815): 982–5

    Article  PubMed  CAS  Google Scholar 

  11. Roskam S, Neff F, Schwarting R, et al. APP transgenic mice: the effect of active and passive immunotherapy in cognitive tasks. Neurosci Biobehav Rev 2010; 34(4): 487–99

    Article  PubMed  CAS  Google Scholar 

  12. Bayer AJ, Bullock R, Jones RW, et al. Evaluation of the safety and immunogenicity of synthetic Abeta42 (AN1792) in patients with AD. Neurology 2005; 64(1): 94–101

    Article  PubMed  CAS  Google Scholar 

  13. Schenk D. Amyloid-beta immunotherapy for Alzheimer’s disease: the end of the beginning. Nat Rev Neurosci 2002; 3(10): 824–8

    Article  PubMed  CAS  Google Scholar 

  14. Gilman S, Koller M, Black RS, et al. Clinical effects of Abeta immunization (AN1792) in patients with AD in an interrupted trial. Neurology 2005; 64(9): 1553–62

    Article  PubMed  CAS  Google Scholar 

  15. Holmes C, Boche D, Wilkinson D, et al. Long-term effects of Abeta42 immunisation in Alzheimer’s disease: follow-up of a randomised, placebo-controlled phase I trial. Lancet 2008; 372(9634): 216–23

    Article  PubMed  CAS  Google Scholar 

  16. Hock C, Konietzko U, Streffer JR, et al. Antibodies against beta-amyloid slow cognitive decline in Alzheimer’s disease. Neuron 2003; 38(4): 547–54

    Article  PubMed  CAS  Google Scholar 

  17. Bard F, Cannon C, Barbour R, et al. Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat Med 2000; 6(8): 916–9

    Article  PubMed  CAS  Google Scholar 

  18. Das P, Howard V, Loosbrock N, et al. Amyloid-beta immunization effectively reduces amyloid deposition in FcRgamma-/-knock-out mice. J Neurosci 2003; 23(24): 8532–8

    PubMed  CAS  Google Scholar 

  19. Nicoll JA, Wilkinson D, Holmes C, et al. Neuropathology of human Alzheimer disease after immunization with amyloid-beta peptide: a case report. Nat Med 2003; 9(4): 448–52

    Article  PubMed  CAS  Google Scholar 

  20. Bacskai BJ, Kajdasz ST, Christie RH, et al. Imaging of amyloid-beta deposits in brains of living mice permits direct observation of clearance of plaques with immunotherapy. Nat Med 2001; 7(3): 369–72

    Article  PubMed  CAS  Google Scholar 

  21. Taguchi H, Planque S, Nishiyama Y, et al. Autoantibody-catalyzed hydrolysis of amyloid beta peptide. J Biol Chem 2008; 283(8): 4714–22

    Article  PubMed  CAS  Google Scholar 

  22. DeMattos RB, Bales KR, Cummins DJ, et al. Peripheral anti-A beta antibody alters CNS and plasma A beta clearance and decreases brain A beta burden in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A 2001; 98(15): 8850–5

    Article  PubMed  CAS  Google Scholar 

  23. Frenkel D, Maron R, Burt DS, et al. Nasal vaccination with a proteosome-based adjuvant and glatiramer acetate clears beta-amyloid in a mouse model of Alzheimer disease. J Clin Invest 2005; 115(9): 2423–33

    Article  PubMed  CAS  Google Scholar 

  24. Solomon B. Antibody-mediated immunotherapy for Alzheimer’s disease. Curr Opin Investig Drugs 2007; 8(7): 519–24

    PubMed  CAS  Google Scholar 

  25. Morgan C, Colombres M, Nunez MT, et al. Structure and function of amyloid in Alzheimer’s disease. Prog Neuro-biol 2004; 74(6): 323–49

    Article  CAS  Google Scholar 

  26. Shankar GM, Li S, Mehta TH, et al. Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med 2008; 14(8): 837–42

    Article  PubMed  CAS  Google Scholar 

  27. Sarsoza F, Saing T, Kayed R, et al. A fibril-specific, conformation-dependent antibody recognizes a subset of Abeta plaques in Alzheimer disease, Down syndrome and Tg2576 transgenic mouse brain. Acta Neuropathol 2009; 118(4): 505–17

    Article  PubMed  CAS  Google Scholar 

  28. Moretto N, Bolchi A, Rivetti C, et al. Conformation-sensitive antibodies against alzheimer amyloid-beta by immunization with a thioredoxin-constrained B-cell epitope peptide. J Biol Chem 2007; 282(15): 11436–45

    Article  PubMed  CAS  Google Scholar 

  29. Petkova AT, Ishii Y, Balbach JJ, et al. A structural model for Alzheimer’s beta-amyloid fibrils based on experimental constraints from solid state NMR. Proc Natl Acad Sci U S A 2002; 99(26): 16742–7

    Article  PubMed  CAS  Google Scholar 

  30. Pfeifer M, Boncristiano S, Bondolfi L, et al. Cerebral hemorrhage after passive anti-Abeta immunotherapy. Science 2002; 298(5597): 1379

    Article  PubMed  CAS  Google Scholar 

  31. Dodart JC, Bales KR, Gannon KS, et al. Immunization reverses memory deficits without reducing brain Abeta burden in Alzheimer’s disease model. Nat Neurosci 2002; 5(5): 452–7

    PubMed  CAS  Google Scholar 

  32. O'Nuallain B, Acero L, Williams AD, et al. Human plasma contains cross-reactive Abeta conformer-specific IgG antibodies. Biochemistry 2008; 47(47): 12254–6

    Article  PubMed  CAS  Google Scholar 

  33. Mohajeri MH, Gaugler MN, Martinez J, et al. Assessment of the bioactivity of antibodies against beta-amyloid peptide in vitro and in vivo. Neurodegener Dis 2004; 1(4–5): 160–7

    Article  PubMed  CAS  Google Scholar 

  34. Wilcock DM, Rojiani A, Rosenthal A, et al. Passive amyloid immunotherapy clears amyloid and transiently activates microglia in a transgenic mouse model of amyloid deposition. J Neurosci 2004; 24(27): 6144–51

    Article  PubMed  CAS  Google Scholar 

  35. Kountouris D. Therapeutic effects of piracetam combined with intravenous immunoglobulin premature of Alzheimer type. J Neural Transm 2000; 107(5): 18

    Google Scholar 

  36. Dodel R, Du Y, Depboylu C, et al. Intravenous Immunoglobulins containing antibodies against β-amyloid for the treatment of Alzheimer’s disease. J Neurol Neurosurg Psychiatry 2004; 75: 1472–4

    Article  PubMed  CAS  Google Scholar 

  37. Relkin NR, Szabo P, Adamiak B, et al. 18-month study of intravenous immunoglobulin for treatment of mild Alzheimer disease. Neurobiol Aging 2009; 30(11): 1328–36

    Article  CAS  Google Scholar 

  38. Relkin N, Tsakanikas DI, Adamiak B, et al. A double blind, placebo-controlled, phase II clinical trial of intravenous immunoglobulin (IVIG) for treatment of Alzheimer’s disease [abstract]. Neurology 2008; 70(11): A393

    Google Scholar 

  39. A phase 3 study evaluating safety and effectiveness of immune globulin intravenous (IGIV 10%) for the treatment of mild to moderate Alzheimer’s disease [Clinical-Trials.gov identifier NCT00818662]. US National Institutes of Health, ClinicalTrials.gov, 2009 [online]. Available from URL: http://www.clinicaltrials.gov [Accessed 2010 Feb 10]

  40. Study of Octagam 10% on the treatment of mild to moderate Alzheimer’s patients [ClinicalTrials.gov identifier NCT00812565]. US National Institutes of Health, ClinicalTrials.gov, 2009 [online]. Available from URL: http://www.clinicaltrials.gov [Accessed 2010 Feb 10]

  41. Du Y, Dodel R, Hampel H, et al. Reduced levels of amyloid beta-peptide antibody in Alzheimer disease. Neurology 2001; 57(5): 801–5

    Article  PubMed  CAS  Google Scholar 

  42. Dodel R, Hampel H, Depboylu C, et al. Human antibodies against amyloid beta peptide: a potential treatment for Alzheimer’s disease. Ann Neurol 2002; 52(2): 253–6

    Article  PubMed  CAS  Google Scholar 

  43. Weksler ME, Relkin N, Turkenich R, et al. Patients with Alzheimer disease have lower levels of serum anti-amyloid peptide antibodies than healthy elderly individuals. Exp Gerontol 2002; 37(7): 943–8

    Article  PubMed  CAS  Google Scholar 

  44. Shoenfeld Y, Gershwin ME, Meroni PL. Autoantibodies. Amsterdam: Elsevier, 2007

    Google Scholar 

  45. Fillit H, Hess G, Hill J, et al. IV immunoglobulin is associated with a reduced risk of Alzheimer disease and related disorders. Neurology 2009; 73(3): 180–5

    Article  PubMed  CAS  Google Scholar 

  46. Misra N, Bayry J, Ephrem A, et al. Intravenous immunoglobulin in neurological disorders: a mechanistic perspective. J Neurol 2005; 252 Suppl. 1: I1–6

    Article  PubMed  CAS  Google Scholar 

  47. Hartung HP. Advances in the understanding of the mechanism of action of IVIg. J Neurol 2008; 255 Suppl. 3: 3–6

    Article  PubMed  CAS  Google Scholar 

  48. Kazatchkine MD, Kaveri SV. Immunomodulation of autoimmune and inflammatory diseases with intravenous immune globulin. N Engl J Med 2001; 345(10): 747–55

    Article  PubMed  CAS  Google Scholar 

  49. Nimmerjahn F, Ravetch JV. Anti-inflammatory actions of intravenous immunoglobulin. Annu Rev Immunol 2008; 26: 513–33

    Article  PubMed  CAS  Google Scholar 

  50. Nimmerjahn F, Ravetch JV. Fcgamma receptors as regulators of immune responses. Nat Rev Immunol 2008; 8(1): 34–47

    Article  PubMed  CAS  Google Scholar 

  51. Ravetch JV, Bolland S. IgG Fc receptors. Annu Rev Immunol 2001; 19: 275–90

    Article  PubMed  CAS  Google Scholar 

  52. Bruhns P, Samuelsson A, Pollard JW, et al. Colony-stimulating factor-1-dependent macrophages are responsible for IVIG protection in antibody-induced autoimmune disease. Immunity 2003; 18(4): 573–81

    Article  PubMed  CAS  Google Scholar 

  53. Samuelsson A, Towers TL, Ravetch JV. Anti-inflammatory activity of IVIG mediated through the inhibitory Fc receptor. Science 2001; 291(5503): 484–6

    Article  PubMed  CAS  Google Scholar 

  54. Teeling JL, Jansen-Hendriks T, Kuijpers TW, et al. Therapeutic efficacy of intravenous immunoglobulin preparations depends on the immunoglobulin G dimers: studies in experimental immune thrombocytopenia. Blood 2001; 98(4): 1095–9

    Article  PubMed  CAS  Google Scholar 

  55. Siragam V, Crow AR, Brinc D, et al. Intravenous immunoglobulin ameliorates ITP via activating Fc gamma receptors on dendritic cells. Nat Med 2006; 12(6): 688–92

    Article  PubMed  CAS  Google Scholar 

  56. Bazin R, Lemieux R, Tremblay T. Reversal of immune thrombocytopenia in mice by cross-linking human immunoglobulin G with a high-affinity monoclonal antibody. Br J Haematol 2006; 135(1): 97–100

    Article  PubMed  CAS  Google Scholar 

  57. Akilesh S, Petkova S, Sproule TJ, et al. The MHC class I-like Fc receptor promotes humorally mediated autoimmune disease. J Clin Invest 2004; 113(9): 1328–33

    PubMed  CAS  Google Scholar 

  58. Kaneko Y, Nimmerjahn F, Ravetch JV. Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science 2006; 313(5787): 670–3

    Article  PubMed  CAS  Google Scholar 

  59. Anthony RM, Wermeling F, Karlsson MC, et al. Identification of a receptor required for the anti-inflammatory activity of IVIG. Proc Natl Acad Sci U S A 2008; 105(50): 19571–8

    Article  PubMed  CAS  Google Scholar 

  60. Konrad S, Baumann U, Schmidt RE, et al. Intravenous immunoglobulin (IVIG)-mediated neutralisation of C5a: a direct mechanism of IVIG in the maintenance of a high Fc gammaRIIB to Fc gammaRIII expression ratio on macrophages. Br J Haematol 2006; 134(3): 345–7

    Article  PubMed  CAS  Google Scholar 

  61. Frank MM, Basta M, Fries LF. The effects of intravenous immune globulin on complement-dependent immune damage of cells and tissues. Clin Immunol Immunopathol 1992; 62 (1 Pt 2): S82–6

    Article  PubMed  CAS  Google Scholar 

  62. Mollnes TE, Hogasen K, De Carolis C, et al. High-dose intravenous immunoglobulin treatment activates complement in vivo. Scand J Immunol 1998; 48(3): 312–7

    Article  PubMed  CAS  Google Scholar 

  63. Lutz HU, Stammler P, Jelezarova E, et al. High doses of immunoglobulin G attenuate immune aggregate-mediated complement activation by enhancing physiologic cleavage of C3b in C3bn-IgG complexes. Blood 1996; 88(1): 184–93

    PubMed  CAS  Google Scholar 

  64. Basta M, Van Goor F, Luccioli S, et al. F(ab)'2-mediated neutralization of C3a and C5a anaphylatoxins: a novel effector function of immunoglobulins. Nat Med 2003; 9(4): 431–8

    Article  PubMed  CAS  Google Scholar 

  65. Rissmann A, Pieper S, Adams I, et al. Increased blood plasma concentrations of TGF-beta1 and TGF-beta2 after treatment with intravenous immunoglobulins in childhood autoimmune diseases. Pediatr Allergy Immunol 2009; 20(3): 261–5

    Article  PubMed  Google Scholar 

  66. Stangel M, Schumacher HC, Ruprecht K, et al. Immunoglobulins for intravenous use inhibit TNF alpha cytotoxicity in vitro. Immunol Invest 1997; 26(5-7): 569–78

    Article  PubMed  CAS  Google Scholar 

  67. Wu KH, Wu WM, Lu MY, et al. Inhibitory effect of pooled human immunoglobulin on cytokine production in peripheral blood mononuclear cells. Pediatr Allergy Immunol 2006; 17(1): 60–8

    Article  PubMed  Google Scholar 

  68. Ghio M, Contini P, Negrini S, et al. sHLA-I contaminating molecules as novel mechanism of ex vivo/in vitro transcriptional and posttranscriptional modulation of transforming growth factor-beta in CD8+ T lymphocytes and neutrophils after intravenous immunoglobulin treatment. Transfusion. Epub 2009 Nov 9

  69. Kekow J, Reinhold D, Pap T, et al. Intravenous immunoglobulins and transforming growth factor beta. Lancet 1998; 351(9097): 184–5

    Article  PubMed  CAS  Google Scholar 

  70. Park-Min KH, Serbina NV, Yang W, et al. FcgammaRIII-dependent inhibition of interferon-gamma responses mediates suppressive effects of intravenous immune globulin. Immunity 2007; 26(1): 67–78

    Article  PubMed  CAS  Google Scholar 

  71. Gaskin F, Finley J, Fang Q, et al. Human antibodies reactive with beta-amyloid protein in Alzheimer’s disease. J Exp Med 1993; 177(4): 1181–6

    Article  PubMed  CAS  Google Scholar 

  72. Gaskin F, Kingsley BS, Fu SM. Autoantibodies to neuro-fibrillary tangles and brain tissue in Alzheimer’s disease. Establishment of Epstein-Barr virus-transformed antibody-producing cell lines. J Exp Med 1987; 165(1): 245–50

    CAS  Google Scholar 

  73. Du Y, Wei X, Dodel R, et al. Human anti-beta-amyloid antibodies block beta-amyloid fibril formation and prevent beta-amyloid-induced neurotoxicity. Brain 2003; 126 (Pt 9): 1935–9

    Article  PubMed  Google Scholar 

  74. Xu S, Gaskin F. Increased incidence of anti-beta-amyloid autoantibodies secreted by Epstein-Barr virus transformed B cell lines from patients with Alzheimer’s disease. Mech Ageing Dev 1997; 94(1–3): 213–22

    Article  PubMed  CAS  Google Scholar 

  75. Geylis V, Kourilov V, Meiner Z, et al. Human monoclonal antibodies against amyloid-beta from healthy adults. Neurobiol Aging 2005; 26(5): 597–606

    Article  PubMed  CAS  Google Scholar 

  76. Istrin G, Bosis E, Solomon B. Intravenous immunoglobulin enhances the clearance of fibrillar amyloid-beta peptide. J Neurosci Res 2006; 84(2): 434–43

    Article  PubMed  CAS  Google Scholar 

  77. Schaffer C, Blanché-Ganter E. Qualität polyvalenter Immunglobuline. Krankenhauspharmazie 1998; 19: 280–6

    Google Scholar 

  78. Pul R, Nguyen D, Schmitz U, et al. Comparison of intravenous immunoglobulin preparations on microglial function in vitro: more potent immunomodulatory capacity of an IgM/IgA-enriched preparation. Clin Neuropharmacol 2002; 25(5): 254–9

    Article  PubMed  CAS  Google Scholar 

  79. Kellner A, Matschke J, Bernreuther C, et al. Autoantibodies against beta-amyloid are common in Alzheimer’s disease and help control plaque burden. Ann Neurol 2009; 65(1): 24–31

    Article  PubMed  Google Scholar 

  80. Tampellini D, Magrane J, Takahashi RH, et al. Internalized antibodies to the Abeta domain of APP reduce neuronal Abeta and protect against synaptic alterations. J Biol Chem 2007; 282(26): 18895–906

    Article  PubMed  CAS  Google Scholar 

  81. Moir RD, Tseitlin KA, Soscia S, et al. Autoantibodies to redox-modified oligomeric Abeta are attenuated in the plasma of Alzheimer’s disease patients. J Biol Chem 2005; 280(17): 17458–63

    Article  PubMed  CAS  Google Scholar 

  82. Song MS, Mook-Jung I, Lee HJ, et al. Serum anti-amyloid-beta antibodies and Alzheimer’s disease in elderly Korean patients. J Int Med Res 2007; 35(3): 301–6

    PubMed  CAS  Google Scholar 

  83. Sohn JH, So JO, Hong HJ, et al. Identification of auto-antibody against beta-amyloid peptide in the serum of elderly. Front Biosci 2009; 14: 3879–83

    Article  PubMed  CAS  Google Scholar 

  84. Jianping L, Zhibing Y, Wei Q, et al. Low avidity and level of serum anti-Abeta antibodies in Alzheimer disease. Alzheimer Dis Assoc Disord 2006; 20(3): 127–32

    Article  PubMed  Google Scholar 

  85. Brettschneider S, Morgenthaler NG, Teipel SJ, et al. Decreased serum amyloid beta(1–42) autoantibody levels in Alzheimer’s disease, determined by a newly developed immuno-precipitation assay with radiolabeled amyloid beta(1–42) peptide. Biol Psychiatry 2005; 57(7): 813–6

    Article  PubMed  CAS  Google Scholar 

  86. Hansson SF, Andreasson U, Wall M, et al. Reduced levels of amyloid-beta-binding proteins in cerebrospinal fluid from Alzheimer’s disease patients. J Alzheimers Dis 2009; 16(2): 389–97

    PubMed  CAS  Google Scholar 

  87. Nath A, Hall E, Tuzova M, et al. Autoantibodies to amyloid beta-peptide (Abeta) are increased in Alzheimer’s disease patients and Abeta antibodies can enhance Abeta neurotoxicity: implications for disease pathogenesis and vaccine development. Neuromolec Med 2003; 3(1): 29–39

    Article  CAS  Google Scholar 

  88. Gruden MA, Davudova TB, Malisauskas M, et al. Autoimmune responses to amyloid structures of Abeta(25–35) peptide and human lysozyme in the serum of patients with progressive Alzheimer’s disease. Dement Geriatr Cogn Disord 2004; 18(2): 165–71

    Article  PubMed  CAS  Google Scholar 

  89. Mruthinti S, Buccafusco JJ, Hill WD, et al. Autoimmunity in Alzheimer’s disease: increased levels of circulating IgGs binding Abeta and RAGE peptides. Neurobiol Aging 2004; 25(8): 1023–32

    Article  PubMed  CAS  Google Scholar 

  90. Hyman BT, Smith C, Buldyrev I, et al. Autoantibodies to amyloid-beta and Alzheimer’s disease. Ann Neurol 2001; 49(6): 808–10

    Article  PubMed  CAS  Google Scholar 

  91. Baril L, Nicolas L, Croisile B, et al. Immune response to Abeta-peptides in peripheral blood from patients with Alzheimer’s disease and control subjects. Neurosci Lett 2004; 355(3): 226–30

    Article  PubMed  CAS  Google Scholar 

  92. Weber A, Engelmaier A, Teschner H, et al. Intravenous immunoglobulin (IVIG) Gammagard Liquid contains anti-RAGE IGG and SLRP. ICAD Abstract 2009; P3: 43

    Google Scholar 

  93. Dalakas MC, Späth PJ. Intravenous immunoglobulins in the third millennium. New York: Parthenon Publishing Group, 2004

    Google Scholar 

  94. Dalakas MC. Mechanisms of action of IVIg and therapeutic considerations in the treatment of acute and chronic demyelinating neuropathies. Neurology 2002; 59 (12 Suppl. 6): S13–21

    Article  PubMed  CAS  Google Scholar 

  95. Quan Y, Moller T, Weinstein JR. Regulation of Fcgamma receptors and immunoglobulin G-mediated phagocytosis in mouse microglia. Neurosci Lett 2009; 464(1): 29–33

    Article  PubMed  CAS  Google Scholar 

  96. Sewell WA, North ME, Cambronero R, et al. In vivo modulation of cytokine synthesis by intravenous immunoglobulin. Clin Exp Immunol 1999; 116(3): 509–15

    Article  PubMed  CAS  Google Scholar 

  97. World Health Organization. Appropriate uses of human immunoglobulin in clinical practice: memorandum from an IUIS/WHO meeting. WHO Bulletin 1982; 60: 43–7

    Google Scholar 

  98. International patient organisation for primary immunodeficiencies. IVIG preparations currently available. 2009 [online]. Available from URL: http://www.ipopi.org/data/ [Accessed 2010 Feb 10]

  99. Gelfand EW. Differences between IGIV products: impact on clinical outcome. Int Immunopharmacol 2006; 6(4): 592–9

    Article  PubMed  CAS  Google Scholar 

  100. Martin TD. IGIV: contents, properties, and methods of industrial production-evolving closer to a more physiologic product. Int Immunopharmacol 2006; 6(4): 517–22

    Article  PubMed  CAS  Google Scholar 

  101. Shah S. Pharmacy considerations for the use of IGIV therapy. Am J Health Syst Pharm 2005; 62 (16 Suppl. 3): S5–11

    Article  PubMed  Google Scholar 

  102. Relkin NR, Szabo P, Rotondi M, et al. Antibodies in the dimer fraction of IVIG have the capacity to bind beta amyloid. ICAD Abstract 2009: 43

  103. Safavi A. Comparison of several human immunoglobulin products for anti-Aβ 1–42 titer [abstract]. Alzheimer’s Dementia 2006; 2 (3 Suppl. 1): S591

    Article  Google Scholar 

  104. Balakrishnan K, Andrei-Selmer L, Selmer T, et al. Comparison of intravenous immunoglobulins for naturally occurring antibodies against β-amyloid. J Alzheimers Dis. In press

  105. Hamrock DJ. Adverse events associated with intravenous immunoglobulin therapy. Int Immunopharmacol 2006; 6(4): 535–42

    Article  PubMed  CAS  Google Scholar 

  106. Katz U, Achiron A, Sherer Y, et al. Safety of intravenous immunoglobulin (IVIG) therapy. Autoimmun Rev 2007; 6(4): 257–9

    Article  PubMed  CAS  Google Scholar 

  107. Ballow M. Safety of IGIV therapy and infusion-related adverse events. Immunol Res 2007; 38(1-3): 122–32

    Article  PubMed  CAS  Google Scholar 

  108. Stangel M, Kiefer R, Pette M, et al. Side effects of intravenous immunoglobulins in neurological autoimmune disorders—a prospective study. J Neurol 2003; 250(7): 818–21

    Article  PubMed  Google Scholar 

  109. Brannagan 3rd TH, Nagle KJ, Lange DJ, et al. Complications of intravenous immune globulin treatment in neurologic disease. Neurology 1996; 47(3): 674–7

    Article  PubMed  Google Scholar 

  110. Wittstock M, Benecke R, Zettl UK. Therapy with intravenous immunoglobulins: complications and side-effects. Eur Neurol 2003; 50(3): 172–5

    Article  PubMed  CAS  Google Scholar 

  111. Papachroni KK, Ninkina N, Papapanagiotou A, et al. Autoantibodies to alpha-synuclein in inherited Parkinson’s disease. J Neurochem 2007; 101(3): 749–56

    Article  PubMed  CAS  Google Scholar 

  112. Shankle WR. Longitudinal measure of IVIG treatment effect in patients with Alzheimer’s and Lewy body disease. ICAD Abstract 2009; P3: 43

    Google Scholar 

  113. Rosenmann H, Meiner Z, Geylis V, et al. Detection of circulating antibodies against tau protein in its unphosphorylated and in its neurofibrillary tangles-related phosphorylated state in Alzheimer’s disease and healthy subjects. Neurosci Lett 2006; 410(2): 90–3

    Article  PubMed  CAS  Google Scholar 

  114. Wei X, He Y, Tan J, et al. Human anti-prion protein antibodies block A117V PrProtein fibril formation and prevent A117V prion protein peptide-induced neurotoxicity. Eur Psychiatry 2008; 23: S39–S

    Article  Google Scholar 

  115. Bayry J, Kazatchkine MD, Kaveri SV. Shortage of human intravenous immunoglobulin-reasons and possible solutions. Nat Clin Pract Neurol 2007; 3(3): 120–1

    Article  PubMed  Google Scholar 

  116. Boulis A, Goold S, Ubel PA. Responding to the immunoglobulin shortage: a case study. J Health Polit Policy Law 2002; 27(6): 977–99

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Jennifer Manne for language editing. RD and MB hold patents on immunization in AD. RD and MB have received honoraria for presentations and research grants from several companies producing IVIG. The other authors have no conflicts of interest that are relevant to the content of this review. No sources of funding were used to assist in the preparation of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Dodel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dodel, R., Neff, F., Noelker, C. et al. Intravenous Immunoglobulins as a Treatment for Alzheimer’s Disease. Drugs 70, 513–528 (2010). https://doi.org/10.2165/11533070-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11533070-000000000-00000

Keywords

Navigation