Skip to main content

A Decade of Data Mining and Still Counting

This is a preview of subscription content, access via your institution.

Table I
Fig. 1


  1. Bate A, Lindquist M, Edwards IR, et al. A Bayesian neural network method for adverse drug reaction signal generation. Eur J Clin Pharmacol 1998; 54(4): 315–21

    PubMed  Article  CAS  Google Scholar 

  2. Almenoff J, Tonning JM, Gould AL, et al. Perspectives on the use of data mining in pharmacovigilance. Drug Saf 2005; 28(11): 981–1007

    PubMed  Article  CAS  Google Scholar 

  3. European Medicines Agency, EudraVigilance Expert Working Group. Guideline on the use of statistical signal detection methods in the EudraVigilance data analysis system [online]. Available from URL: [Accessed 2010 May 5]

  4. CIOMS Working Group VIII. Report on practical aspects of signal detection in pharmacovigilance. Geneva: CIOMS. In press

  5. Norén GN, Orre R, Bate A, et al. Duplicate detection in adverse drug reaction surveillance. Data Min Knowl Discov 2007; 14: 305–28

    Article  Google Scholar 

  6. Hauben M, Reich L, DeMicco J, et al. Extreme duplication in the US FDA Adverse Events Reporting System database. Drug Saf 2007; 30(6): 551–4

    PubMed  Article  Google Scholar 

  7. Henegar C, Bousquet C, Lillo-Le Louët A, et al. Building an ontology of adverse drug reactions for automated signal generation in pharmacovigilance. Comput Biol Med 2006; 36(7–8): 748–67

    PubMed  Article  CAS  Google Scholar 

  8. Brown EG. Effects of coding dictionary on signal generation: a consideration of use of MedDRA compared with WHO-ART. Drug Saf 2002; 25(6): 445–52

    PubMed  Article  Google Scholar 

  9. Hauben M, Aronson JK. Defining ‘signal’ and its subtypes in pharmacovigilance based on a systematic review of previous definitions. Drug Saf 2009; 32(2): 99–110

    PubMed  Article  Google Scholar 

  10. Meyboom RH, Lindquist M, Egberts AC, et al. Signal selection and follow-up in pharmacovigilance. Drug Saf 2002; 25(6): 459–65

    PubMed  Article  Google Scholar 

  11. Erratum. Br J Clin Pharmacol 2007; 64 (1): 118

  12. Lindquist M, Ståhl M, Bate A, et al. A retrospective evaluation of a data mining approach to aid finding new adverse drug reaction signals in the WHO international database. Drug Saf 2000; 23(6): 533–42

    PubMed  Article  CAS  Google Scholar 

  13. Hochberg AM, Hauben M, Pearson RK, et al. An evaluation of three signal-detection algorithms using a highly inclusive reference event database. Drug Saf 2009; 32(6): 509–25

    PubMed  Article  Google Scholar 

  14. Bailey S, Singh A, Azadian R, et al. Prospective data mining of six products in the US FDA Adverse Event Reporting System: disposition of events identified and impact on product safety profiles. Drug Saf 2010; 33(2): 139–46

    PubMed  Article  Google Scholar 

  15. Alvarez Y, Hidalgo A, Maignen F, et al. Validation of statistical signal detection procedures in EudraVigilance post-authorisation data: a retrospective evaluation of the potential for earlier signalling. Drug Saf 2010; 33(6): 475–87

    PubMed  Article  Google Scholar 

  16. Ståhl M, Lindquist M, Edwards IR, et al. Introducing triage logic as a new strategy for the detection of signals in the WHO Drug Monitoring Database. Pharmacoepidemiol Drug Saf 2004; 13(6): 355–63

    PubMed  Article  Google Scholar 

  17. Levitan B, Yee CL, Russo L, et al. A model for decision support in signal triage. Drug Saf 2008; 31(9): 727–35

    PubMed  Article  Google Scholar 

  18. Walker AM. Orthogonal predictions: follow-up questions for suggestive data. Pharmacoepidemiol Drug Saf 2010; 19(5): 529–32

    PubMed  Google Scholar 

  19. Hauben M, Reich L, Gerrits CM, et al. Illusions of objectivity and a recommendation for reporting data mining results. Eur J Clin Pharmacol 2007; 63(5): 517–21

    PubMed  Article  Google Scholar 

  20. Hauben M, Bate A. Data mining in drug safety: side effects of drugs essay. In: Aronson JK, editor. Side effects of drugs annual. Vol. 29. Amsterdam: Elsevier, 2007: xxxiii–xlvi

    Chapter  Google Scholar 

  21. Taubes G. Epidemiology faces its limits. Science 1995; 269(5221): 164–9

    PubMed  Article  CAS  Google Scholar 

  22. Meyboom RH, Hekster YA, Egberts AC, et al. Causal or casual? The role of causality assessment in pharmacovigilance. Drug Saf 1997; 17(6): 374–89

    PubMed  Article  CAS  Google Scholar 

  23. Aronson JK, Hauben M. Anecdotes that provide definitive evidence. BMJ 2006; 333(7581): 1267–9

    PubMed  Article  Google Scholar 

  24. Hauben M, Reich L. Response to letter by Levine et al. Br J Clin Pharmacol 2006; 61(1): 115–7

    Article  CAS  Google Scholar 

  25. Almenoff JS, LaCroix KK, Yuen NA, et al. Comparative performance of two quantitative safety signalling methods: implications for use in a pharmacovigilance department. Drug Saf 2006; 29(10): 875–87

    PubMed  Article  CAS  Google Scholar 

  26. Hochberg AM, Hauben M. Time-to-signal comparison for drug safety data-mining algorithms vs. traditional signaling criteria. Clin Pharmacol Ther 2009; 85(6): 600–6

    PubMed  Article  CAS  Google Scholar 

  27. Bate A, Edwards IR. Data mining in spontaneous reports. Basic Clin Pharmacol Toxicol 2006; 98(3): 324–30

    PubMed  Article  CAS  Google Scholar 

Download references


No sources of funding were used in the preparation of this editorial. Manfred Hauben is a full-time employee of Pfizer Inc., and owns stock/stock options in Pfizer Inc. and other pharmaceutical companies. Niklas Norén has no conflicts of interest to declare.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Manfred Haubenand.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Haubenand, M., Norén, G.N. A Decade of Data Mining and Still Counting. Drug-Safety 33, 527–534 (2010).

Download citation

  • Published:

  • Issue Date:

  • DOI: