Skip to main content
Log in

Mitochondrial Dynamics in Alzheimer’s Disease

Opportunities for Future Treatment Strategies

  • Leading Article
  • Published:
Drugs & Aging Aims and scope Submit manuscript

Abstract

The complexities that underlie the cognitive impairment and neurodegeneration characteristic of Alzheimer’s disease (AD) have yet to be completely understood, although many factors in disease pathogenesis have been identified. Particularly important in disease development seem to be mitochondrial disturbances. As pivotal role players in cellular metabolism, mitochondria are pertinent to cell survival and thus any deviation from their operation is certainly fatal. In this review, we describe how the dynamic balance of mitochondrial fission and fusion in particular is a necessary aspect of cell proliferation and that, as the cell ages, such balance is inevitably compromised to yield a destructive environment in which the cell cannot exist. Evidence for such disturbance is abundant in AD. Specifically, the dynamic balance of fission and fusion in AD is greatly shifted toward fission, and, as a result, affected neurons contain abnormal mitochondria that are unable to meet the metabolic demands of the cell. Moreover, mitochondrial distribution in AD cells is perinuclear, with few metabolic organelles in the distal processes, where they are normally distributed in healthy cells and are needed for exocytosis, ion channel pumps, synaptic function and other activities. AD neurons are thus characterized by increases in reactive oxidative species and decreases in metabolic capability, and, notably, these changes are evident very early in AD progression. We therefore believe that oxidative stress and altered mitochondrial dynamics contribute to the precipitation of AD pathology and thus cognitive decline. These implications provide a window for therapeutic intervention (i.e. mitochondrial protection) that has the potential to significantly deter AD progression if adequately developed. Current treatment strategies under investigation are described in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Smith MA. Alzheimer disease. Int Rev Neurobiol 1998; 42: 1–54

    PubMed  CAS  Google Scholar 

  2. Serretti A, Olgiati P, De Ronchi D. Genetics of Alzheimer’s disease: a rapidly evolving field. J Alzheimers Dis 2007 Aug; 12(1): 73–92

    PubMed  CAS  Google Scholar 

  3. Rogaeva E, Kawarai T, George-Hyslop PS. Genetic complexity of Alzheimer’s disease: successes and challenges. J Alzheimers Dis 2006; 9(sn3 Suppl.): 381–7

    PubMed  CAS  Google Scholar 

  4. Gustaw-Rothenberg KA, Siedlak SL, Bonda DJ, et al. Dissociated amyloid-β antibody levels as a serum bio-marker for the progression of Alzheimer’s disease: a population-based study. Exp Gerontol 2010; 45: 47–52

    PubMed  CAS  Google Scholar 

  5. Iqbal K, Zaidi T, Thompson CH, et al. Alzheimer paired helical filaments: bulk isolation, solubility, and protein composition. Acta Neuropathol (Berl) 1984; 62(3): 167–77

    CAS  Google Scholar 

  6. Grundke-Iqbal I, Iqbal K, Tung YC, et al. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci U S A 1986 Jul; 83(13): 4913–7

    PubMed  CAS  Google Scholar 

  7. Mancuso M, Orsucci D, Siciliano G, et al. Mitochondria, mitochondrial DNA and Alzheimer’s disease: what comes first? Curr Alzheimer Res 2008 Oct; 5(5): 457–68

    PubMed  CAS  Google Scholar 

  8. Zhu X, Lee HG, Perry G, et al. Alzheimer disease, the two-hit hypothesis: an update. Biochim Biophys Acta 2007 Apr;1772(4): 494–502

    PubMed  CAS  Google Scholar 

  9. Wang X, Su B, Zheng L, et al. The role of abnormal mitochondrial dynamics in the pathogenesis of Alzheimer’s disease. J Neurochem 2009 May; 109Suppl. 1: 153–9

    PubMed  CAS  Google Scholar 

  10. Blass JP. The mitochondrial spiral: an adequate cause of dementia in the Alzheimer’s syndrome. Ann N Y Acad Sci 2000; 924: 170–83

    PubMed  CAS  Google Scholar 

  11. Chan DC. Mitochondrial fusion and fission in mammals. Annu Rev Cell Dev Biol 2006; 22: 79–99

    PubMed  CAS  Google Scholar 

  12. Bleazard W, McCaffery JM, King EJ, et al. The dynaminrelated GTPase Dnm1 regulates mitochondrial fission in yeast. Nature Cell Biology 1999 Sep; 1(5): 298–304

    PubMed  CAS  Google Scholar 

  13. Sesaki H, Jensen RE. Division versus fusion: Dnm1p and Fzo1p antagonistically regulate mitochondrial shape. J Cell Biol 1999 Nov 15; 147(4): 699–706

    PubMed  CAS  Google Scholar 

  14. Twig G, Elorza A, Molina AJ, et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J 2008 Jan 23; 27(2): 433–46

    PubMed  CAS  Google Scholar 

  15. Cheng X, Kanki T, Fukuoh A, et al. PDIP38 associates with proteins constituting the mitochondrial DNA nucleoid. J Biochem 2005 Dec; 138(6): 673–8

    PubMed  CAS  Google Scholar 

  16. Chen H, McCaffery JM, Chan DC. Mitochondrial fusion protects against neurodegeneration in the cerebellum. Cell 2007 Aug 10; 130(3): 548–62

    PubMed  CAS  Google Scholar 

  17. Frank S, Gaume B, Bergmann-Leitner ES, et al. The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev Cell 2001 Oct; 1(4): 515–25

    PubMed  CAS  Google Scholar 

  18. Lee YJ, Jeong SY, Karbowski M, et al. Roles of the mammalian mitochondrial fission and fusion mediators Fis1, Drp1, and Opa1 in apoptosis. Mol Biol Cell 2004 Nov; 15(11): 5001–11

    PubMed  CAS  Google Scholar 

  19. Chen H, Chomyn A, Chan DC. Disruption of fusion results in mitochondrial heterogeneity and dysfunction. J Biol Chem 2005 Jul 15; 280(28): 26185–92

    PubMed  CAS  Google Scholar 

  20. McBride HM, Neuspiel M, Wasiak S. Mitochondria: more than just a powerhouse. Curr Biol 2006 Jul 25; 16(14): R551–60

    PubMed  CAS  Google Scholar 

  21. Parone PA, James DI, Da Cruz S, et al. Inhibiting the mitochondrial fission machinery does not prevent Bax/Bak-dependent apoptosis. Mol Cell Biol 2006 Oct; 26(20): 7397–408

    PubMed  CAS  Google Scholar 

  22. Yu T, Robotham JL, Yoon Y. Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology. Proc Natl Acad Sci U S A 2006 Feb 21; 103(8): 2653–8

    PubMed  CAS  Google Scholar 

  23. Chen H, Detmer SA, Ewald AJ, et al. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol 2003 Jan 20; 160(2): 189–200

    PubMed  CAS  Google Scholar 

  24. Benard G, Bellance N, James D, et al. Mitochondrial bioenergetics and structural network organization. J Cell Sci 2007 Mar 1; 120 (Pt 5): 838–48

    PubMed  CAS  Google Scholar 

  25. Parone PA, Da Cruz S, Tondera D, et al. Preventing mitochondrial fission impairs mitochondrial function and leads to loss of mitochondrial DNA. PLoS ONE 2008; 3(9): e3257

    PubMed  Google Scholar 

  26. Chan DC. Mitochondria: dynamic organelles in disease, aging, and development. Cell 2006 Jun 30; 125(7): 1241–52

    PubMed  CAS  Google Scholar 

  27. Knott AB, Perkins G, Schwarzenbacher R, et al. Mitochondrial fragmentation in neurodegeneration. Nat Rev Neurosci 2008 Jul; 9(7): 505–18

    PubMed  CAS  Google Scholar 

  28. Su B, Wang X, Zheng L, et al. Abnormal mitochondrial dynamics and neurodegenerative diseases. Biochim Biophys Acta 2010; 1802: 135–42

    PubMed  CAS  Google Scholar 

  29. Smirnova E, Griparic L, Shurland DL, et al. Dynaminrelated protein Drp1 is required for mitochondrial division in mammalian cells. Mol Biol Cell 2001 Aug; 12(8): 2245–56

    PubMed  CAS  Google Scholar 

  30. James DI, Parone PA, Mattenberger Y, et al. hFis1, a novel component of the mammalian mitochondrial fission machinery. J Biol Chem 2003 Sep 19; 278(38): 36373–9

    PubMed  CAS  Google Scholar 

  31. Ishihara N, Eura Y, Mihara K. Mitofusin 1 and 2 play distinct roles in mitochondrial fusion reactions via GTPase activity. J Cell Sci 2004 Dec 15; 117 (Pt 26): 6535–46

    PubMed  CAS  Google Scholar 

  32. Zuchner S, Mersiyanova IV, Muglia M, et al. Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat Genet 2004 May; 36(5): 449–51

    PubMed  Google Scholar 

  33. Cipolat S, Martins de Brito O, Dal Zilio B, et al. OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proc Natl Acad Sci U S A 2004 Nov 9; 101(45): 15927–32

    PubMed  CAS  Google Scholar 

  34. Chang CR, Blackstone C. Cyclic AMP-dependent protein kinase phosphorylation of Drp1 regulates its GTPase activity and mitochondrial morphology. J Biol Chem 2007 Jul 27; 282(30): 21583–7

    PubMed  CAS  Google Scholar 

  35. Cribbs JT, Strack S. Reversible phosphorylation of Drp1 by cyclic AMP-dependent protein kinase and calcineurin regulates mitochondrial fission and cell death. EMBO Rep 2007 Oct; 8(10): 939–44

    PubMed  CAS  Google Scholar 

  36. Harder Z, Zunino R, McBride H. Sumo1 conjugates mitochondrial substrates and participates in mitochondrial fission. Curr Biol 2004 Feb 17; 14(4): 340–5

    PubMed  CAS  Google Scholar 

  37. Karbowski M, Neutzner A, Youle RJ. The mitochondrial E3 ubiquitin ligase MARCH5 is required for Drp1 dependent mitochondrial division. J Cell Biol 2007 Jul 2; 178(1): 71–84

    PubMed  CAS  Google Scholar 

  38. Meuer K, Suppanz IE, Lingor P, et al. Cyclin-dependent kinase 5 is an upstream regulator of mitochondrial fission during neuronal apoptosis. Cell Death Differ 2007 Apr; 14(4): 651–61

    PubMed  CAS  Google Scholar 

  39. Taguchi N, Ishihara N, Jofuku A, et al. Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J Biol Chem 2007 Apr 13; 282(15): 11521–9

    PubMed  CAS  Google Scholar 

  40. Cereghetti GM, Stangherlin A, Martins de Brito O, et al. Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria. Proc Natl Acad Sci U S A 2008 Oct 14; 105(41): 15803–8

    PubMed  CAS  Google Scholar 

  41. Han XJ, Lu YF, Li SA, et al. CaM kinase I alpha-induced phosphorylation of Drp1 regulates mitochondrial morphology. J Cell Biol 2008 Aug 11; 182(3): 573–85

    PubMed  CAS  Google Scholar 

  42. Cho DH, Nakamura T, Fang J, et al. S-nitrosylation of Drp 1 mediates beta-amyloid-related mitochondrial fission and neuronal injury. Science 2009 Apr 3; 324(923): 102–5

    PubMed  CAS  Google Scholar 

  43. Frazier AE, Kiu C, Stojanovski D, et al. Mitochondrial morphology and distribution in mammalian cells. Biol Chem 2006 Dec; 387(12): 1551–8

    PubMed  CAS  Google Scholar 

  44. Smirnova E, Shurland DL, Ryazantsev SN, et al. A human dynamin-related protein controls the distribution of mitochondria. J Cell Biol 1998 Oct 19; 143(2): 351–8

    PubMed  CAS  Google Scholar 

  45. Griparic L, van der Wel NN, Orozco IJ, et al. Loss of the intermembrane space protein Mgm1/OPA1 induces swelling and localized constrictions along the lengths of mitochondria. J Biol Chem 2004 Apr 30; 279(18): 18792–8

    PubMed  CAS  Google Scholar 

  46. Spinazzi M, Cazzola S, Bortolozzi M, et al. A novel deletion in the GTPase domain of OPA1 causes defects in mitochondrial morphology and distribution, but not in function. Hum Mol Genet 2008 Nov 1; 17(21): 3291–302

    PubMed  CAS  Google Scholar 

  47. Kann O, Kovacs R. Mitochondria and neuronal activity. Am J Physiol Cell Physiol 2007 Feb; 292(2): C641–57

    PubMed  CAS  Google Scholar 

  48. Zhu X, Lee HG, Casadesus G, et al. Oxidative imbalance in Alzheimer’s disease. Mol Neurobiol 2005; 31(1–3): 205–17

    PubMed  CAS  Google Scholar 

  49. Ogawa O, Zhu X, Perry G, et al. Mitochondrial abnormalities and oxidative imbalance in neurodegenerative disease. Sci Aging Knowledge Environ 2002 Oct 16; 2002(41): pe16

    PubMed  Google Scholar 

  50. Gibson GE, Sheu KF, Blass JP. Abnormalities of mitochondrial enzymes in Alzheimer disease. J Neural Transm 1998; 105(8-9): 855–70

    PubMed  CAS  Google Scholar 

  51. Chandrasekaran K, Giordano T, Brady DR, et al. Impairment in mitochondrial cytochrome oxidase gene expression in Alzheimer disease. Brain Res Mol Brain Res 1994 Jul; 24(1-4): 336–40

    PubMed  CAS  Google Scholar 

  52. Cottrell DA, Blakely EL, Johnson MA, et al. Mitochondrial enzyme-deficient hippocampal neurons and choroidal cells in AD. Neurology 2001 Jul 24; 57(2): 260–4

    PubMed  CAS  Google Scholar 

  53. Maurer I, Zierz S, Moller HJ. A selective defect of cytochrome c oxidase is present in brain of Alzheimer disease patients. Neurobiol Aging 2000 May-Jun; 21(3): 455–62

    PubMed  CAS  Google Scholar 

  54. Nagy Z, Esiri MM, LeGris M, et al. Mitochondrial enzyme expression in the hippocampus in relation to Alzheimer-type pathology. Acta Neuropathol (Berl) 1999 Apr; 97(4): 346–54

    CAS  Google Scholar 

  55. Parker Jr WD, Mahr NJ, Filley CM, et al. Reduced platelet cytochrome c oxidase activity in Alzheimer’s disease. Neurology 1994 Jun; 44(6): 1086–90

    PubMed  Google Scholar 

  56. Parker Jr WD, Parks J, Filley CM, et al. Electron transport chain defects in Alzheimer’s disease brain. Neurology 1994 Jun; 44(6): 1090–6

    PubMed  Google Scholar 

  57. Coskun PE, Beal MF, Wallace DC. Alzheimer’s brains harbor somatic mtDNA control-region mutations that suppress mitochondrial transcription and replication. Proc Natl Acad Sci U S A 2004 Jul 20; 101(29): 10726–31

    PubMed  CAS  Google Scholar 

  58. Keller JN, Guo Q, Holtsberg FW, et al. Increased sensitivity to mitochondrial toxin-induced apoptosis in neural cells expressing mutant presenilin-1 is linked to perturbed calcium homeostasis and enhanced oxyradical production. J Neurosci 1998 Jun 15; 18(12): 4439–50

    PubMed  CAS  Google Scholar 

  59. Hirai K, Aliev G, Nunomura A, et al. Mitochondrial abnormalities in Alzheimer’s disease. J Neurosci 2001 May 1; 21(9): 3017–23

    PubMed  CAS  Google Scholar 

  60. Wang X, Su B, Fujioka H, et al. Dynamin-like protein 1 reduction underlies mitochondrial morphology and distribution abnormalities in fibroblasts from sporadic Alzheimer’s disease patients. Am J Pathol 2008 Aug; 173(2): 470–82

    PubMed  CAS  Google Scholar 

  61. Wang X, Su B, Smith MA, et al. Impaired balance of mitochondrial fission and fusion in susceptible neurons of Alzheimer disease [abstract]. Alzheimers Dement 2008; 4Suppl. 2: T645

    Google Scholar 

  62. Selkoe DJ. Alzheimer’s disease is a synaptic failure. Science 2002 Oct 25; 298(5594): 789–91

    PubMed  CAS  Google Scholar 

  63. Sheehan JP, Swerdlow RH, Miller SW, et al. Calcium homeostasis and reactive oxygen species production in cells transformed by mitochondria from individuals with sporadic Alzheimer’s disease. J Neurosci 1997 Jun 15; 17(12): 4612–22

    PubMed  CAS  Google Scholar 

  64. Stowers RS, Megeath LJ, Gorska-Andrzejak J, et al. Axonal transport of mitochondria to synapses depends on milton, a novel Drosophila protein. Neuron 2002 Dec 19; 36(6): 1063–77

    PubMed  CAS  Google Scholar 

  65. Melov S. Modeling mitochondrial function in aging neurons. Trends Neurosci 2004 Oct; 27(10): 601–6

    PubMed  CAS  Google Scholar 

  66. Guo X, Macleod GT, Wellington A, et al. The GTPase dMiro is required for axonal transport of mitochondria to Drosophila synapses. Neuron 2005 Aug 4; 47(3): 379–93

    PubMed  CAS  Google Scholar 

  67. Verstreken P, Ly CV, Venken KJ, et al. Synaptic mitochondria are critical for mobilization of reserve pool vesicles at Drosophila neuromuscular junctions. Neuron 2005 Aug 4; 47(3): 365–78

    PubMed  CAS  Google Scholar 

  68. Li Z, Okamoto K, Hayashi Y, et al. The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell 2004 Dec 17; 119(6): 873–87

    PubMed  CAS  Google Scholar 

  69. Perry G, Smith MA. Is oxidative damage central to the pathogenesis of Alzheimer disease? Acta Neurol Belg 1998 Jun; 98(2): 175–9

    PubMed  CAS  Google Scholar 

  70. Nunomura A, Perry G, Pappolla MA, et al. Neuronal oxidative stress precedes amyloid-beta deposition in Down syndrome. J Neuropathol Exp Neurol 2000 Nov; 59(11): 1011–7

    PubMed  CAS  Google Scholar 

  71. Nunomura A, Perry G, Aliev G, et al. Oxidative damage is the earliest event in Alzheimer disease. J Neuropathol Exp Neurol 2001 Aug; 60(8): 759–67

    PubMed  CAS  Google Scholar 

  72. Pratico D, Uryu K, Leight S, et al. Increased lipid peroxidation precedes amyloid plaque formation in an animal model of Alzheimer amyloidosis. J Neurosci 2001 Jun 15; 21(12): 4183–7

    PubMed  CAS  Google Scholar 

  73. Sano M, Ernesto C, Thomas RG, et al. A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer’s disease: the Alzheimer’s Disease Cooperative Study. N Engl J Med 1997 Apr 24; 336(17): 1216–22

    PubMed  CAS  Google Scholar 

  74. Stewart WF, Kawas C, Corrada M, et al. Risk of Alzheimer’s disease and duration of NSAID use. Neurology 1997 Mar; 48(3): 626–32

    PubMed  CAS  Google Scholar 

  75. Odetti P, Angelini G, Dapino D, et al. Early glycoxidation damage in brains from Down’s syndrome. Biochem Biophys Res Commun 1998 Feb 24; 243(3): 849–51

    PubMed  CAS  Google Scholar 

  76. Smith MA, Hirai K, Hsiao K, et al. Amyloid-beta deposition in Alzheimer transgenic mice is associated with oxidative stress. J Neurochem 1998 May; 70(5): 2212–5

    PubMed  CAS  Google Scholar 

  77. Kontush A, Berndt C, Weber W, et al. Amyloid-beta is an antioxidant for lipoproteins in cerebrospinal fluid and plasma. Free Radic Biol Med 2001 Jan 1; 30(1): 119–28

    PubMed  CAS  Google Scholar 

  78. Atwood CS, Moir RD, Huang X, et al. Dramatic aggregation of Alzheimer abeta by Cu(II) is induced by conditions representing physiological acidosis. J Biol Chem 1998 May 22; 273(21): 12817–26

    PubMed  CAS  Google Scholar 

  79. Cuajungco MP, Goldstein LE, Nunomura A, et al. Evidence that the beta-amyloid plaques of Alzheimer’s disease represent the redox-silencing and entombment of abeta by zinc. J Biol Chem 2000 Jun 30; 275(26): 19439–42

    PubMed  CAS  Google Scholar 

  80. Atwood CS, Smith MA, Martins RN, et al. Neuroin-flammatory environments promote amyloid-β deposition and posttranslational modification. In: Wood PL, editor. Neuroinflammation: mechanisms and management. 2nd ed. Totowa NJ): Humana Press Inc., 2003: 249–66

    Google Scholar 

  81. Petersen RB, Nunomura A, Lee HG, et al. Signal transduction cascades associated with oxidative stress in Alzheimer’s disease. J Alzheimers Dis 2007 May; 11(2): 143–52

    PubMed  CAS  Google Scholar 

  82. Castegna A, Aksenov M, Thongboonkerd V, et al. Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part II: dihydropyrimidinaserelated protein 2, alpha-enolase and heat shock cognate 71. J Neurochem 2002 Sep; 82(6): 1524–32

    PubMed  CAS  Google Scholar 

  83. Paola D, Domenicotti C, Nitti M, et al. Oxidative stress induces increase in intracellular amyloid beta-protein production and selective activation of betaI and betaII PKCs in NT2 cells. Biochem Biophys Res Commun 2000 Feb 16; 268(2): 642–6

    PubMed  CAS  Google Scholar 

  84. Li HL, Wang HH, Liu SJ, et al. Phosphorylation of tau antagonizes apoptosis by stabilizing beta-catenin, a mechanism involved in Alzheimer’s neurodegeneration. Proc Natl Acad Sci U S A 2007 Feb 27; 104(9): 3591–6

    PubMed  CAS  Google Scholar 

  85. Su B, Wang X, Nunomura A, et al. Oxidative stress signaling in Alzheimer’s disease. Curr Alzheimer Res 2008 Dec; 5(6): 525–32

    PubMed  CAS  Google Scholar 

  86. Masters CL, Simms G, Weinman NA, et al. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci U S A 1985 Jun; 82(12): 4245–9

    PubMed  CAS  Google Scholar 

  87. Wang X, Su B, Siedlak SL, et al. Amyloid-beta over-production causes abnormal mitochondrial dynamics via differential modulation of mitochondrial fission/fusion proteins. Proc Natl Acad Sci U S A 2008 Dec 9; 105(49): 19318–23

    PubMed  CAS  Google Scholar 

  88. De Vos KJ, Allan VJ, Grierson AJ, et al. Mitochondrial function and actin regulate dynamin-related protein 1-dependent mitochondrial fission. Curr Biol 2005 Apr 12; 15(7): 678–83

    PubMed  Google Scholar 

  89. Sandebring A, Thomas KJ, Beilina A, et al. Mitochondrial alterations in PINK1 deficient cells are influenced by calcineurin-dependent dephosphorylation of dynamin-related protein 1. PLoS ONE 2009;4(5): e5701

    PubMed  Google Scholar 

  90. Ichishita R, Tanaka K, Sugiura Y, et al. An RNAi screen for mitochondrial proteins required to maintain the morphology of the organelle in Caenorhabditis elegans. J Biochem 2008 Apr; 143(4): 449–54

    PubMed  CAS  Google Scholar 

  91. Jendrach M, Mai S, Pohl S, et al. Short- and long-term alterations of mitochondrial morphology, dynamics and mtDNA after transient oxidative stress. Mitochondrion 2008 Sep; 8(4): 293–304

    PubMed  CAS  Google Scholar 

  92. Frieden M, James D, Castelbou C, et al. Ca(2+) homeostasis during mitochondrial fragmentation and peri-nuclear clustering induced by hFis1. J Biol Chem 2004 May 21; 279(21): 22704–14

    PubMed  CAS  Google Scholar 

  93. Szabadkai G, Simoni AM, Chami M, et al. Drp-1-dependent division of the mitochondrial network blocks intraorganellar Ca2+ waves and protects against Ca2+-mediated apoptosis. Mol Cell 2004 Oct 8; 16(1): 59–68

    PubMed  CAS  Google Scholar 

  94. Lee S, Jeong SY, Lim WC, et al. Mitochondrial fission and fusion mediators, hFis1 and OPA1, modulate cellular senescence. J Biol Chem 2007 Aug 3; 282(31): 22977–83

    PubMed  CAS  Google Scholar 

  95. Castellani RJ, Moreira PI, Liu G, et al. Iron: the redox-active center of oxidative stress in Alzheimer disease. Neurochem Res 2007 Oct; 32(10): 1640–5

    PubMed  CAS  Google Scholar 

  96. Arosio P, Ingrassia R, Cavadini P. Ferritins: a family of molecules for iron storage, antioxidation and more. Biochim Biophys Acta 2009 Jul; 1790(7): 589–99

    PubMed  CAS  Google Scholar 

  97. Reddy PH. Mitochondrial oxidative damage in aging and Alzheimer’s disease: implications for mitochondrially targeted antioxidant therapeutics. J Biomed Biotechnol 2006; 2006(3): 31372

    PubMed  Google Scholar 

  98. Aliev G, Liu J, Shenk JC, et al. Neuronal mitochondrial amelioration by feeding acetyl-L-carnitine and lipoic acid to aged rats. J Cell Mol Med 2009; 13: 320–33

    PubMed  CAS  Google Scholar 

  99. Shenk JC, Liu J, Fischbach K, et al. The effect of acetyl-L-carnitine and R-alpha-lipoic acid treatment in ApoE4 mouse as a model of human Alzheimer’s disease. J Neurol Sci 2009 Aug 15; 283(1-2): 199–206

    PubMed  CAS  Google Scholar 

  100. Long J, Gao F, Tong L, et al. Mitochondrial decay in the brains of old rats: ameliorating effect of alpha-lipoic acid and acetyl-L-carnitine. Neurochem Res 2009 Apr; 34(4): 755–63

    PubMed  CAS  Google Scholar 

  101. Liu J, Head E, Gharib AM, et al. Memory loss in old rats is associated with brain mitochondrial decay and RNA/DNA oxidation: partial reversal by feeding acetyl-L-carnitine and/or R-alpha-lipoic acid. Proc Natl Acad Sci U S A 2002 Feb 19; 99(4): 2356–61

    PubMed  CAS  Google Scholar 

  102. Liu J, Killilea DW, Ames BN. Age-associated mitochondrial oxidative decay: improvement of carnitine acetyltransferase substrate-binding affinity and activity in brain by feeding old rats acetyl-L-carnitine and/or R-alpha-lipoic acid. Proc Natl Acad Sci U S A 2002 Feb 19; 99(4): 1876–81

    PubMed  CAS  Google Scholar 

  103. Liu J, Atamna H, Kuratsune H, et al. Delaying brain mitochondrial decay and aging with mitochondrial antioxidants and metabolites. Ann N Y Acad Sci 2002 Apr; 959: 133–66

    PubMed  CAS  Google Scholar 

  104. Liu J, Head E, Kuratsune H, et al. Comparison of the effects of L-carnitine and acetyl-L-carnitine on carnitine levels, ambulatory activity, and oxidative stress bio-markers in the brain of old rats. Ann N Y Acad Sci 2004 Nov; 1033: 117–31

    PubMed  CAS  Google Scholar 

  105. Ames BN, Liu J. Delaying the mitochondrial decay of aging with acetylcarnitine. Ann N Y Acad Sci 2004 Nov; 1033: 108–16

    PubMed  CAS  Google Scholar 

  106. Milgram NW, Araujo JA, Hagen TM, et al. Acetyl-L-carnitine and alpha-lipoic acid supplementation of aged beagle dogs improves learning in two landmark discrimination tests. FASEB J 2007 Nov; 21(13): 3756–62

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Work in the authors’ laboratories is supported by the National Institutes of Health (AG031852) and the Alzheimer’s Association (IIRG-07-60196). Mark Smith and Xiongwei Zhu have acted as consultants to and received honoraria from Pfizer and Medivation. The other authors have no conflicts of interest that are directly relevant to the content of this article.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mark A. Smith or Xiongwei Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonda, D.J., Wang, X., Perry, G. et al. Mitochondrial Dynamics in Alzheimer’s Disease. Drugs Aging 27, 181–192 (2010). https://doi.org/10.2165/11532140-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11532140-000000000-00000

Keywords

Navigation