Skip to main content
Log in

Do Sleep Disorders and Associated Treatments Impact Glucose Metabolism?

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Over the past decade substantial evidence has accumulated implicating disorders of sleep in the pathogenesis of various metabolic abnormalities. This review, which is based on workshop discussions that took place at the 6th annual meeting of the International Sleep Disorders Forum: The Art of Good Sleep 2008 and a systematic literature search, provides a critical analysis of the available evidence implicating sleep disorders such as obstructive sleep apnoea (OSA), insomnia, short or long-term sleep duration and restless legs syndrome as potential risk factors for insulin resistance, glucose intolerance, type 2 diabetes mellitus and the metabolic syndrome. The review also highlights the evidence on whether treatment of specific sleep disorders can decrease metabolic risk. In total, 83 published reports were selected for inclusion. Although several studies show clear associations between sleep disorders and altered glucose metabolism, causal effects and the underlying pathophysiological mechanisms involved have not been fully elucidated. OSA appears to have the strongest association with insulin resistance, glucose intolerance, type 2 diabetes and the metabolic syndrome. There are, however, limited data supporting the hypothesis that effective treatment of sleep disorders, including OSA, has a favourable effect on glucose metabolism. Large randomized trials are thus required to address whether improvement of sleep quality and quantity can curtail excess metabolic risk. Research is also required to elucidate the mechanisms involved and to determine whether the effects of treatment for sleep disorders on glucose metabolism are dependent on the specific patient factors, the type of disorder and the duration of metabolic dysfunction. In conclusion, there is limited evidence on whether sleep disorders alter glucose metabolism and whether treatment can reduce the excess metabolic risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II
Table III
Table IV
Table V
Table VI

Similar content being viewed by others

References

  1. Wild S, Roglic G, Green A, et al. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 2004; 27: 1047–53

    Article  PubMed  Google Scholar 

  2. Yach D, Stuckler D, Brownell KD. Epidemiologic and economic consequences of the global epidemics of obesity and diabetes. Nat Med 2006; 12: 62–6

    Article  PubMed  CAS  Google Scholar 

  3. van Dam RM. The epidemiology of lifestyle and risk for type 2 diabetes. Eur J Epidemiol 2003; 18: 1115–25

    PubMed  Google Scholar 

  4. Tasali E, Leproult R, Spiegel K. Reduced sleep duration or quality: relationships with insulin resistance and type 2 diabetes. Prog Cardiovasc Dis 2009; 51: 381–91

    Article  PubMed  CAS  Google Scholar 

  5. Punjabi NM, Ahmed MM, Polotsky VY, et al. Sleep-disordered breathing, glucose intolerance, and insulin resistance. Respir Physiol Neurobiol 2003; 136: 167–78

    Article  PubMed  CAS  Google Scholar 

  6. Punjabi NM, Polotsky VY. Disorders of glucose metabolism in sleep apnea. J Appl Physiol 2005; 99: 1998–2007

    Article  PubMed  CAS  Google Scholar 

  7. Shaw JE, Punjabi NM, Wilding JP, et al. Sleep-disordered breathing and type 2 diabetes: a report from the International Diabetes Federation Taskforce on Epidemiology and Prevention. Diabetes Res Clin Pract 2008; 81: 2–12

    Article  PubMed  Google Scholar 

  8. Spiegel K, Knutson K, Leproult R, et al. Sleep loss: a novel risk factor for insulin resistance and Type 2 diabetes. J Appl Physiol 2005; 99: 2008–19

    Article  PubMed  CAS  Google Scholar 

  9. Stamatakis KA, Kaplan GA, Roberts RE. Short sleep duration across income, education, and race/ethnic groups: population prevalence and growing disparities during 34 years of follow-up. Ann Epidemiol 2007; 17: 948–55

    Article  PubMed  Google Scholar 

  10. Stamatakis KA, Punjabi NM. Long sleep duration: a risk to health or a marker of risk? Sleep Med Rev 2007; 11: 337–9

    Article  PubMed  Google Scholar 

  11. Tiihonen M, Partinen M, Narvanen S. The severity of obstructive sleep apnoea is associated with insulin resistance. J Sleep Res 1993; 2: 56–61

    Article  PubMed  Google Scholar 

  12. Strohl KP, Novak RD, Singer W, et al. Insulin levels, blood pressure and sleep apnea. Sleep 1994; 17: 614–8

    PubMed  CAS  Google Scholar 

  13. Davies RJ, Turner R, Crosby J, et al. Plasma insulin and lipid levels in untreated obstructive sleep apnoea and snoring; their comparison with matched controls and response to treatment. J Sleep Res 1994; 3: 180–5

    Article  PubMed  CAS  Google Scholar 

  14. Grunstein RR, Stenlof K, Hedner J, et al. Impact of obstructive sleep apnea and sleepiness on metabolic and cardiovascular risk factors in the Swedish Obese Subjects (SOS) Study. Int J Obes Rel Metab Disord 1995; 19: 410–8

    CAS  Google Scholar 

  15. Stoohs RA, Facchini F, Guilleminault C. Insulin resistance and sleep-disordered breathing in healthy humans. Am J Resp Crit Care Med 1996; 154: 170–4

    PubMed  CAS  Google Scholar 

  16. Saarelainen S, Lahtela J, Kallonen E. Effect of nasal CPAP treatment on insulin sensitivity and plasma leptin. J Sleep Res 1997; 6: 146–7

    Article  PubMed  CAS  Google Scholar 

  17. Ip MSM, Lam KSL, Ho CM, et al. Serum leptin and vascular risk factors in obstructive sleep apnea. Chest 2000; 118: 580–6

    Article  PubMed  CAS  Google Scholar 

  18. Vgontzas AN, Papanicolaou DA, Bixler EO, et al. Sleep apnea and daytime sleepiness and fatigue: relation to visceral obesity, insulin resistance, and hypercytokinemia [see comment]. J Clin Endocrinol Metab 2000; 85: 1151–8

    Article  PubMed  CAS  Google Scholar 

  19. Elmasry A, Lindberg E, Berne C, et al. Sleep-disordered breathing and glucose metabolism in hypertensive men: a population-based study. J Intern Med 2001; 249: 153–61

    Article  PubMed  CAS  Google Scholar 

  20. Ip MS, Lam B, Ng MM, et al. Obstructive sleep apnea is independently associated with insulin resistance. Am J Resp Crit Care Med 2002; 165: 670–6

    PubMed  Google Scholar 

  21. Manzella D, Parillo M, Razzino T, et al. Soluble leptin receptor and insulin resistance as determinant of sleep apnea. Int J Obes Rel Metab Disord 2002; 26: 370–5

    Article  CAS  Google Scholar 

  22. Punjabi NM, Sorkin JD, Katzel LI, et al. Sleep-disordered breathing and insulin resistance in middle-aged and overweight men. Am J Resp Crit Care Med 2002; 165: 677–82

    PubMed  Google Scholar 

  23. Meslier N, Gagnadoux F, Giraud P, et al. Impaired glucose-insulin metabolism in males with obstructive sleep apnoea syndrome. Eur Resp J 2003; 22: 156–60

    Article  CAS  Google Scholar 

  24. Tassone F, Lanfranco F, Gianotti L, et al. Obstructive sleep apnoea syndrome impairs insulin sensitivity independently of anthropometric variables. Clin Endocrinol 2003; 59: 374–9

    Article  Google Scholar 

  25. Barcelo A, Barbe F, Llompart E, et al. Effects of obesity on C-reactive protein level and metabolic disturbances in male patients with obstructive sleep apnea. Am J Med 2004; 117: 118–21

    Article  PubMed  CAS  Google Scholar 

  26. Punjabi NM, Shahar E, Redline S, et al. Sleep-disordered breathing, glucose intolerance, and insulin resistance: The Sleep Heart Health Study. Am J Epidemiol 2004; 160: 521–30

    Article  PubMed  Google Scholar 

  27. Makino S, Handa H, Suzukawa K, et al. Obstructive sleep apnoea syndrome, plasma adiponectin levels, and insulin resistance. Clin Endocrinol 2006; 64: 12–9

    Article  CAS  Google Scholar 

  28. McArdle N, Hillman D, Beilin L, et al. Metabolic risk factors for vascular disease in obstructive sleep apnea: a matched controlled study. Am J Resp Crit Care Med 2007; 175: 190–5

    Article  PubMed  CAS  Google Scholar 

  29. Sharma SK, Kumpawat S, Goel A, et al. Obesity, and not obstructive sleep apnea, is responsible for metabolic abnormalities in a cohort with sleep-disordered breathing [see comment]. Sleep Med 2007; 8: 12–7

    Article  PubMed  CAS  Google Scholar 

  30. Kapsimalis F, Varouchakis G, Manousaki A, et al. Association of sleep apnea severity and obesity with insulin resistance, C-reactive protein, and leptin levels in male patients with obstructive sleep apnea. Lung 2008; 186: 209–17

    Article  PubMed  CAS  Google Scholar 

  31. Theorell-Haglow J, Berne C, Janson C, et al. Obstructive sleep apnoea is associated with decreased insulin sensitivity in females. Eur Resp J 2008; 31: 1054–60

    Article  CAS  Google Scholar 

  32. Tkacova R, Dorkova Z, Molcanyiova A, et al. Cardiovascular risk and insulin resistance in patients with obstructive sleep apnea. Med Sci Monitor 2008; 14: CR438–CR44

    CAS  Google Scholar 

  33. Punjabi NM, Beamer BA. Alterations in glucose disposal in sleep-disordered breathing. Am J Respir Crit Care Med 2009; 179: 235–40

    Article  PubMed  CAS  Google Scholar 

  34. Stoohs RA, Facchini FS, Philip P, et al. Selected cardiovascular risk factors in patients with obstructive sleep apnea: effect of nasal continuous positive airway pressure (n-CPAP). Sleep 1993; 16(8 Suppl.): S141–2

    PubMed  CAS  Google Scholar 

  35. Saini J, Krieger J, Brandenberger G, et al. Continuous positive airway pressure treatment. Effects on growth hormone, insulin and glucose profiles in obstructive sleep apnea patients. Horm Metab Res 1993; 25: 375–81

    CAS  Google Scholar 

  36. Brooks B, Cistulli PA, Borkman M, et al. Obstructive sleep apnea in obese noninsulin-dependent diabetic patients: effect of continuous positive airway pressure treatment on insulin responsiveness. J Clin Endocrinol Metab 1994; 79: 1681–5

    Article  PubMed  CAS  Google Scholar 

  37. Cooper BG, White JE, Ashworth LA, et al. Hormonal and metabolic profiles in subjects with obstructive sleep apnea syndrome and the acute effects of nasal continuous positive airway pressure (CPAP) treatment. Sleep 1995; 18: 172–9

    PubMed  CAS  Google Scholar 

  38. Chin K, Shimizu K, Nakamura T, et al. Changes in intra-abdominal visceral fat and serum leptin levels in patients with obstructive sleep apnea syndrome following nasal continuous positive airway pressure therapy. Circulation 1999; 100: 706–12

    Article  PubMed  CAS  Google Scholar 

  39. Smurra M, Philip P, Taillard J, et al. CPAP treatment does not affect glucose-insulin metabolism in sleep apneic patients. Sleep Med 2001; 2: 207–13

    Article  PubMed  Google Scholar 

  40. Harsch IA, Schahin SP, Radespiel-Troger M, et al. Continuous positive airway pressure treatment rapidly improves insulin sensitivity in patients with obstructive sleep apnea syndrome. Am J Resp Crit Care Med 2004; 169: 156–62

    Article  PubMed  Google Scholar 

  41. Harsch IA, Schahin SP, Bruckner K, et al. The effect of continuous positive airway pressure treatment on insulin sensitivity in patients with obstructive sleep apnoea syndrome and type 2 diabetes. Respiration 2004; 71: 252–9

    Article  PubMed  Google Scholar 

  42. Shimizu Y, Dobashi K, Horie T, et al. Rapid effect of nCPAP therapy on circulating plasma leptin in OSAS patients. Kitakanto Med J 2005; 55: 29–35

    Article  CAS  Google Scholar 

  43. Lindberg E, Berne C, Elmasry A, et al. CPAP treatment of a population-based sample-what are the benefits and the treatment compliance?. Sleep Med 2006; 7: 553–60

    Article  PubMed  Google Scholar 

  44. Trenell MI, Ward JA, Yee BJ, et al. Influence of constant positive airway pressure therapy on lipid storage, muscle metabolism and insulin action in obese patients with severe obstructive sleep apnoea syndrome. Diabetes Obes Metab 2007; 9: 679–87

    Article  PubMed  CAS  Google Scholar 

  45. Patruno V, Aiolfi S, Costantino G, et al. Fixed and auto-adjusting continuous positive airway pressure treatments are not similar in reducing cardiovascular risk factors in patients with obstructive sleep apnea. Chest 2007; 131: 1393–9

    Article  PubMed  Google Scholar 

  46. West SD, Nicoll DJ, Wallace TM, et al. Effect of CPAP on insulin resistance and HbA1c in men with obstructive sleep apnoea and type 2 diabetes. Thorax 2007; 62: 969–74

    Article  PubMed  Google Scholar 

  47. Schahin SP, Nechanitzky T, Dittel C, et al. Long-term improvement of insulin sensitivity during CPAP therapy in the obstructive sleep apnoea syndrome. Med Sci Monitor 2008; 14: CR117–21

    CAS  Google Scholar 

  48. Vgontzas AN, Zoumakis E, Bixler EO, et al. Selective effects of CPAP on sleep apnoea-associated manifestations. Eur J Clin Invest 2008; 38: 585–95

    Article  PubMed  CAS  Google Scholar 

  49. Seicean S, Kirchner HL, Gottlieb DJ, et al. Sleep-disordered breathing and impaired glucose metabolism in normal-weight and overweight/obese individuals: the Sleep Heart Health Study. Diabetes Care 2008; 31: 1001–6

    Article  PubMed  Google Scholar 

  50. Tuomilehto H, Peltonen M, Partinen M, et al. Sleep-disordered breathing is related to an increased risk for type 2 diabetes in middle-aged men, but not in women — the FIN-D2D survey. Diabetes Obes Metab 2008; 10: 468–75

    Article  PubMed  CAS  Google Scholar 

  51. Al-Delaimy WK, Manson JE, Willett WC, et al. Snoring as a risk factor for type II diabetes mellitus: a prospective study. Am J Epidemiol 2002; 155: 387–93

    Article  PubMed  Google Scholar 

  52. Reichmuth KJ, Austin D, Skatrud JB, et al. Association of sleep apnea and type II diabetes: a population-based study. Am J Resp Crit Care Med 2005; 172: 1590–5

    Article  PubMed  Google Scholar 

  53. Lindberg E, Berne C, Franklin KA, et al. Snoring and daytime sleepiness as risk factors for hypertension and diabetes in women — a population-based study. Respir Med 2007; 101:1283–90

    Article  PubMed  Google Scholar 

  54. Leineweber C, Kecklund G, Akerstedt T, et al. Snoring and the metabolic syndrome in women. Sleep Med 2003; 4: 531–6

    Article  PubMed  Google Scholar 

  55. Coughlin SR, Mawdsley L, Mugarza JA, et al. Obstructive sleep apnoea is independently associated with an increased prevalence of metabolic syndrome. Eur Heart J 2004; 25: 735–41

    Article  PubMed  Google Scholar 

  56. Dursunoglu N, Dursunoglu D, Ozkurt S, et al. Gender differences in global cardiovascular risk factors of obstructive sleep apnea patients. Tuberkuloz ve Toraks 2006; 54: 305–14

    PubMed  Google Scholar 

  57. Sasanabe R, Banno K, Otake K, et al. Metabolic syndrome in Japanese patients with obstructive sleep apnea syndrome. Hypertens Res Clin Exp 2006; 29: 315–22

    Article  Google Scholar 

  58. Gruber A, Horwood F, Sithole J, et al. Obstructive sleep apnoea is independently associated with the metabolic syndrome but not insulin resistance state. Cardiovasc Diabetol 2006; 5: 22

    Article  PubMed  CAS  Google Scholar 

  59. Lam JC, Lam B, Lam CL, et al. Obstructive sleep apnea and the metabolic syndrome in community-based Chinese adults in Hong Kong. Respir Med 2006; 100: 980–7

    Article  PubMed  Google Scholar 

  60. Onat A, Hergenc G, Uyarel H, et al. Obstructive sleep apnea syndrome is associated with metabolic syndrome rather than insulin resistance. Sleep Breath 2007; 11: 23–30

    Article  PubMed  Google Scholar 

  61. Peled N, Kassirer M, Shitrit D, et al. The association of OSA with insulin resistance, inflammation and metabolic syndrome. Respir Med 2007; 101: 1696–701

    Article  PubMed  Google Scholar 

  62. Kono M, Tatsumi K, Saibara T, et al. Obstructive sleep apnea syndrome is associated with some components of metabolic syndrome. Chest 2007; 131: 1387–92

    Article  PubMed  CAS  Google Scholar 

  63. Parish JM, Adam T, Facchiano L. Relationship of metabolic syndrome and obstructive sleep apnea. J Clin Sleep Med 2007; 3: 467–72

    PubMed  Google Scholar 

  64. Katsumata K, Okada T, Miyao M, et al. High incidence of sleep apnea syndrome in a male diabetic population. Diabetes Res Clin Pract 1991; 13: 45–51

    Article  PubMed  CAS  Google Scholar 

  65. Renko AK, Hiltunen L, Laakso M, et al. The relationship of glucose tolerance to sleep disorders and daytime sleepiness. Diabetes Res Clin Pract 2005; 67: 84–91

    Article  PubMed  CAS  Google Scholar 

  66. West SD, Nicoll DJ, Stradling JR. Prevalence of obstructive sleep apnoea in men with type 2 diabetes. Thorax 2006; 61: 945–50

    Article  PubMed  CAS  Google Scholar 

  67. Juuti AK, Hiltunen L, Rajala U, et al. Association of abnormal glucose tolerance with self-reported sleep apnea among a 57-year-old urban population in Northern Finland. Diabetes Res Clin Pract 2008; 80: 477–82

    Article  PubMed  Google Scholar 

  68. Einhorn D, Stewart DA, Erman MK, et al. Prevalence of sleep apnea in a population of adults with type 2 diabetes mellitus. Endocr Pract 2007; 13: 355–62

    PubMed  Google Scholar 

  69. Venkateswaran S, Shankar P. The prevalence of syndrome Z (the interaction of obstructive sleep apnoea with the metabolic syndrome) in a teaching hospital in Singapore. Postgrad Med J 2007; 83: 329–31

    Article  PubMed  Google Scholar 

  70. Takama N, Kurabayashi M. Relationship between metabolic syndrome and sleep-disordered breathing in patients with cardiovascular disease-metabolic syndrome as a strong factor of nocturnal desaturation. Intern Med 2008; 47: 709–15

    Article  PubMed  Google Scholar 

  71. Hassaballa HA, Tulaimat A, Herdegen JJ, et al. The effect of continuous positive airway pressure on glucose control in diabetic patients with severe obstructive sleep apnea. Sleep and Breathing 2005; 9: 176–80

    Article  PubMed  Google Scholar 

  72. Babu AR, Herdegen J, Fogelfeld L, et al. Type 2 diabetes, glycemic control, and continuous positive airway pressure in obstructive sleep apnea. Arch Intern Med 2005; 165: 447–52

    Article  PubMed  Google Scholar 

  73. Czupryniak L, Loba J, Pawlowski M, et al. Treatment with continuous positive airway pressure may affect blood glucose levels in nondiabetic patients with obstructive sleep apnea syndrome. Sleep 2005; 28: 601–3

    PubMed  Google Scholar 

  74. Coughlin SR, Mawdsley L, Mugarza JA, et al. Cardiovascular and metabolic effects of CPAP in obese males with OSA. Eur Respiratory J 2007; 29: 720–7

    Article  CAS  Google Scholar 

  75. Pallayova M, Donic V, Tomori Z. Beneficial effects of severe sleep apnea therapy on nocturnal glucose control in persons with type 2 diabetes mellitus. Diabetes Res Clin Pract 2008; 81: e8–11

    Article  PubMed  CAS  Google Scholar 

  76. Skomro RP, Ludwig S, Salamon E, et al. Sleep complaints and restless legs syndrome in adult type 2 diabetics. Sleep Med 2001; 2: 417–22

    Article  PubMed  CAS  Google Scholar 

  77. Nilsson PM, Roost M, Engstrom G, et al. Incidence of diabetes in middle-aged men is related to sleep disturbances. Diabetes Care 2004; 27: 2464–9

    Article  PubMed  Google Scholar 

  78. Meisinger C, Heier M, Loewel H. Sleep disturbance as a predictor of type 2 diabetes mellitus in men and women from the general population. Diabetologia 2005; 48: 235–41

    Article  PubMed  CAS  Google Scholar 

  79. Jennings JR, Muldoon MF, Hall M, et al. Self-reported sleep quality is associated with the metabolic syndrome. Sleep 2007; 30: 219–23

    PubMed  Google Scholar 

  80. Suarez EC. Self-reported symptoms of sleep disturbance and inflammation, coagulation, insulin resistance and psychosocial distress: evidence for gender disparity. Brain Behav Immun 2008; 22: 960–8

    Article  PubMed  CAS  Google Scholar 

  81. VanHelder T, Symons JD, Radomski MW. Effects of sleep deprivation and exercise on glucose tolerance. Aviation Space Envir Med 1993; 64: 487–92

    CAS  Google Scholar 

  82. Gonzalez-Ortiz M, Martinez-Abundis E, Balcazar-Munoz BR, et al. Effect of sleep deprivation on insulin sensitivity and cortisol concentration in healthy subjects. Diabetes Nutrit Metab Clin Exp 2000; 13: 80–3

    CAS  Google Scholar 

  83. Spiegel K, Leproult R, Van Cauter E. Impact of sleep debt on metabolic and endocrine function. Lancet 1999; 354: 1435–9

    Article  PubMed  CAS  Google Scholar 

  84. Ayas NT, White DP, Al-Delaimy WK, et al. A prospective study of self-reported sleep duration and incident diabetes in women. Diabetes Care 2003; 26: 380–4

    Article  PubMed  Google Scholar 

  85. Bjorkelund C, Bondyr-Carlsson D, Lapidus L, et al. Sleep disturbances in midlife unrelated to 32-year diabetes incidence: the prospective population study of women in Gothenburg. Diabetes Care 2005; 28: 2739–44

    Article  PubMed  Google Scholar 

  86. Mallon L, Broman JE, Hetta J. High incidence of diabetes in men with sleep complaints or short sleep duration: a 12-year follow-up study of a middle-aged population. Diabetes Care 2005; 28: 2762–7

    Article  PubMed  Google Scholar 

  87. Gottlieb DJ, Punjabi NM, Newman AB, et al. Association of sleep time with diabetes mellitus and impaired glucose tolerance. Arch Intern Med 2005; 165: 863–7

    Article  PubMed  Google Scholar 

  88. Yaggi HK, Araujo AB, McKinlay JB. Sleep duration as a risk factor for the development of type 2 diabetes. Diabetes Care 2006; 29: 657–61

    Article  PubMed  Google Scholar 

  89. Gangwisch JE, Heymsfield SB, Boden-Albala B, et al. Sleep duration as a risk factor for diabetes incidence in a large U.S. sample. Sleep 2007; 30: 1667–73

    Google Scholar 

  90. Chaput JP, Despres JP, Bouchard C, et al. Association of sleep duration with type 2 diabetes and impaired glucose tolerance. Diabetologia 2007; 50: 2298–304

    Article  PubMed  Google Scholar 

  91. Hayashino Y, Fukuhara S, Suzukamo Y, et al. Relation between sleep quality and quantity, quality of life, and risk of developing diabetes in healthy workers in Japan: the High-risk and Population Strategy for Occupational Health Promotion (HIPOP-OHP) Study. BMC Public Health 2007; 7: 129

    Article  PubMed  Google Scholar 

  92. Tuomilehto H, Peltonen M, Partinen M, et al. Sleep duration is associated with an increased risk for the prevalence of type 2 diabetes in middle-aged women-The FIN-D2D survey [see comment]. Sleep Med 2008; 9: 221–7

    Article  PubMed  Google Scholar 

  93. Nakajima H, Kaneita Y, Yokoyama E, et al. Association between sleep duration and hemoglobin Alc level. Sleep Med 2008; 9: 745–52

    Article  PubMed  Google Scholar 

  94. Santos AC, Ebrahim S, Barros H. Alcohol intake, smoking, sleeping hours, physical activity and the metabolic syndrome. Prevent Med 2007; 44: 328–34

    Article  Google Scholar 

  95. Choi KM, Lee JS, Park HS, et al. Relationship between sleep duration and the metabolic syndrome: Korean National Health and Nutrition Survey 2001. Int J Obes 2008; 32: 1091–7

    Article  CAS  Google Scholar 

  96. Hall MH, Muldoon MF, Jennings JR, et al. Self-reported sleep duration is associated with the metabolic syndrome in midlife adults. Sleep 2008; 31: 635–43

    PubMed  Google Scholar 

  97. Cuellar NG, Ratcliffe SJ. A comparison of glycemic control, sleep, fatigue, and depression in type 2 diabetes with and without restless legs syndrome. J Clin Sleep Med 2008; 4: 50–6

    PubMed  Google Scholar 

  98. Lopes LA, Lins Cde M, Adeodato VG, et al. Restless legs syndrome and quality of sleep in type 2 diabetes. Diabetes Care 2005; 28: 2633–6

    Article  PubMed  Google Scholar 

  99. Cuellar NG, Ratcliffe SJ. Restless legs syndrome in type 2 diabetes: implications to diabetes educators. Diabetes Educ 2008; 34: 218–34

    Article  PubMed  Google Scholar 

  100. Merlino G, Fratticci L, Valente M, et al. Association of restless legs syndrome in type 2 diabetes: a case-control study. Sleep 2007; 30: 866–71

    PubMed  Google Scholar 

  101. Honda Y, Doi Y, Ninomiya R, et al. Increased frequency of non-insulin-dependent diabetes mellitus among narco-leptic patients. Sleep 1986; 9: 254–9

    PubMed  CAS  Google Scholar 

  102. Tasali E, Leproult R, Ehrmann DA, et al. Slow-wave sleep and the risk of type 2 diabetes in humans [see comment]. Proc Nat Acad Sci U S A 2008; 105: 1044–9

    Article  CAS  Google Scholar 

  103. Stamatakis K, Punjabi NM. Effects of sleep fragmentation on glucose metabolism in normal subjects. Chest 2010; in press

  104. Louis M, Punjabi NM. Effects of acute intermittent hypoxia on glucose metabolism in awake healthy volunteers. J Appl Physiol 2009; 106: 1538–44

    Article  PubMed  CAS  Google Scholar 

  105. Wajchenberg BL. Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome. Endocr Rev 2000; 21: 697–738

    Article  PubMed  CAS  Google Scholar 

  106. Montague CT, O’Rahilly S. The perils of portliness: causes and consequences of visceral adiposity. Diabetes 2000; 49: 883–8

    Article  PubMed  CAS  Google Scholar 

  107. Lafontan M, Berlan M. Do regional differences in adipocyte biology provide new pathophysiological insights? Trends Pharmacol Sci 2003; 24: 276–83

    Article  PubMed  CAS  Google Scholar 

  108. Pacini G. The hyperbolic equilibrium between insulin sensitivity and secretion. Nutr Metab Cardiovasc Dis 2006; 16 (Suppl. 1): S22–7

    Article  PubMed  CAS  Google Scholar 

  109. Kahn SE. The importance of the beta-cell in the pathogenesis of type 2 diabetes mellitus. Am J Med 2000; 108 (Suppl. 6a): 2–8S

    Article  Google Scholar 

Download references

Acknowledgements

The discussions that took place during a workshop at the 6th annual meeting of The International Sleep Disorders Forum: The Art of Good Sleep, held in 2008, contributed to the preparation of this article. The author would like to thank the following individuals who attended the workshop and contributed to the discussions: W. David Brown (USA), James Walsh (USA), Milton Erman (USA), George Slade (USA), David Neubauer (USA), Raffaele Ferri (Italy), Seung-Chul Hong (Korea) and Markku Partinen (Finland). The author would also like to thank Mary Hines and Matt Weitz from Wolters Kluwer Pharma Solutions for providing medical writing support in the preparation of this article. This assistance was supported by sanofi-aventis. The International Sleep Disorders Forum: The Art of Good Sleep 2008 was funded by sanofi-aventis.

Declaration of conflicts of interest: Dr Punjabi has received honoraria and travel support for continuing medical education lectures or symposia sponsored by Respironics and Resmed Inc. He is also participating in a multi-center clinical trial of sleep apnea treatment sponsored by Resmed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naresh M. Punjabi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Punjabi, N.M. Do Sleep Disorders and Associated Treatments Impact Glucose Metabolism?. Drugs 69 (Suppl 2), 13–27 (2009). https://doi.org/10.2165/11531150-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11531150-000000000-00000

Keywords

Navigation