Skip to main content

Advertisement

Log in

Bispecific Antibodies for Cancer Immunotherapy

Current Perspectives

  • Review Article
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

The concept of using bispecific antibodies to retarget immune effector cells for cancer therapy was conceived more than 20 years ago. However, initial clinical studies were rather disappointing mainly due to low efficacy, severe adverse effects and immunogenicity of the bispecific antibodies. A deeper understanding of effector cell biology and especially developments in the field of antibody engineering has led to the generation of new classes of bispecific antibodies capable of circumventing many of these obstacles. Furthermore, new applications were established for bispecific antibodies, such as pre-targeting strategies in radioimmunotherapy or dual targeting approaches in order to improve binding, selectivity, and efficacy. This review summarizes recent progress in the development of bispecific antibodies and describes some new concepts developed for cancer immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Table I

Similar content being viewed by others

References

  1. Müller D, Kontermann RE. Bispecific antibodies. In: Dübel S, editor. Handbook of therapeutic antibodies. Berlin: Springer, 2007: 345–78

    Chapter  Google Scholar 

  2. Müller D, Kontermann RE. Recombinant bispecific antibodies for cellular cancer immunotherapy. Curr Opin Mol Ther 2007; 9: 319–26

    PubMed  Google Scholar 

  3. Chames P, Baty D. Bispecific antibodies for cancer therapy. Curr Opin Drug Discov Develop 2009; 12: 276–83

    CAS  Google Scholar 

  4. Ruf P, Lindhofer H. Induction of a long-lasting antitumor immunity by a trifunctional bispecific antibody. Blood 2001; 98: 2526–34

    Article  PubMed  CAS  Google Scholar 

  5. Kontermann RE. Alternative antibody formats. Curr Opin Mol Ther. In press

  6. Wu C, Ying H, Grinnell C, et al. Simultaneous targeting of multiple disease mediators by a dual-variable-domain immunoglobulin. Nat Biotechnol 2007; 25: 1290–7

    Article  PubMed  CAS  Google Scholar 

  7. Baeuerle PA, Kufer P, Bargou R. BiTE: teaching antibodies to engage T-cells for cancer therapy. Curr Opin Mol Ther 2009; 11: 22–30

    PubMed  CAS  Google Scholar 

  8. Kellner C, Bruenke J, Stieglmaier J, et al. A novel CD 19-directed recombinant bispecific antibody derivative with enhanced immune effector functions for human leukemic cells. J Immunother 2008; 31: 871–84

    Article  PubMed  CAS  Google Scholar 

  9. Rossi EA, Sharkey RM, McBride W, et al. Development of new mutlivalent-bispecific agents for pretargeting tumor localization and therapy. Clin Cancer Res 2003; 9: 3886S–96S

    PubMed  CAS  Google Scholar 

  10. Kontermann RE. Recombinant bispecific antibodies for cancer therapy. Acta Pharmacol Sin 2005; 26: 1–9

    Article  PubMed  CAS  Google Scholar 

  11. Saerens D, Ghassabeh GH, Muyldermans S. Single-domain antibodies as building blocks for novel therapeutics. Curr Opin Pharmacol 2008; 8: 600–8

    Article  PubMed  CAS  Google Scholar 

  12. Gebauer M, Skerra A. Engineered protein scaffolds as next-generation antibody therapeutics. Curr Opin Chem Biol 2009; 13: 245–55

    Article  PubMed  CAS  Google Scholar 

  13. Friedman M, Lindström S, Ekerljung L, et al. Engineering and characterization of a bispecific HER2xEGFR-binding affibody molecule. Biotechnol Appl Biochem 2009; 54: 121–31

    Article  PubMed  CAS  Google Scholar 

  14. Rossi EA, Goldenberg DM, Cardillo TM, et al. Stably tethered multifunctional structures of defined composition made by the dock and lock method for use in cancer targeting. Proc Natl Acad Sci U S A 2006; 103: 6841–6

    Article  PubMed  CAS  Google Scholar 

  15. Gold DV, Goldenberg DM, Karacay H, et al. A novel bispecific, trivalent antibody construct for targeting pancreatic carcinoma. Cancer Res 2008; 68: 4819–26

    Article  PubMed  CAS  Google Scholar 

  16. Zeidler R, Reisbach G, Wollenberg B, et al. Simultaneous activation of T cells and accessory cells by a new class of intact bispecific antibody results in efficient tumor cell killing. J Immunol 1999; 163: 1246–52

    PubMed  CAS  Google Scholar 

  17. Sebastian M, Kiewe P, Schuette W, et al. Treatment of malignant pleural effusion with the trifunctional antibody catumaxomab (Removab) [anti-EpCAM× Anti-CD3]: results of a phase 1/2 study. J Immunother 2009; 32: 195–202

    Article  PubMed  CAS  Google Scholar 

  18. Ströhlein MA, Siegel R, Jäger M, et al. Induction of anti-tumor immunity by trifunctional antibodies in patients with peritoneal carcinomatosis [letter]. J Exp Clin Cancer Res 2009; 28: 18

    Article  PubMed  Google Scholar 

  19. Kiewe P, Thiel E. Ertumaxomab: a trifunctional antibody for breast cancer treatment. Expert Opin Investig Drugs 2008; 17: 1553–8

    Article  PubMed  CAS  Google Scholar 

  20. Shen J, Zhu Z. Catumaxomab, a rat/murine hybrid trifunctional bispecific monoclonal antibody for the treatment of cancer. Curr Opin Mol Ther 2008; 10: 273–84

    PubMed  CAS  Google Scholar 

  21. Kiewe P, Hasmüller S, Kahlert S, et al. Phase I trial of the trifunctional anti-HER2× anti-CD3 antibody ertumaxomab in metastatic breast cancer. Clin Cancer Res 2006; 12: 3085–91

    Article  PubMed  CAS  Google Scholar 

  22. Gall JM, Davol PA, Grabert RC, et al. T cells armed with anti-CD3 × anti-CD20 bispecific antibody enhance killing of CD20+ malignant B cells and bypass complement-mediated rituximab resistance in vitro. Exp Hematol 2005; 33: 452–9

    Article  PubMed  CAS  Google Scholar 

  23. Dreier T, Baeuerle PA, Fichtner I, et al. T cell costimulus-independent and very efficacious inhibition of tumor growth in mice bearing subcutaneous or leukemic human B cell lymphoma xenografts by a CD19-/CD3-bispecific single-chain antibody construct. J Immunol 2003; 170: 4397–402

    PubMed  CAS  Google Scholar 

  24. Schlereth B, Quadt C, Dreier T, et al. T-cell activation and B-cell depletion in chimpanzees treated with a bispecific anti-CD 19/anti-CD3 single-chain antibody construct. Cancer Immunol Immunother 2006; 55: 503–14

    Article  PubMed  CAS  Google Scholar 

  25. Schlereth B, Kleindienst P, Fichtner I, et al. Potent inhibition of local and disseminated tumor growth in immunocompetent mouse models by a bispecific antibody construct specific for murine CD3. Cancer Immunol Immunother 2006; 55: 785–96

    Article  PubMed  CAS  Google Scholar 

  26. Lutterbuese R, Raum T, Kischel R, et al. Potent control of tumor growth by CEA/CD3-bispecific single-chain antibody constructs that are not competitively inhibited by soluble CEA. J Immunother 2009; 32: 341–52

    Article  PubMed  CAS  Google Scholar 

  27. Bargou R, Leo E, Zugmaier G, et al. Tumor regression in cancer patients by very low doses of a T cell-engaging antibody. Science 2008; 321: 974–7

    Article  PubMed  CAS  Google Scholar 

  28. Haas C, Krinner E, Brischwein K, et al. Mode of cytotoxic action of T cell-engaging BiTE antibody MT110. Immunobiology 2009; 214: 441–53

    Article  PubMed  CAS  Google Scholar 

  29. Amann M, D’Argouges S, Lorenczewski G, et al. Antitumor activity of an EpCAM/CD3-bispecific BiTE antibody during long-term treatment of mice in the absence of T-cell anergy and sustained cytokine release. J Immunother 2009; 32: 452–64

    Article  PubMed  CAS  Google Scholar 

  30. Amann M, Friedrich M, Lutterbuese P, et al. Therapeutic window of an EpCAM/CD3-specific BiTE antibody in mice is determined by a subpopulation of EpCAM-expressing lymphocytes that is absent in humans. Cancer Immunol Immunother 2009; 58: 95–109

    Article  PubMed  CAS  Google Scholar 

  31. Bühler P, Wolf P, Gierschner D, et al. A bispecific diabody directed against prostate-specific membrane antigen and CD3 induces T-cell mediated lysis of prostate cancer cells. Cancer Immunol Immunother 2008; 57: 43–52

    Article  PubMed  Google Scholar 

  32. Bühler P, Molnar E, Dopfer EP, et al. Target-dependent T-cell activation by coligation with a PSMA × CD3 diabody induces lysis of prostate cancer cells. J Immunother 2009; 32: 565–73

    Article  PubMed  Google Scholar 

  33. Grosse-Hovest L, Hartlapp I, Marwan W, et al. A recombinant bispecific single-chain antibody induces targeted, supra-agonistic CD28-stimulation and tumor cell killing. Eur J Immunol 2003; 33(5): 1334–40

    Article  PubMed  CAS  Google Scholar 

  34. Otz T, Grosse-Hovest L, Hofmann M, et al. A bispecific single-chain antibody that mediates target cell-restricted, supra-agonistic CD28 stimulation and killing of lymphoma cells. Leukemia 2009; 23(1): 71–7

    Article  PubMed  CAS  Google Scholar 

  35. Lu D, Zhang H, Ludwig D, et al. Simultaneous blockade of both the epidermal growth factor receptor and the insulin-like growth factor receptor signaling pathways in cancer cells with a fully human recombinant bispecific antibody. J Biol Chem 2004; 279: 2856–65

    Article  PubMed  CAS  Google Scholar 

  36. Lu D, Zhang H, Koo H, et al. A fully human recombinant IgG-like bispecific antibody to both the epidermal growth factor receptor and the insulin-like growth factor receptor for enhanced antitumor activity. J Biol Chem 2005; 280: 19665–72

    Article  PubMed  CAS  Google Scholar 

  37. Jimenez X, Lu D, Brennan L, et al. A recombinant, fully human, bispecific antibody neutralizes the biological activities mediated by both vascular endothelial growth factor receptors 2 and 3. Mol Cancer Ther 2005; 4: 427–34

    PubMed  CAS  Google Scholar 

  38. Robinson MK, Hodge KM, Horak E, et al. Targeting ErbB2 and ErbB3 with a bispecific single-chain Fv enhances targeting selectivity and induces a therapeutic effect in vitro. Br J Cancer 2008; 99: 1415–25

    Article  PubMed  CAS  Google Scholar 

  39. Vallera DA, Chen H, Sicheneder AR, et al. Genetic alteration of a bispecific ligand-directed toxin targeting human CD19 and CD22 receptors resulting in improved efficacy against systemic B cell malignancy. Leuk Res 2009; 33: 1233–42

    Article  PubMed  CAS  Google Scholar 

  40. Bostrom J, Yu SF, Kan D, et al. Variants of the antibody herceptin that interact with HER2 and VEGF at the antigen binding site. Science 2009; 323: 1610–4

    Article  PubMed  CAS  Google Scholar 

  41. Goldenberg DM, Chatal JF, Barbet J, et al. Cancer imaging and therapy with bispecific antibody pretargeting. Update Cancer Ther 2007; 2: 19–31

    Article  PubMed  Google Scholar 

  42. Chatal JF, Campion L, Kraeber-Bodéré F, et al. Survival improvement in patients with medullary thyroid carcinoma who undergo pretargeted anti-carcinoembryonic antigen radioimmunotherapy: a collaborative study with the French Endocrine Tumor Group. J Clin Oncol 2006; 24: 1705–11

    Article  PubMed  CAS  Google Scholar 

  43. Balkwill F. Tumor necrosis factor and cancer. Nat Rev Cancer 2009; 9: 361–71

    Article  PubMed  CAS  Google Scholar 

  44. Grünhagen DJ, de Wilt JH, van Geel AN, et al. Isolated limb perfusion with TNF-alpha and melphalan in locally advaned soft tissue sarcomas of the extremities. Recent Results Cancer Res 2009; 179: 257–70

    Article  PubMed  Google Scholar 

  45. Hallahan DE, Vokes EE, Rubin SJ, et al. Phase I dose-escalation study of tumor necrosis factor-alpha and concomitant radiation therapy. Cancer J Sci Am 1995; 1: 204–9

    PubMed  CAS  Google Scholar 

  46. Azria D, Larbouret C, Grambois V, et al. Potentiation of ionising radiation by targeting tumor necrosis factor alpha using a bispecific antibody in human pancreatic cancer. Br J Cancer 2003; 89: 1987–94

    Article  PubMed  CAS  Google Scholar 

  47. Larbouret C, Robert B, Linard C, et al. Radiocurability by targeting tumor necrosis factor-alpha using a bispecific antibody in carcinoembryonic antigen transgenic mice. Int J Radiation Oncol Biol Phys 2007; 69: 1231–7

    Article  CAS  Google Scholar 

  48. Kontermann RE. Strategies to extend plasma half-lives of recombinant antibodies. Biodrugs 2009; 23: 93–109

    Article  PubMed  CAS  Google Scholar 

  49. Stork R, Zettlitz KA, Müller D, et al. N-glycosylation as novel strategy to improve pharmacokinetic properties of bispecific single-chain diabodies. J Biol Chem 2008; 283: 7804–12

    Article  PubMed  CAS  Google Scholar 

  50. Chapman AP. PEGylated antibodies and antibody fragments for improved therapy: a review. Adv Drug Deliv Rev 2002; 54: 531–45

    Article  PubMed  CAS  Google Scholar 

  51. Stork R, Campigna E, Robert B, et al. Biodistribution of a bispecific single-chain diabody and its half-life extended derivatives. J Biol Chem 2009; 284: 25612–9

    Article  PubMed  CAS  Google Scholar 

  52. Schlapschy M, Theobald I, Mack H, et al. Fusion of a recombinant antibody fragment with a homo-amino-acid polymer: effects on biophysical properties and prolonged plasma half-life. Protein Eng Des Sel 2007; 20: 273–84

    Article  PubMed  CAS  Google Scholar 

  53. Marvin JS, Zhu Z. Recombinant approaches to IgG-like bispecific antibodies. Acta Pharmacol Sci 2005; 26: 649–58

    Article  CAS  Google Scholar 

  54. Müller D, Karle A, Meissburger B, et al. Improved pharmacokinetics of recombinant bispecific antibody molecules by fusion to human serum albumin. J Biol Chem 2007; 282: 12650–60

    Article  PubMed  Google Scholar 

  55. Stork R, Müller D, Kontermann RE. A novel trifunctional antibody fusion protein with improved pharmacokientic properties generated by fusing a bispecific single-chain diabody with an albumin-binding domain form streptococcal protein G. Protein Eng Des Sel 2007; 20: 569–76

    Article  PubMed  CAS  Google Scholar 

  56. Tijnk BM, Laeremans T, Budde M, et al. Improved tumor targeting of anti-epidermal growth factor receptor nanobodies through albumin binding: taking advantage of molecular nanobody technology. Mol Cancer Ther 2008; 7: 2288–97

    Article  Google Scholar 

  57. Holt LJ, Basran A, Jones K, et al. Anti-serum albumin domain antibodies for extending the half-lvies of short lived drugs. Protein Eng Des Sel 2008; 21: 283–8

    Article  PubMed  CAS  Google Scholar 

  58. Kufer P, Lutterbüse R, Baeuerle PA. A revival of bispecific antibodies. Trends Biotechnol 2004; 22: 238–44

    Article  PubMed  CAS  Google Scholar 

  59. Melero I, Hervas-Stubbs S, Glennie M, et al. Imunostimulatory monoclonal antibodies for cancer therapy. Nat Rev Cancer 2007; 7: 95–106

    Article  PubMed  CAS  Google Scholar 

  60. Blanco B, Holliger P, Vile RG, et al. Induction of human T lymphocyte cytotoxicity and inhibition of tumor growth by tumor-specific diabody-based molecules secreted from gene-modified bystander cells. J Immunol 2003; 171: 1070–7

    PubMed  CAS  Google Scholar 

  61. Müller D, Frey K, Kontermann RE. A novel antibody-4-1BBL fusion protein for targeted costimulation in cancer immunotherapy. J Immunother 2008; 31: 714–22

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Deutsche Forschungsgemeinschaft (KO 1461/4, MU 2956/2-1) and the Deutsche Krebshilfe (MU 2956/2-1). The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland E. Kontermann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, D., Kontermann, R.E. Bispecific Antibodies for Cancer Immunotherapy. BioDrugs 24, 89–98 (2010). https://doi.org/10.2165/11530960-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11530960-000000000-00000

Keywords

Navigation