BioDrugs

, Volume 24, Issue 1, pp 23–39 | Cite as

Pharmacokinetics and Pharmacodynamics of Monoclonal Antibodies

Concepts and Lessons for Drug Development
Review Article

Abstract

Monoclonal antibodies (mAbs) have complex pharmacology; pharmacokinetics and pharmacodynamics depend on mAb structure and target antigen. mAbs targeting soluble antigens often exhibit linear phar-macokinetic behavior, whereas mAbs targeting cell surface antigens frequently exhibit nonlinear behavior due to receptor-mediated clearance. Where nonlinear kinetics exist, clearance can change due to receptor loss following repeated dosing and/or disease severity. mAb pharmacodynamics are often indirect, with delayed clinically relevant outcomes. This behavior provides challenges during clinical development; studies must be carefully planned to account for complexities specific to each agent.

Selection of a starting dose for human studies can be difficult. Species differences in pharmacology need to be considered. Various metrics are available for scaling from animals to humans. Optimal dose selection should ensure uniform mAb exposure across all individuals. Traditional approaches such as flat dosing and variable dosing based upon body surface area or weight should be supported by pharmacokinetic and pharmacodynamic behavior, including target antigen and concurrent disease states. The use of loading doses or dose adjustments to improve clinical response is also a consideration.

The evaluation of drug interactions requires innovative designs. Due to the pharmacokinetic properties of mAbs, interacting drugs may need to be administered for protracted periods. Consequently, population pharmacokinetic and pharmacodynamic model-based approaches are often implemented to evaluate mAb drug interactions.

References

  1. 1.
    Abbas AK, Lichtman AH. In: Cellular and molecular immunity. 5th ed. Philadelphia (PA): Elsevier, 2003: 43–53Google Scholar
  2. 2.
    Morell A, Skvaril F, Hitzig WH, et al. Serum concentrations of IgG subclasses. In: Bach FH, Good RA, editors. Clinical immunobiology. Academic Press, 1976: 37-56Google Scholar
  3. 3.
    Galluppi GR, Rogge MC, Roskos LK, et al. Integration of pharmacokinetic and pharmacodynamic studies in the discovery, development, and review of protein therapeutic agents: a conference report. Clin Pharmacol Ther 2001; 69: 387–99PubMedCrossRefGoogle Scholar
  4. 4.
    Cox DS, Kleinman NS, Boyle DA, et al. Pharmacokinetics and pharmacodynamics of argatroban in combination with a platelet glycoprotein IIB/IIIA receptor antagonist in patients undergoing percutaneous coronary intervention. J Clin Pharmacol 2004; 44(9): 981–90PubMedCrossRefGoogle Scholar
  5. 5.
  6. 6.
    Mahmood I, Green MD, Fisher JE. Selection of the first-time dose in humans: comparison of different approaches based on interspecies scaling of clearance. J Clin Pharm 2003; 43(7): 692–7Google Scholar
  7. 7.
    Food and Drug Administration, Centre for Drug Evaluation and Research. Clinical pharmacology and biopharmaceutics review(s): BLA 125118/000 [online]. Available from URL:http://www.accessdata.fda.gov/drugsatfda_docs/nda/2005/125118_S0000_BioPharmR.pdf[Accessed 2009 Sep 4]
  8. 8.
    Weisman MH, Moreland LW, Furst DE, et al. Efficacy, pharmacokinetic, and safety assessment of adalimumab, a fully human anti-tumor necrosis factor-alpha monoclonal antibody, in adults with rheumatoid arthritis receiving concomitant methotrexate: a pilot study. Clin Ther 2003; 25(6): 1700–21PubMedCrossRefGoogle Scholar
  9. 9.
    Food and Drug Administration, Centre for Drug Evaluation and Research and Center for Biologics Evaluation and Research. Clinical pharmacology and biopharmaceutics review(s): 125057/0 [online]. Available from URL:http://www.fda.gov/downloads/Drugs/DevelopmentApprovalProcess/HowDrugsareDevelopedandApproved/ApprovalApplications/TherapeuticBiologicApplications/ucm092770.pdf[Accessed 2009 Sep 4]
  10. 10.
    Food and Drug Administration. Clinical pharmacology review of alefacept [online]. Available from URL:http://www.fda.gov/downloads/Drugs/DevelopmentApprovalProcess/HowDrugsareDevelopedandApproved/ApprovalApplications/TherapeuticBiologicApplications/ucm086010.pdf[Accessed 2009 Sep 4]
  11. 11.
    Mould DR, Baumann A, Kuhlmann J, et al. Population pharmacokinetics-pharmacodynamics of alemtuzumab (Campath®) in patients with chronic lymphocytic leukemia. Br J Clin Pharmacol 2007; 64(3): 278–91PubMedCrossRefGoogle Scholar
  12. 12.
    Food and Drug Administration, Centre for Drug Evaluation and Research. Clinical pharmacology and biopharmaceutics review(s): 103948/0 [online]. Available from URL:http://www.accessdata.fda.gov/drugsatfda_docs/nda/2000/103948_0000_Campath_ClinPharm.pdf[Accessed 2009 Sep 4]
  13. 13.
    Food and Drug Administration. Clinical pharmacology review of BLA 97-1251 [online]. Available from URL:http://www.fda.gov/downloads/Drugs/DevelopmentApprovalProcess/HowDrugsareDevelopedandApproved/ApprovalApplications/TherapeuticBiologicApplications/ucm113364.pdf[Accessed 2009 Sep 4]
  14. 14.
    Food and Drug Administration, Centre for Drug Evaluation and Research. Clinical pharmacology and biopharmaceutics review(s): STN-125085/0 [online]. Available from URL:http://www.accessdata.fda.gov/drugsatfda_docs/nda/2004/STN-125085_Avastin_BioPharmr.pdf[Accessed 2009 Oct 23]
  15. 15.
    Dirks NL, Nolting A, Kovar A, et al. Population pharmacokinetics of cetuximab in patients with squamous cell carcinoma of the head and neck. J Clin Pharmacol 2008; 48(3): 267–78PubMedCrossRefGoogle Scholar
  16. 16.
    Food and Drug Administration, Centre for Drug Evaluation and Research. Clinical pharmacology and biopharmaceutics review(s): STN/BLA 125084 [online]. Available from URL:http://www.accessdata.fda.gov/drugsatfda_docs/bla/2004/125084_ERBITUX_BIOPHARMR.PDF[Accessed 2009 Oct 23]
  17. 17.
    Food and Drug Administration. Clinical pharmacology review of BLA 97-0736 [online]. Available from URL:http://www.fda.gov/downloads/Drugs/DevelopmentApprovalProcess/HowDrugsareDevelopedandApproved/ApprovalApplications/TherapeuticBiologicApplications/ucm113472.pdf[Accessed 2009 Oct 23]
  18. 18.
    Food and Drug Administration, Centre for Drug Evaluation and Research. Clinical pharmacology and biopharmaceutics review(s): 125166 [online]. Available from URL:http://www.accessdata.fda.gov/drugsatfda_docs/nda/2007/125166s0000_PharmcometricsR.pdf[Accessed 2009 Oct 23]
  19. 19.
    Bauer RJ, Russel DL, White RL, et al. Population pharmacokinetics and pharmacodynamics of the anti-CD11a antibody hu1124 in human subjects with psoriasis. J Pharmacokinet Biopharm 1999; 27: 397–420PubMedGoogle Scholar
  20. 20.
    Food and Drug Administration, Centre for Drug Evaluation and Research. Clinical pharmacology and biopharmaceutics review(s): STN/BLA 125075/0 [online]. Available from URL:http://www.accessdata.fda.gov/drugsatfda_docs/nda/2003/125075_0000_Raptiva_BioPharmr.pdf[Accessed 2009 Oct 23]
  21. 21.
    Food and Drug Administration, Centre for Drug Evaluation and Research. Clinical pharmacology and biopharmaceutics review(s): STN-125085/0 [online]. Available from URL:http://www.fda.gov/downloads/Drugs/DevelopmentApprovalProcess/HowDrugsareDevelopedandApproved/ApprovalApplications/TherapeuticBiologicApplications/ucm088681.pdf[Accessed 2009 Oct 23]
  22. 22.
    Dowell JA, Korth-Bradley J, Liu H, et al. Pharmacokinetics of gemtuzumab ozogamicin, an antibody-targeted chemotherapy agent for the treatment of patients with acute myeloid leukemia in first relapse. J Clin Pharmacol 2001; 41(11): 1206–14PubMedCrossRefGoogle Scholar
  23. 23.
    Food and Drug Administration, Centre for Drug Evaluation and Research. Clinical pharmacology and biopharmaceutics review(s): NDA 21174 [online]. Available from URL:http://www.accessdata.fda.gov/drugsatfda_docs/nda/2000/21174_MYLOTARG_biopharmr.pdf[Accessed 2009 Oct 23]
  24. 24.
    Xu Z, Vu T, Lee H, et al. Population pharmacokinetics of golimumab, an antitumor necrosis factor-{alpha} human monoclonal antibody, in patients with psoriatic arthritis. J Clin Pharmacol 2009 Sep; 49(9): 1056–70PubMedCrossRefGoogle Scholar
  25. 25.
    Food and Drug Administration, Centre for Drug Evaluation and Research. Clinical pharmacology and biopharmaceutics review(s): 125289 [online]. Available from URL:http://www.accessdata.fda.gov/drugsatfda_docs/nda/2009/125289s000_ClinPharmR_P1.pdf[Accessed 2009 Oct 23]
  26. 26.
    Food and Drug Administration. Zevalin® (ibritumomab tiuxetan) prescribing information [online]. Available from URL:http://www.accessdata.fda.gov/drugsatfda_docs/label/2009/125019s0156.pdf[Accessed 2009 Oct 23]
  27. 27.
    Food and Drug Administration. Clinical pharmacology review of BLA 98-0012, cA2 [online]. Available from URL:http://www.fda.gov/downloads/Drugs/DevelopmentApprovalProcess/HowDrugsareDevelopedandApproved/ApprovalApplications/TherapeuticBiologicApplications/ucm107704.pdf[Accessed 2009 Oct 23]
  28. 28.
    Ortho Biotech Products and Services. Orthoclone OKT®3 sterile solution (muromonab-CD3) prescribing information [online]. Available from URL:http://www.orthobiotech.com/orthobiotech/shared/OBI/PI/OKT3_PI.pdf[Accessed 2009 Oct 23]
  29. 29.
    Food and Drug Administration, Centre for Drug Evaluation and Research. Clinical pharmacology and biopharmaceutics review(s): 125104 [online]. Available from URL:http://www.accessdata.fda.gov/drugsatfda_docs/nda/2004/125104s000_Natalizumab_Biopharmr.pdf[Accessed 2009 Oct 23]
  30. 30.
    Food and Drug Administration. XOLAIR® (Omalizumab) prescribing information [online]. Available from URL:http://www.accessdata.fda.gov/drugsatfda_docs/label/2007/103976s5102lbl.pdf[Accessed 2009 Oct 23]
  31. 31.
    Food and Drug Administration. SYNAGIS® (palivizumab) patient information [online]. Available from URL:http://www.accessdata.fda.gov/drugsatfda_docs/label/2009/103770s5116lbl.pdf[Accessed 2009 Oct 23]
  32. 32.
    Food and Drug Administration, Centre for Drug Evaluation and Research. Clinical pharmacology and biopharmaceutics review(s): 125147/0 [online]. Available from URL:http://www.accessdata.fda.gov/drugsatfda_docs/nda/2006/125147s0000_ClinPharmR.pdf[Accessed 2009 Oct 23]
  33. 33.
    Food and Drug Administration, Centre for Drug Evaluation and Research. Clinical pharmacology and biopharmaceutics review(s): 125156 [online]. Available from URL:http://www.accessdata.fda.gov/drugsatfda_docs/nda/2006/125156s0000_Lucentis_ClinPharmR.pdf[Accessed 2009 Oct 23]
  34. 34.
    Food and Drug Administration. Rituxan™(rituximab) prescribing information [online]. Available from URL:http://www.fda.gov/downloads/Drugs/DevelopmentApprovalProcess/HowDrugsareDevelopedandApproved/ApprovalApplications/TherapeuticBiologicApplications/ucm107741.pdf[Accessed 2009 Oct 23]
  35. 35.
    Food and Drug Administration, Centre for Drug Evaluation and Research. Clinical pharmacology and biopharmaceutics review(s): 125011 [online]. Available from URL:http://www.accessdata.fda.gov/drugsatfda_docs/nda/2003/125011s000_ClinPharmR.pdf[Accessed 2009 Oct 23]
  36. 36.
    Food and Drug Administration. Clinical pharmacology review of herceptin, 98-0369 [online]. Available from URL:http://www.fda.gov/downloads/Drugs/DevelopmentApprovalProcess/HowDrugsareDevelopedandApproved/ApprovalApplications/TherapeuticBiologicApplications/ucm091373.pdf[Accessed 2009 Oct 23]
  37. 37.
    Zhu Y, Chuanpu H, Lu M, et al. Population pharmacokinetic modeling of ustekinumab, a human monoclonal antibody targeting IL-12/23p40, in patients with moderate to severe plaque psoriasis. J Clin Pharmacol 2009; 49: 162–75PubMedCrossRefGoogle Scholar
  38. 38.
    Edelman GM. Antibody structure and molecular immunology. Science 1973; 180(4088): 830–40PubMedCrossRefGoogle Scholar
  39. 39.
    Roskos LK, Davis CG, Schwab GM. The clinical pharmacology of therapeutic monoclonal antibodies. Drug Dev Res 2004; 61: 108–20CrossRefGoogle Scholar
  40. 40.
    Davies J, Jiang L, Pan LZ, et al. Expression of GnTIII in a recombinant anti-CD20 CHO production cell line: expression of antibodies with altered glycoforms leads to an increase in ADCC through higher affinity for FC gamma RIII. Biotechnol Bioeng 2001; 74: 288–94PubMedCrossRefGoogle Scholar
  41. 41.
    Spiegelberg HL, Weigle WO. The catabolism of homologous and heterologous 7s gamma globulin fragments. J Exp Med 1965; 121: 323–38PubMedCrossRefGoogle Scholar
  42. 42.
    Ein D, Waldmann TA. Metabolic studies of a heavy chain disease protein. J Immunol 1969; 103: 345–8PubMedGoogle Scholar
  43. 43.
    Yeung YA, Leabman MK, Marvin JS, et al. Engineering human IgG1 affinity to human neonatal Fc receptor: impact of affinity improvement on pharmacokinetics in primates. J Immunol 2009; 182(12): 7663–71PubMedCrossRefGoogle Scholar
  44. 44.
    Brambell FWR, Halliday R, Morris IG. Interference by human and bovine serum and serum protein fractions with the absorption of antibodies by suckling rats and mice [abstract]. Proc R Soc B 1958; 149: 1CrossRefGoogle Scholar
  45. 45.
    Brambell FWR, Hemmings WA, Morris IG. Theoretical model of g-globulin catabolism. Nature 1964; 203: 1352–5PubMedCrossRefGoogle Scholar
  46. 46.
    Junghans RP. Finally! The Brambell receptor (FcRB): mediator of transmission of immunity and protection from catabolism for IgG. Immunol Res 1997; 16: 29–57PubMedCrossRefGoogle Scholar
  47. 47.
    Zhu X, Meng G, Dickinson BL, et al. MHC class I-related neonatal Fc receptor for IgG is functionally expressed in monocytes, intestinal macrophages, and dendritic cells. J Immunol 2001; 166(5): 3266–76PubMedGoogle Scholar
  48. 48.
    Morell A, Terry WD, Waldmann TA. Metabolic properties of IgG subclasses in man. J Clin Invest 1970; 49: 673–80PubMedCrossRefGoogle Scholar
  49. 49.
    Marks J. Antibody formation in myelomatosis. J Clin Pathol 1953; 6(1): 62–3PubMedCrossRefGoogle Scholar
  50. 50.
    Imbach P, Barandun S, d’Apuzzo V, et al. High-dose intravenous gamma-globulin for idiopathic thrombocytopenic purpura in childhood. Lancet 1981; I: 1228–31CrossRefGoogle Scholar
  51. 51.
    Jin F, Balthasar JP. Mechanisms of intravenous immunoglobulin action in immune thrombocytopenic purpura. Hum Immunol 2005; 66(4): 403–10PubMedCrossRefGoogle Scholar
  52. 52.
    Bleeker WK, Teeling JL, Hack CE. Accelerated autoantibody clearance by intravenous immunoglobulin therapy: studies in experimental models to determine the magnitude and time course of the effect. Blood 2001; 98: 3136–42PubMedCrossRefGoogle Scholar
  53. 53.
    Tabrizi MA, Tsengb C-ML, Roskos LK. Elimination mechanisms of therapeutic monoclonal antibodies. Drug Discov Today 2006; 11(1-2): 81–8PubMedCrossRefGoogle Scholar
  54. 54.
    Cohen-Solal JF, Cassard L, Fridman W-H, et al. Fc gamma receptors. Immunol Lett 2004; 92: 199–205PubMedCrossRefGoogle Scholar
  55. 55.
    Rascu A, Repp R, Westerdaal NA, et al. Clinical relevance of Fc gamma receptor polymorphisms. Ann N Y Acad Sci 1997; 815: 282–95PubMedCrossRefGoogle Scholar
  56. 56.
    Reddy MP, Kinney CA, Chaikin MA, et al. Elimination of Fc receptor-dependent effector functions of a modified IgG4 monoclonal antibody to human CD4. J Immunol 2000; 164(4): 1925–33PubMedGoogle Scholar
  57. 57.
    Mould DR. Using pharmacometrics in the development of biological therapeutic biological agents. In: Ette E, Williams P, editors. Pharmacometrics: the science of quantitative pharmacology. Hoboken (NJ): John Wiley and Sons, 2007Google Scholar
  58. 58.
    Waldmann TA, Strober W. Metabolism of immunoglobulins. Prog Allergy 1969; 13: 1–110PubMedGoogle Scholar
  59. 59.
    Wileman T, Harding C, Stahl P. Receptor-mediated endocytosis. Biochem J 1985; 232: 1–14PubMedGoogle Scholar
  60. 60.
    Lobo ED, Hansen RJ, Balthasar JP. Antibody pharmacokinetics and pharmacodynamics. J Pharm Sci 2004; 93(11): 2645–68PubMedCrossRefGoogle Scholar
  61. 61.
    Henry MD, Wen S, Silva MD, et al. A prostate-specific membrane antigentargeted monoclonal antibody-chemotherapeutic conjugate designed for the treatment of prostate cancer. Cancer Res 2004; 64(21): 7995–8001PubMedCrossRefGoogle Scholar
  62. 62.
    Weiner LM. Monoclonal antibody therapy of cancer. Semin Oncol 1999; 26: 43–51PubMedGoogle Scholar
  63. 63.
    Limas CJ, Hasikidis C, Iakovou J, et al. Prognostic significance of soluble interleukin-2 receptor levels in patients with dilated cardiomyopathy. Eur J Clin Invest 2003; 33(6): 443–8PubMedCrossRefGoogle Scholar
  64. 64.
    Anasetti C, Hansen JA, Waldmann TA, et al. Treatment of acute graft-versus-host disease with humanized anti-Tac: an antibody that binds to the interleukin-2 receptor. Blood 1994; 84(4): 1320–7PubMedGoogle Scholar
  65. 65.
    Mould DR, Nieforth KA. Population pharmacokinetic/pharmacodynamic analysis of ZenapaxIM: some practical considerations in the development of protein pharmaceuticals. Philadelphia (PA): Mid-Atlantic NONMEM Users’ Group, 1995Google Scholar
  66. 66.
    Vincenti F, Lantz M, Birnbaum J, et al. A phase I trial of humanized anti interleukin-2 receptor antibody in renal transplantation. Transplantation 1997; 63(1) 1–5CrossRefGoogle Scholar
  67. 67.
    Modi NB. Recombinant thrombolytic agents. In: Crommelin DJA, Sindelar RD, Meibohm B, editors. Pharmaceutical biotechnology: fundamentals and applications. 3rd ed. New York (NY): Marcel Dekker, 2007: 333Google Scholar
  68. 68.
    Tabrizi MA, Tseng CL, Roskos LK. Elimination mechanisms of therapeutic monoclonal antibodies. Drug Discov Today 2006; 11(1-2): 81–8PubMedCrossRefGoogle Scholar
  69. 69.
    Mortensen DL, Walicke PA, Wang X, et al. Pharmacokinetics and pharma-codynamics of multiple weekly subcutaneous efalizumab doses in patients with plaque psoriasis. J Clin Pharmacol 2005; 45(3): 286–98PubMedCrossRefGoogle Scholar
  70. 70.
    Lu JF, Bruno R, Eppler S, et al. Clinical pharmacokinetics of bevacizumab in patients with solid tumors. Cancer Chemother Pharmacol 2008; 62(5): 779–86PubMedCrossRefGoogle Scholar
  71. 71.
    Loegering DJ, Blumenstock FA, Cuddy BG. Determination of Kupffer cell Fc receptor function in vivo following injury. Proc Soc Exp Biol Med 1989; 192(3): 255–60PubMedGoogle Scholar
  72. 72.
    Karanikas G, Ulrich-Pur H, Becherer A, et al. Uptake of indium-111-labeloed human polyclonal immunoglobulin G in pancreatic cancer: in vivo and in vitro studies. Oncol Rep 2002; 9(2): 353–7PubMedGoogle Scholar
  73. 73.
    Lin YS, Nguyen C, Mendoza JL, et al. Preclinical pharmacokinetics, interspecies scaling, and tissue distribution of a humanized monoclonal antibody against vascular endothelial growth factor. J Pharmacol Exp Ther 1999; 288(1): 371–8PubMedGoogle Scholar
  74. 74.
    Supersaxo A, Hein WR, Steffen H. Effect of molecular weight on the lymphatic absorption of water-soluble compounds following subcutaneous administration. Pharm Res 1990; 7(2): 167–9PubMedCrossRefGoogle Scholar
  75. 75.
    Porter CJ, Charman WN. Transport and absorption of drugs via the lymphatic system. Adv Drug Deliv Rev 2001; 50(1-2): 1–2PubMedCrossRefGoogle Scholar
  76. 76.
    Porter CJ, Charman SA. Lymphatic transport of proteins after subcutaneous administration. J Pharm Sci 2000; 89(3): 297–310PubMedCrossRefGoogle Scholar
  77. 77.
    Dayneka NL, Garg V, Jusko WJ. Comparison of four basic models of indirect pharmacodynamic responses. J Pharmacokinet Biopharm 1993; 21(4): 457–78PubMedGoogle Scholar
  78. 78.
    Modi NB. Recombinant thrombolytic agents. In: Crommelin DJA, Sindelar RD, Meibohm B, editors. Pharmaceutical biotechnology: fundamentals and applications. 3rd ed. New York (NY): Marcel Dekker, 2007: 326–8Google Scholar
  79. 79.
    Mould DR, Davis CB, Minthorn EA, et al. Population pharmacokinetic/pharmacodynamic analysis of the effects of Clenoliximab, a PRIMATIZED™ anti-CD4 monoclonal antibody, on T lymphocytes, following single doses to patients with active rheumatoid arthritis. Clin Pharmacol Ther 1999; 66(3): 246–57PubMedCrossRefGoogle Scholar
  80. 80.
    Krzyzanski W, Jusko WJ. Integrated functions for four basic models of indirect pharmacodynamic response. J Pharm Sci 1998; 87(1): 67–72PubMedCrossRefGoogle Scholar
  81. 81.
    Muller PY, Brennan FR. Safety assessment and dose selection for first-in-human clinical trials with immunomodulatory monoclonal antibodies. Clin Pharmacol Ther 2009; 85(3): 247–58PubMedCrossRefGoogle Scholar
  82. 82.
    Dayan CM, Wraith DC. Preparing for first-in-man studies: the challenges for translational immunology post-TGN1412. Clin Exp Immunol 2008; 151(2): 231–4PubMedCrossRefGoogle Scholar
  83. 83.
    Food and Drug Administration. Guidance for industry: estimating the maximum safe starting dose in initial clinical trials for therapeutics in adult healthy volunteers [online]. Available from URL:http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm078932.pdf[Accessed 2009 Sep 4]
  84. 84.
    Janmahasatian S, Duffull SB, Ash S, et al. Quantification of lean bodyweight. Clin Pharmacokinet 2005; 44(10): 1051–65PubMedCrossRefGoogle Scholar
  85. 85.
    Holford NHG. A size standard for pharmacokinetics. Clin Pharmacokinet 1996; 30: 329–32PubMedCrossRefGoogle Scholar
  86. 86.
    Han PY, Duffull SB, Kirkpatrick CM, et al. Dosing in obesity: a simple solution to a big problem. Clin Pharmacol Ther 2007; 82(5): 505–8PubMedCrossRefGoogle Scholar
  87. 87.
    Wang B, Roskos L. The utility of trial simulation to investigate dosing strategy. AAPS 2004 Annual Meeting [online]. Available from URL:http://www.aapspharmaceutica.com/inside/focus_groups/ModelSim/imagespdfs/04Wang.pdf[Accessed 2009 Sep 4]
  88. 88.
    Wang DD, Shuzhong Z, Zhao H, et al. Fixed dosing versus body size-based dosing of monoclonal antibodies in adult trials. J Clin Pharmacol 2009; 49: 1012–24PubMedCrossRefGoogle Scholar
  89. 89.
    Cartron G, Blasco H, Paintaud G, et al. Pharmacokinetics of rituximab and its clinical use: thought for the best use? Crit Rev Oncol Hematol 2007 Apr; 62(1): 43–52PubMedCrossRefGoogle Scholar
  90. 90.
    Maloney DG, Grillo-López AJ, White CA, et al. IDEC-C2B8 (rituximab) anti-CD20 monoclonal antibody therapy in patients with relapsed low-grade non-Hodgkin’s lymphoma. Blood 1997; 90: 2188–95PubMedGoogle Scholar
  91. 91.
    Roy A, Mould DR, Wang XF, et al. Modeling and simulation of abatacept exposure and interleukin-6 response in support of recommended doses for rheumatoid arthritis. J Clin Pharmacol 2007; 47(11): 1408–20PubMedCrossRefGoogle Scholar
  92. 92.
    Joshi A, Bauer R, Kuebler P, et al. An overview of the pharmacokinetics and pharmacodynamics of efalizumab: a monoclonal antibody approved for use in psoriasis. J Clin Pharmacol 2006; 46(1): 10–20PubMedCrossRefGoogle Scholar
  93. 93.
    Leyland-Jones B, Colomer R, Trudeau ME, et al. Effect of an intensive trastuzumab loading regimen on early serum concentrations. 2007 ASCO Breast Cancer Symposium [online]. Available from URL:http://www.asco.org/ASCOv2/Meetings/Abstracts?&vmview=abst_detail_view&confID=52&abstractID=40313[Accessed 2009 Sep 4]
  94. 94.
    Food and Drug Administration. Guidance for industry: drug interaction studies — study design, data analysis, and implications for dosing and labeling [online]. Available from URL:http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm072101.pdf[Accessed 2009 Sep 4]
  95. 95.
    Mahmood I, Green MD. Drug interaction studies of therapeutic proteins or monoclonal antibodies. J Clin Pharmacol 2007; 47: 1540–54PubMedCrossRefGoogle Scholar
  96. 96.
    Seitz K, Zhou H. Pharmacokinetic drug-drug interaction potentials for therapeutic monoclonal antibodies: reality check. J Clin Pharmacol 2007; 47: 1104–18PubMedCrossRefGoogle Scholar
  97. 97.
    Zhou H, Davis HM. Risk-based strategy for the assessment of pharmaco-kinetic drug-drug interactions for therapeutic monoclonal antibodies. Drug Discov Today 2009; 14: 891–8PubMedCrossRefGoogle Scholar
  98. 98.
    Tabrizi MA, Roskos LK. Preclinical and clinical safety of monoclonal antibodies. Drug Discov Today 2007; 12: 540–7PubMedCrossRefGoogle Scholar
  99. 99.
    Abdel-Razzak Z, Loyer P, Fautrel A, et al. Cytokines downregulate expression of major cytochrome P-450 enzymes in adult human hepatocytes in primary culture. Mol Pharmacol 1993; 44: 707–15PubMedGoogle Scholar
  100. 100.
    Morgan ET. Regulation of cytochrome p450 by inflammatory mediators: why and how? Drug Metab Dispos 2001; 29(3): 207–12PubMedGoogle Scholar
  101. 101.
    Strehlau J, Pape L, Offner G, et al. Interleukin-2 receptor antibody-induced alterations of ciclosporin dose requirements in paediatric transplant recipients. Lancet 2000; 356: 1327–8PubMedCrossRefGoogle Scholar
  102. 102.
    Vasquez EM, Pollak R. OKT3 therapy increases cyclosporine blood levels. Clin Transplant 1997; 11: 38–41PubMedGoogle Scholar
  103. 103.
    Sifontis NM, Benedetti E, Vasquez EM. Clinically significant drug interaction between basiliximab and tacrolimus in renal transplant recipients. Transplant Proc 2002; 34: 1730–2PubMedCrossRefGoogle Scholar
  104. 104.
    Bunescu A, Seideman P, Lenkei R, et al. Enhanced Fcgamma receptor I, alphaMbeta2 integrin receptor expression by monocytes and neutrophils in rheumatoid arthritis: interaction with platelets. J Rheumatol 2004; 31: 2347–55PubMedGoogle Scholar
  105. 105.
    Höcker B, Kovarik JM, Daniel V, et al. Pharmacokinetics and immuno-dynamics of basiliximab in pediatric renal transplant recipients on mycophenolate mofetil comedication. Transplantation 2008 15; 86(9): 1234–40CrossRefGoogle Scholar
  106. 106.
    Approved prescribing information for Herceptin (trastuzumab) [data on file]. San Francisco (CA): Genentech Inc., 2008 JanGoogle Scholar
  107. 107.
    Diéras V, Beuzeboc P, Laurence V, et al. Interaction between Herceptin and taxanes. Oncology 2001; 61 Suppl. 2: 43–9Google Scholar
  108. 108.
    Henson ES, Hu X, Gibson SB. Herceptin sensitizes ErbB2-overexpressing cells to apoptosis by reducing antiapoptotic Mcl-1 expression. Clin Cancer Res 2006 1; 12 (3 Pt 1): 845–53CrossRefGoogle Scholar
  109. 109.
    Shah DK, Shin BS, Veith J, et al. Use of an anti-vascular endothelial growth factor antibody in a pharmacokinetic strategy to increase the efficacy of intraperitoneal chemotherapy. J Pharmacol Exp Ther 2009; 329(2): 580–91PubMedCrossRefGoogle Scholar
  110. 110.
    Rose WC, Wild R. Therapeutic synergy of oral taxane BMS-275183 and cetuximab versus human tumor xenografts. Clin Cancer Res 2004 1; 10(21): 7413–7CrossRefGoogle Scholar
  111. 111.
    Inoue K, Slaton J, Perrotte P, et al. Paclitaxel enhances the effects of the antiepidermal growth factor receptor monoclonal antibody ImClone C225 in mice with metastatic human bladder transitional cell carcinoma. Clin Cancer Res 2006; 6: 4874–84Google Scholar
  112. 112.
    Huang S, Armstrong EA, Benavente S, et al. Dual-agent molecular targeting of the epidermal growth factor receptor (EGFR): combining anti-EGFR antibody with tyrosine kinase inhibitor. Cancer Res 2004; 64: 5355–62PubMedCrossRefGoogle Scholar
  113. 113.
    Cunningham D, Humblet Y, Siena S, et al. Cetuximab (C225) alone or in combination with irinotecan (CPT-11) in patients with epidermal growth factor receptor (EGFR)-positive, irinotecan-refractory metastatic colorectal cancer (MCRC) [abstract]. Proc Am Soc Clin Oncol 2003; 22: 252Google Scholar
  114. 114.
    Saltz L, Rubin M, Hochster H, et al. Cetuximab (IMC-C225) plus irinotecan (CPT-11) is active in CPT-11 refractory colorectal cancer (CRC) that expresses epidermal growth factor receptor (EGFR) [abstract]. Proc Am Soc Clin Oncol 2001; 20: 3Google Scholar
  115. 115.
    Sharpe AH, Abbas AK. T-cell costimulation: biology, therapeutic potential, and challenges. N Eng J Med 2006; 355: 973–5CrossRefGoogle Scholar
  116. 116.
    Suntharalingam G, Perry MR, Ward S, et al. Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N Eng J Med 2006; 355: 1018–28CrossRefGoogle Scholar
  117. 117.
    Stüve O, Gold R, Chan A, et al. Alpha4-Integrin antagonism with natalizumab: effects and adverse effects. J Neurol 2008; 255 Suppl. 6: 58–65CrossRefGoogle Scholar

Copyright information

© Adis Data Information BV 2010

Authors and Affiliations

  1. 1.Projections Research Inc.PhoenixvilleUSA
  2. 2.Model Answers Pty LtdBrisbaneAustralia

Personalised recommendations