Skip to main content
Log in

The Maximal Accumulated Oxygen Deficit Method

A Valid and Reliable Measure of Anaerobic Capacity?

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

The maximal accumulated oxygen deficit (MAOD) method has been extensively, but unfortunately not very methodically, used; the procedure used to determine the MAOD varies considerably. Therefore, this review evaluates the effect of different numbers and durations of submaximal exercise bouts on the linear power output (PO)-oxygen uptake (V̇O2) relationship and thus the MAOD. Changing the number and duration of the submaximal exercise bouts substantially influences the calculated MAOD when relatively long submaximal exercise bouts are used and no fixed value of the y-intercept is forced into the linear regression line. This is most likely due to non-linearity of the PO-V̇O2 relationship for exercise intensities above the lactate threshold (LT). Non-linearity of the PO-V̇O2 relationship is probably caused by the development of a slow component in V̇O2 during submaximal exercise at intensities above the LT. Thus, it is important to standardize the number, duration and intensity of submaximal exercise bouts necessary to establish the PO-V̇O2 relationship. Beyond changing the number and duration of the submaximal exercise bouts, the effect of different supramaximal exercise bouts on the calculated MAOD has been investigated. While it has become clear that different exercise protocols result in relatively similar values of the MAOD, a closer look at individual data suggests that it may be important to choose an exercise protocol that is representative of the athlete’s event. The validity of the MAOD method was studied by different authors comparing the MAOD with metabolic measurements of anaerobic adenosine triphosphate (ATP) production. The main limitation with the metabolic measurements of anaerobic ATP production from muscle biopsy data is that the active muscle mass is unknown, which makes it hard to accurately study the validity of the MAOD method. From the studies that evaluated the reliability of the MAOD method it is clear that the MAOD method may not be a reliable measure of anaerobic capacity. From these findings it can be concluded that the MAOD method may have limitations as a valid and reliable measure of anaerobic capacity and needs to be further improved. We suggest the use of 10 x 4 minute submaximal exercise bouts and a fixed value of the y-intercept for the construction of the linear PO-V̇O2 relationship, after which the MAOD can be determined during a supramaximal exercise protocol specific for the athlete’s event. This method will lead to a more robust PO-V̇O2 relationship and will therefore result in more valid and reliable results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I

Similar content being viewed by others

References

  1. Krogh A, Lindhard J. The changes in respiration at the transition from work to rest. J Physiol 1920 May 18; 53 (6): 431–9

    PubMed  CAS  Google Scholar 

  2. Hermansen L. Anaerobic energy release. Med Sci Sports Exerc 1969; 1 (1): 32–5

    Article  Google Scholar 

  3. Medbø JI, Mohn AC, Tabata I, et al. Anaerobic capacity determined by maximal accumulated O2 deficit. J Appl Physiol 1988 Jan; 64 (1): 50–60

    PubMed  Google Scholar 

  4. Withers RT, Sherman WM, Clark DG, et al. Muscle metabolism during 30, 60, and 90 s of maximal cycling on an airbraked ergometer. Eur J Appl Physiol 1991; 63: 354–62

    Article  CAS  Google Scholar 

  5. Withers RT, Van der Ploeg G, Finn JP. Oxygen deficits incurred during 45, 60, 75 and 90-s maximal cycling on an airbraked ergometer. Eur J Appl Physiol Occup Physiol 1993; 67 (2): 185–91

    Article  PubMed  CAS  Google Scholar 

  6. Woolford SM, Withers RT, Craig NP, et al. Effect of pedal cadence on the accumulated oxygen deficit, maximal aerobic power and blood lactate transition thresholds of high-performance junior endurance cyclists. Eur J Appl Physiol Occup Physiol 1999 Sep; 80 (4): 285–91

    Article  PubMed  CAS  Google Scholar 

  7. Weber CL, Schneider DA. Increases in maximal accumulated oxygen deficit after high-intensity interval training are not gender dependent. JAppl Physiol 2002 May; 92 (5): 1795–801

    Google Scholar 

  8. Weber CL, Schneider DA. Reliability of MAOD measured at 110% and 120% of peak oxygen uptake for cycling. Med Sci Sports Exerc 2001 Jun; 33 (6): 1056–9

    Article  PubMed  CAS  Google Scholar 

  9. Weber CL, Schneider DA. Maximal accumulated oxygen deficit expressed relative to the active muscle mass for cycling in untrained male and female subjects. Eur J Appl Physiol 2000 Jul; 82 (4): 255–61

    Article  PubMed  CAS  Google Scholar 

  10. Vuorimaa T, Vasankari T, Rusko H. Comparison of physiological strain and muscular performance of athletes during two intermittent running exercises at the velocity associated with VO2max. Int J Sports Med 2000 Feb; 21 (2): 96–101

    Article  PubMed  CAS  Google Scholar 

  11. Tabata I, Irisawa K, Kouzaki M, et al. Metabolic profile of high intensity intermittent exercises. Med Sci Sports Exerc 1997 Mar; 29 (3): 390–5

    Article  PubMed  CAS  Google Scholar 

  12. Tabata I, Nishimura K, Kouzaki M, et al. Effects of moderate-intensity endurance and high-intensity intermittent training on anaerobic capacity and VO2max. Med Sci Sports Exerc 1996 Oct; 28 (10): 1327–30

    Article  PubMed  CAS  Google Scholar 

  13. Scott CB, Roby FB, Lohman TG, et al. The maximally accumulated oxygen deficit as an indicator of anaerobic capacity. Med Sci Sports Exerc 1991 May; 23 (5): 618–24

    PubMed  CAS  Google Scholar 

  14. Russell AP, Le Rossignol P, Lo SK. The precision of estimating the total energy demand: implications for the determination of the accumulated oxygen deficit [online]. JEP online 2000; 3 (2). Available from URL: http://faculty.css.edu/tboone2/asep/JEPRussell.html [Accessed 2010 Jan 12]

    Google Scholar 

  15. Roberts AD, Clark SA, Townsend NE, et al. Changes in performance, maximal oxygen uptake and maximal accumulated oxygen deficit after 5, 10 and 15 days of live high/train low altitude exposure. Eur J Appl Physiol 2003 Jan; 88 (4-5): 390–5

    Article  PubMed  CAS  Google Scholar 

  16. Ravier G, Dugue B, Grappe F, et al. Maximal accumulated oxygen deficit and blood responses of ammonia, lactate and pH after anaerobic test: a comparison between international and national elite karate athletes. Int J Sports Med 2006 Oct; 27 (10): 810–7

    Article  PubMed  CAS  Google Scholar 

  17. Ramsbottom R, Nevill AM, Nevill ME, et al. Accumulated oxygen deficit and short-distance running performance. J Sports Sci 1994 Oct; 12 (5): 447–53

    Article  PubMed  CAS  Google Scholar 

  18. Ramsbottom R, Nevill AM, Seager RD, et al. Effect of training on accumulated oxygen deficit and shuttle run performance. J Sports Med Phys Fitness 2001 Sep; 41 (3): 281–90

    PubMed  CAS  Google Scholar 

  19. Pripstein LP, Rhodes EC, McKenzie DC, et al. Aerobic and anaerobic energy during a 2-km race simulation in female rowers. Eur J Appl Physiol Occup Physiol 1999 May; 79 (6): 491–4

    Article  PubMed  CAS  Google Scholar 

  20. Olesen HL. Accumulated oxygen deficit increases with inclination of uphill running. J Appl Physiol 1992 Sep; 73 (3): 1130–4

    PubMed  CAS  Google Scholar 

  21. Olesen HL, Raabo E, Bangsbo J, et al. Maximal oxygen deficit of sprint and middle distance runners. Eur J Appl Physiol Occup Physiol 1994; 69: 140–6

    Article  PubMed  CAS  Google Scholar 

  22. Pouilly JP, Busso T. Accumulated oxygen deficit during ramp exercise. Int J Sports Med 2008 Jan; 29 (1): 16–20

    Article  PubMed  Google Scholar 

  23. Pizza FX, Naglieri TA, Holtz RW, et al. Maximal accumulated oxygen deficit of resistance-trained men. Can J Appl Physiol 1996 Oct; 21 (5): 391–402

    Article  PubMed  CAS  Google Scholar 

  24. Ogita F, Hara M, Tabata I. Anaerobic capacity and maximal oxygen uptake during arm stroke, leg kicking and whole body swimming. Acta Physiol Scand 1996 Aug; 157 (4): 435–41

    Article  PubMed  CAS  Google Scholar 

  25. Ogita F, Onodera T, Tabata I. Effect of hand paddles on anaerobic energy release during supramaximal swimming. Med Sci Sports Exerc 1999 May; 31 (5): 729–35

    Article  PubMed  CAS  Google Scholar 

  26. Ogawa T, Hayashi K, Ichinose M, et al. Metabolic response during intermittent graded sprint running in moderate hypobaric hypoxia in competitive middle-distance runners. Eur J Appl Physiol 2007 Jan; 99 (1): 39–46

    Article  PubMed  CAS  Google Scholar 

  27. Nevill AM, Ramsbottom R, Nevill ME, et al. The relative contributions of anaerobic and aerobic energy supply during track 100-, 400- and 800-m performance. J Sports Med Phys Fitness 2008 Jun; 48 (2): 138–42

    PubMed  CAS  Google Scholar 

  28. Naughton GA, Carlson JS. Anaerobic capacity assessment in male and female children with all-out isokinetic cycling exercise. Aust J Sci Med Sport 1995 Dec; 27 (4): 83–7

    PubMed  CAS  Google Scholar 

  29. Naughton GA, Carlson JS, Buttifant DC, et al. Accumulated oxygen deficit measurements during and after highintensity exercise in trained male and female adolescents. Eur J Appl Physiol Occup Physiol 1997; 76 (6): 525–31

    Article  PubMed  CAS  Google Scholar 

  30. Minahan C, Chia M, Inbar O. Does power indicate capacity? 30-s Wingate anaerobic test vs. maximal accumulated O2 deficit. Int J Sports Med 2007 Oct; 28 (10): 836–43

    Article  PubMed  CAS  Google Scholar 

  31. Minahan C, Wood C. Strength training improves supramaximal cycling but not anaerobic capacity. Eur J Appl Physiol 2008 Apr; 102 (6): 659–66

    Article  PubMed  Google Scholar 

  32. Maxwell NS, Nimmo MA. Anaerobic capacity: a maximal anaerobic running test versus the maximal accumulated oxygen deficit. Can J Appl Physiol 1996 Feb; 21 (1): 35–47

    Article  PubMed  CAS  Google Scholar 

  33. Marth PD, Woods RR, Hill DW. Influence of time of day on anaerobic capacity. Percept Mot Skills 1998 Apr; 86 (2): 592–4

    Article  PubMed  CAS  Google Scholar 

  34. Levine BD, Stray-Gundersen J. “Living high-training low”: effect of moderate-altitude acclimatization with low-altitude training on performance. J Appl Physiol 1997 Jul; 83 (1): 102–12

    PubMed  CAS  Google Scholar 

  35. Glaister M, Stone MH, Stewart AM, et al. Aerobic and anaerobic correlates of multiple sprint cycling performance. J Strength Cond Res 2006 Nov; 20 (4): 792–8

    PubMed  Google Scholar 

  36. Glaister M, Stone MH, Stewart AM, et al. The influence of endurance training on multiple sprint cycling performance. J Strength Cond Res 2007 May; 21 (2): 606–12

    PubMed  Google Scholar 

  37. Gastin PB, Costill DL, Lawson DL, et al. Accumulated oxygen deficit during supramaximal all-out and constant intensity exercise. Med Sci Sports Exerc 1995 Feb; 27 (2): 255–63

    PubMed  CAS  Google Scholar 

  38. Gastin PB, Lawson DL. Influence of training status on maximal accumulated oxygen deficit during all-out cycle exercise. Eur J Appl Physiol Occup Physiol 1994; 69 (4): 321–30

    Article  PubMed  CAS  Google Scholar 

  39. Gastin PB, Lawson DL. Variable resistance all-out test to generate accumulated oxygen deficit and predict anaerobic capacity. Eur J Appl Physiol Occup Physiol 1994; 69 (4): 331–6

    Article  PubMed  CAS  Google Scholar 

  40. Gardner A, Osborne M, D’Auria S, et al. A comparison of two methods for the calculation of accumulated oxygen deficit. J Sports Sci 2003 Mar; 21 (3): 155–62

    Article  PubMed  Google Scholar 

  41. Friedmann B, Frese F, Menold E, et al. Effects of acute moderate hypoxia on anaerobic capacity in endurancetrained runners. Eur J Appl Physiol 2007 Sep; 101 (1): 67–73

    Article  PubMed  CAS  Google Scholar 

  42. Faina M, Billat V, Squadrone R, et al. Anaerobic contribution to the time to exhaustion at the minimal exercise intensity at which maximal oxygen uptake occurs in elite cyclists, kayakists and swimmers. Eur J Appl Physiol Occup Physiol 1997; 76 (1): 13–20

    Article  PubMed  CAS  Google Scholar 

  43. Craig NP, Norton KI, Bourdon PC, et al. Aerobic and anaerobic indices contributing to track endurance cycling performance. Eur J Appl Physiol Occup Physiol 1993; 67 (2): 150–8

    Article  PubMed  CAS  Google Scholar 

  44. Calbet JA, Chavarren J, Dorado C. Fractional use of anaerobic capacity during a 30- and a 45-s Wingate test. Eur J Appl Physiol Occup Physiol 1997; 76 (4): 308–13

    Article  PubMed  CAS  Google Scholar 

  45. Calbet JA, De Paz JA, Garatachea N, et al. Anaerobic energy provision does not limit Wingate exercise performance in endurance-trained cyclists. J Appl Physiol 2003 Feb; 94 (2): 668–76

    PubMed  CAS  Google Scholar 

  46. Buck D, Mc Naughton L. Maximal accumulated oxygen deficit must be calculated using 10-min time periods. Med Sci Sports Exerc 1999 Sep; 31 (9): 1346–9

    Article  PubMed  CAS  Google Scholar 

  47. Buck D, Mc Naughton LR. Changing the number of submaximal exercise bouts effects calculation of MAOD. Int J Sports Med 1999 Jan; 20 (1): 28–33

    Article  PubMed  CAS  Google Scholar 

  48. Aisbett B, Le Rossignol P. Estimating the total energy demand for supra-maximal exercise using the VO2-power regression from an incremental exercise test. J Sci Med Sport 2003 Sep; 6 (3): 343–7

    Article  PubMed  CAS  Google Scholar 

  49. Aisbett B, Le Rossignol P, Sparrow WA. The influence of pacing during 6-minute supra-maximal cycle ergometer performance. J Sci Med Sport 2003 Jun; 6 (2): 187–98

    Article  PubMed  CAS  Google Scholar 

  50. Medbø JI, Tabata I. Relative importance of aerobic and anaerobic energy release during short-lasting exhausting bicycle exercise. J Appl Physiol 1989 Nov; 67 (5): 1881–6

    PubMed  Google Scholar 

  51. Medbø JI, Tabata I. Anaerobic energy release in working muscle during 30 s to 3 min of exhausting bicycling. J Appl Physiol 1993 Oct; 75 (4): 1654–60

    PubMed  Google Scholar 

  52. Craig NP, Norton KI, Conyers RA, et al. Influence of test duration and event specificity on maximal accumulated oxygen deficit of high performance track cyclists. Int J Sports Med 1995 Nov; 16 (8): 534–40

    Article  PubMed  CAS  Google Scholar 

  53. Bangsbo J, Michalsik L, Petersen A. Accumulated O2 deficit during intense exercise and muscle characteristics of elite athletes. Int J Sports Med 1993 May; 14 (4): 207–13

    Article  PubMed  CAS  Google Scholar 

  54. Bosquet L, Duchene A, Delhors PR, et al. A comparison of methods to determine maximal accumulated oxygen deficit in running. J Sports Sci 2008 Apr; 26 (6): 663–70

    Article  PubMed  Google Scholar 

  55. Doherty M, Smith PM. The reliability of cycling maximal accumulated oxygen deficit (MAOD) and time to exhaustion (T(lim)) in untrained subjects. Med Sci Sports Exerc 2001 Oct; 33 (10): 1794–5

    Article  PubMed  CAS  Google Scholar 

  56. Doherty M, Smith PM, Schroder K. Reproducibility of the maximum accumulated oxygen deficit and run time to exhaustion during short-distance running. J Sports Sci 2000 May; 18 (5): 331–8

    Article  PubMed  CAS  Google Scholar 

  57. Bangsbo J. Is the O2 deficit an accurate quantitative measure of the anaerobic energy production during intense exercise? J Appl Physiol 1992 Sep; 73 (3): 1207–9

    PubMed  CAS  Google Scholar 

  58. Bangsbo J. Oxygen deficit: a measure of the anaerobic energy production during intense exercise? Can J Appl Physiol 1996 Oct; 21 (5): 350–63; discussion 64-9

    Article  PubMed  CAS  Google Scholar 

  59. Parolin ML, Chesley A, Matsos MP, et al. Regulation of skeletal muscle glycogen phosphorylase and PDH during maximal intermittent exercise. Am J Physiol 1999 Nov; 277 (5Pt1): E890–900

    Google Scholar 

  60. Parolin ML, Spriet LL, Hultman E, et al. Regulation of glycogen phosphorylase and PDH during exercise in human skeletal muscle during hypoxia. Am J Physiol Endocrinol Metab 2000 Mar; 278 (3): E522–34

    Google Scholar 

  61. Spriet LL, Lindinger MI, McKelvie RS, et al. Muscle glycogenolysis and H+ concentration during maximal intermittent cycling. J Appl Physiol 1989 Jan; 66 (1): 8–13

    PubMed  CAS  Google Scholar 

  62. Putman CT, Jones NL, Lands LC, et al. Skeletal muscle pyruvate dehydrogenase activity during maximal exercise in humans. Am J Physiol 1995 Sep; 269 (3Pt1): E458–68

    Google Scholar 

  63. Greenhaff PL, Campbell-O’Sullivan SP, Constantin-Teodosiu D, et al. An acetyl group deficit limits mitochondrial ATP production at the onset of exercise. Biochem Soc Trans 2002 Apr; 30 (2): 275–80

    Article  PubMed  CAS  Google Scholar 

  64. Gonzalez-Alonso J, Quistorff B, Krustrup P, et al. Heat production in human skeletal muscle at the onset of intense dynamic exercise. J Physiol 2000 Apr 15; 524 (Pt2): 603–15

    Article  PubMed  CAS  Google Scholar 

  65. Krustrup P, Ferguson RA, Kjaer M, et al. ATP and heat production in human skeletal muscle during dynamic exercise: higher efficiency of anaerobic than aerobic ATP resynthesis. J Physiol 2003; 15: 255–69

    Article  Google Scholar 

  66. Medbø JI, Burgers S. Effect of training on the anaerobic capacity. Med Sci Sports Exerc 1990 Aug; 22 (4): 501–7

    PubMed  Google Scholar 

  67. Bangsbo J, Gollnick PD, Graham TE, et al. Anaerobic energy production and O2 deficit-debt relationship during exhaustive exercise in humans. J Physiol 1990 Mar; 422: 539–59

    PubMed  CAS  Google Scholar 

  68. Sloniger MA, Cureton KJ, Prior BM, et al. Anaerobic capacity and muscle activation during horizontal and uphill running. J Appl Physiol 1997 Jul; 83 (1): 262–9

    PubMed  CAS  Google Scholar 

  69. Craig IS, Morgan DW. Relationship between 800-m running performance and accumulated oxygen deficit in middle-distance runners. Med Sci Sports Exerc 1998 Nov; 30 (11): 1631–6

    Article  PubMed  CAS  Google Scholar 

  70. Sloniger MA, Cureton KJ, Prior BM, et al. Lower extremity muscle activation during horizontal and uphill running. J Appl Physiol 1997 Dec; 83 (6): 2073–9

    PubMed  CAS  Google Scholar 

  71. Özyener F, Rossiter HB, Ward SA, et al. Negative accumulated oxygen deficit during heavy and very heavy intensity cycle ergometry in humans. Eur J Appl Physiol 2003 Sep; 90 (1-2): 185–90

    Article  PubMed  Google Scholar 

  72. Pringle JS, Carter H, Doust JH, et al. Oxygen uptake kinetics during horizontal and uphill treadmill running in humans. Eur J Appl Physiol 2002 Nov; 88 (1-2): 163–9

    Article  PubMed  CAS  Google Scholar 

  73. Zoladz JA, Duda K, Majerczak J. VO2/power output relationship and the slow component of oxygen uptake kinetics during cycling at different pedaling rates: relationship to venous lactate accumulation and blood acid-base balance. Physiol Res 1998; 47 (6): 427–38

    PubMed  CAS  Google Scholar 

  74. Pringle JS, Doust JH, Carter H, et al. Effect of pedal rate on primary and slow-component oxygen uptake responses during heavy-cycle exercise. J Appl Physiol 2003 Apr; 94 (4): 1501–7

    PubMed  Google Scholar 

  75. Billat VL, Mille-Hamard L, Petit B, et al. The role of cadence on the VO2 slow component in cycling and running in triathletes. Int J Sports Med 1999 Oct; 20 (7): 429–37

    Article  PubMed  CAS  Google Scholar 

  76. Billat VL, Richard R, Binsse VM, et al. The V(O2) slow component for severe exercise depends on type of exercise and is not correlated with time to fatigue. J Appl Physiol 1998 Dec; 85 (6): 2118–24

    PubMed  CAS  Google Scholar 

  77. Whipp BJ, Wasserman K. Oxygen uptake kinetics for various intensities of constant-load work. J Appl Physiol 1972; 33 (3): 351–6

    PubMed  CAS  Google Scholar 

  78. Barstow TJ, Molé PA. Linear and nonlinear characteristics of oxygen uptake kinetics during heavy exercise. J Appl Physiol 1991 Dec; 71 (6): 2099–106

    PubMed  CAS  Google Scholar 

  79. Green S, Dawson BT. Methodological effects on the VO2-power regression and the accumulated O2 deficit. Med Sci Sports Exerc 1996 Mar; 28 (3): 392–7

    PubMed  CAS  Google Scholar 

  80. Doherty M. The effects of caffeine on the maximal accumulated oxygen deficit and short-term running performance. Int J Sport Nutr 1998 Jun; 8 (2): 95–104

    PubMed  CAS  Google Scholar 

  81. Bickham D, Le Rossignol P, Gibbons C, et al. Re-assessing accumulated oxygen deficit in middle-distance runners. J Sci Med Sport 2002; 5 (4): 372–82

    Article  PubMed  CAS  Google Scholar 

  82. Green S, Dawson BT. The oxygen uptake-power regression in cyclists and untrained men: implications for the accumulated oxygen deficit. Eur J Appl Physiol Occup Physiol 1995; 70 (4): 351–9

    Article  PubMed  CAS  Google Scholar 

  83. Green S, Dawson BT, Goodman C, et al. Anaerobic ATP production and accumulated O2 deficit in cyclists. Med Sci Sports Exerc 1996 Mar; 28 (3): 315–21

    PubMed  CAS  Google Scholar 

  84. Medbø JI. Is the maximal accumulated oxygen deficit an adequate measure of the anaerobic capacity? Can J Appl Physiol 1996 Oct; 21 (5): 370–83; discussion 84-8

    Article  PubMed  Google Scholar 

  85. Jacobs I, Bleue S, Goodman J. Creatine ingestion increases anaerobic capacity and maximum accumulated oxygen deficit. Can J Appl Physiol 1997 Jun; 22 (3): 231–43

    Article  PubMed  CAS  Google Scholar 

  86. Atkinson G, Nevill AM. Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Med 1998; 26 (4): 217–38

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this review. The authors have no conflicts of interest that are directly relevant to the content of this review

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dionne A. Noordhof MSc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noordhof, D.A., de Koning, J.J. & Foster, C. The Maximal Accumulated Oxygen Deficit Method. Sports Med 40, 285–302 (2010). https://doi.org/10.2165/11530390-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11530390-000000000-00000

Keywords

Navigation