Skip to main content

Muscle Carnosine Metabolism and β-Alanine Supplementation in Relation to Exercise and Training

Abstract

Carnosine is a dipeptide with a high concentration in mammalian skeletal muscle. It is synthesized by carnosine synthase from the amino acids L-histidine and β-alanine, of which the latter is the rate-limiting precursor, and degraded by carnosinase. Recent studies have shown that the chronic oral ingestion of β-alanine can substantially elevate (up to 80%) the carnosine content of human skeletal muscle. Interestingly, muscle carnosine loading leads to improved performance in high-intensity exercise in both untrained and trained individuals. Although carnosine is not involved in the classic adenosine triphosphate-generating metabolic pathways, this suggests an important role of the dipeptide in the homeostasis of contracting muscle cells, especially during high rates of anaerobic energy delivery. Carnosine may attenuate acidosis by acting as a pH buffer, but improved contractile performance may also be obtained by improved excitation-contraction coupling and defence against reactive oxygen species. High carnosine concentrations are found in individuals with a high proportion of fast-twitch fibres, because these fibres are enriched with the dipeptide. Muscle carnosine content is lower in women, declines with age and is probably lower in vegetarians, whose diets are deprived of β-alanine. Sprint-trained athletes display markedly high muscular carnosine, but the acute effect of several weeks of training on muscle carnosine is limited. High carnosine levels in elite sprinters are therefore either an important genetically determined talent selection criterion or a result of slow adaptation to years of training. β-alanine is rapidly developing as a popular ergogenic nutritional supplement for athletes worldwide, and the currently available scientific literature suggests that its use is evidence based. However, many aspects of the supplement, such as the potential side effects and the mechanism of action, require additional and thorough investigation by the sports science community.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Table I
Table II

References

  1. 1.

    Harris RC, Tallon MJ, Dunnett M, et al. The absorption of orally supplied beta-alanine and its effect on muscle carnosine synthesis in human vastus lateralis. Amino Acids 2006; 30 (3): 279–89

    PubMed  CAS  Article  Google Scholar 

  2. 2.

    Hill CA, Harris RC, Kim HJ, et al. Influence of betaalanine supplementation on skeletal muscle carnosine concentrations and high intensity cycling capacity. Amino Acids 2007; 32 (2): 225–33

    PubMed  CAS  Article  Google Scholar 

  3. 3.

    Boldyrev AA. Carnosine and oxidative stress in cells and tissues. New York: Nova Science Publishers, 2007

    Google Scholar 

  4. 4.

    Abe H. Role of histidine-related compounds as intracellular proton buffering constituents in vertebrate muscle. Biochemistry (Mosc) 2000; 65 (7): 757–65

    CAS  Google Scholar 

  5. 5.

    Harris RC, Marlin DJ, Dunnett M, et al. Muscle buffering capacity and dipeptide content in the thoroughbred horse, greyhound dog and man. Compar Biochem Physiol 1990; 97 (2): 249–51

    CAS  Article  Google Scholar 

  6. 6.

    Baumann L, Ingvaldsen T. Concerning histidine and carnosine. The synthesis of carnosine. J Biol Chem 1918; 35: 263–76

    CAS  Google Scholar 

  7. 7.

    Drozak J, Veiga-da-Cunha M, Vertommen D, et al. Molecular identification of carnosine synthase as ATP-grasp domain containing protein 1 (ATPGD1). J Biol Chem Epub 2010 Jan; 22

    Google Scholar 

  8. 8.

    Horinishi H, Grillo M, Margolis FL. Purification and characterization of carnosine synthetase from mouse olfactory bulbs. J Neurochem 1978; 31 (4): 909–19

    PubMed  CAS  Article  Google Scholar 

  9. 9.

    Matthews MM, Traut TW. Regulation of N-carbamoylbeta-alanine amidohydrolase, the terminal enzyme in pyrimidine catabolism, by ligand-induced change in polymerization. J Biol Chem 1987; 262 (15): 7232–7

    PubMed  CAS  Google Scholar 

  10. 10.

    Bakardjiev A, Bauer K. Transport of beta-alanine and biosynthesis of carnosine by skeletal muscle cells in primary culture. Eur J Biochem 1994; 225 (2): 617–23

    PubMed  CAS  Article  Google Scholar 

  11. 11.

    Teufel M, Saudek V, Ledig JP, et al. Sequence identification and characterization of human carnosinase and a closely related non-specific dipeptidase. J Biol Chem 2003; 278 (8): 6521–31

    PubMed  CAS  Article  Google Scholar 

  12. 12.

    Sauerhofer S, Yuan G, Braun GS, et al. L-Carnosine, a substrate of carnosinase-1, influences glucose metabolism. Diabetes 2007; 56 (10): 2425–32

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Harding J, Margolis FL. Denervation in the primary olfactory pathway of mice: III, effect on enzymes of carnosine metabolism. Brain Res 1976; 110 (2): 351–60

    PubMed  CAS  Article  Google Scholar 

  14. 14.

    Otani H, Okumura N, Hashida-Okumura A, et al. Identification and characterization of a mouse dipeptidase that hydrolyzes L-carnosine. J Biochem 2005; 137 (2): 167–75

    PubMed  CAS  Article  Google Scholar 

  15. 15.

    Baguet A, Reyngoudt H, Pottier A, et al. Carnosine loading and washout in human skeletal muscles. J Appl Physiol 2009; 106 (3): 837–42

    PubMed  CAS  Article  Google Scholar 

  16. 16.

    Jappar D, Hu Y, Keep RF, et al. Transport mechanisms of carnosine in SKPT cells: contribution of apical and basolateral membrane transporters. Pharm Res 2009; 26 (1): 172–81

    PubMed  CAS  Article  Google Scholar 

  17. 17.

    Bakardjiev A, Bauer K. Biosynthesis, release, and uptake of carnosine in primary cultures. Biochemistry (Mosc) 2000; 65 (7): 779–82

    CAS  Google Scholar 

  18. 18.

    Bhardwaj RK, Herrera-Ruiz D, Eltoukhy N, et al. The functional evaluation of human peptide/histidine transporter 1 (hPHT1) in transiently transfected COS-7 cells. Eur J Pharm Sci 2006; 27 (5): 533–42

    PubMed  CAS  Article  Google Scholar 

  19. 19.

    Kamal MA, Jiang H, Hu Y, et al. Influence of genetic knockout of Pept2 on the in vivo disposition of endogenous and exogenous carnosine in wild-type and Pept2 null mice. Am J Physiol Regul Integr Comp Physiol 2009; 296 (4): R986–91

    Article  CAS  Google Scholar 

  20. 20.

    Nagai K, Niijima A, Yamano T, et al. Possible role of L-carnosine in the regulation of blood glucose through controlling autonomic nerves. Exp Biol Med (Maywood) 2003; 228 (10): 1138–45

    CAS  Google Scholar 

  21. 21.

    Nordsborg N, Mohr M, Pedersen LD, et al. Muscle interstitial potassium kinetics during intense exhaustive exercise: effect of previous arm exercise. Am J Physiol Regul Integr Comp Physiol 2003; 285 (1): R143–8

    Google Scholar 

  22. 22.

    Dunnett M, Harris RC, Dunnett CE, et al. Plasma carnosine concentration: diurnal variation and effects of age, exercise and muscle damage. Equine Vet J Suppl 2002 (34): 283–7

    PubMed  Article  Google Scholar 

  23. 23.

    Gutierrez A, Anderstam B, Alvestrand A. Amino acid concentration in the interstitium of human skeletal muscle: a microdialysis study. Eur J Clin Invest 1999; 29 (11): 947–52

    PubMed  CAS  Article  Google Scholar 

  24. 24.

    Dupin AM, Stvolinskii SL. Changes in carnosine levels in muscles working in different regimens of stimulation. Biokhimiia 1986; 51 (1): 160–4

    PubMed  CAS  Google Scholar 

  25. 25.

    Gardner ML, Illingworth KM, Kelleher J, et al. Intestinal absorption of the intact peptide carnosine in man, and comparison with intestinal permeability to lactulose. J Physiol 1991; 439: 411–22

    PubMed  CAS  Google Scholar 

  26. 26.

    Araujo EC, Suen VM, Marchini JS, et al. Muscle mass gain observed in patients with short bowel syndrome subjected to resistance training. Nutr Res 2008; 28 (2): 78–82

    PubMed  CAS  Article  Google Scholar 

  27. 27.

    Ririe DG, Roberts PR, Shouse MN, et al. Vasodilatory actions of the dietary peptide carnosine. Nutrition 2000; 16 (3): 168–72

    PubMed  CAS  Article  Google Scholar 

  28. 28.

    O’Dowd A, O’Dowd JJ, Miller DJ. The dipeptide carnosine constricts rabbit saphenous vein as a zinc complex apparently via a serotonergic receptor. J Physiol 1996; 495 (Pt2): 535–43

    PubMed  Google Scholar 

  29. 29.

    Tanida M, Niijima A, Fukuda Y, et al. Dose-dependent effects of L-carnosine on the renal sympathetic nerve and blood pressure in urethane-anesthetized rats. Am J Physiol Regul Integr Comp Physiol 2005; 288 (2): R447–55

    Article  CAS  Google Scholar 

  30. 30.

    Shen J, Yao JF, Tanida M, et al. Regulation of sympathetic nerve activity by L-carnosine in mammalian white adipose tissue. Neurosci Lett 2008; 441 (1): 100–4

    PubMed  CAS  Article  Google Scholar 

  31. 31.

    Yamano T, Niijima A, Iimori S, et al. Effect of L-carnosine on the hyperglycemia caused by intracranial injection of 2-deoxy-D-glucose in rats. Neurosci Lett 2001; 313 (1-2): 78–82

    PubMed  CAS  Article  Google Scholar 

  32. 32.

    Shen Y, Hu WW, Fan YY, et al. Carnosine protects against NMDA-induced neurotoxicity in differentiated rat PC12 cells through carnosine-histidine-histamine pathway and H (1)/H (3) receptors. Biochem Pharmacol 2007 Mar 1; 73 (5): 709–17

    PubMed  CAS  Article  Google Scholar 

  33. 33.

    Janssen B, Hohenadel D, Brinkkoetter P, et al. Carnosine as a protective factor in diabetic nephropathy: association with a leucine repeat of the carnosinase gene CNDP1. Diabetes 2005; 54 (8): 2320–7

    PubMed  CAS  Article  Google Scholar 

  34. 34.

    Hipkiss AR. Glycation, ageing and carnosine: are carnivorous diets beneficial? Mech Ageing Dev 2005; 126 (10): 1034–9

    PubMed  CAS  Article  Google Scholar 

  35. 35.

    Goodall MC. Carnosine phosphates as phosphate donor in muscular contraction. Nature 1956; 178 (4532): 539–40

    PubMed  CAS  Article  Google Scholar 

  36. 36.

    Cain DF, Delluva AM, Davies RE. Carnosine phosphate as phosphate donor in muscular contraction. Nature 1958; 182 (4637): 720–1

    PubMed  CAS  Article  Google Scholar 

  37. 37.

    Ellington WR. Evolution and physiological roles of phosphagen systems. Annu Rev Physiol 2001; 63: 289–325

    PubMed  CAS  Article  Google Scholar 

  38. 38.

    Cain DF, Infante AA, Davies RE. Chemistry of muscle contraction: adenosine triphosphate and phosphorylcreatine as energy supplies for single contractions of working muscle. Nature 1962; 196: 214–7

    PubMed  CAS  Article  Google Scholar 

  39. 39.

    Davey CL. The significance of carnosine and anserine in striated skeletal muscle. Arch Biochem Biophys 1960; 89: 303–8

    PubMed  CAS  Article  Google Scholar 

  40. 40.

    Skulachev VP. Membrane-linked energy buffering as the biological function of Na+/K+ gradient. FEBS Lett 1978; 87 (2): 171–9

    PubMed  CAS  Article  Google Scholar 

  41. 41.

    Kohen R, Yamamoto Y, Cundy KC, et al. Antioxidant activity of carnosine, homocarnosine, and anserine present in muscle and brain. Proc Natl Acad Sci U S A 1988; 85 (9): 3175–9

    PubMed  CAS  Article  Google Scholar 

  42. 42.

    Pavlov AR, Revina AA, Dupin AM, et al. The mechanism of interaction of carnosine with superoxide radicals in water solutions. Biochim Biophys Acta 1993; 1157 (3): 304–12

    PubMed  CAS  Article  Google Scholar 

  43. 43.

    Boldyrev A, Bulygina E, Leinsoo T, et al. Protection of neuronal cells against reactive oxygen species by carnosine and related compounds. Comp Biochem Physiol B Biochem Mol Biol 2004; 137 (1): 81–8

    PubMed  Article  CAS  Google Scholar 

  44. 44.

    Boldyrev AA, Yuneva MO, Sorokina EV, et al. Antioxidant systems in tissues of senescence accelerated mice. Biochemistry (Mosc) 2001; 66 (10): 1157–63

    CAS  Article  Google Scholar 

  45. 45.

    Trombley PQ, Horning MS, Blakemore LJ. Interactions between carnosine and zinc and copper: implications for neuromodulation and neuroprotection. Biochemistry (Mosc) 2000; 65 (7): 807–16

    CAS  Google Scholar 

  46. 46.

    Hipkiss AR, Michaelis J, Syrris P. Non-enzymatic glycosylation of the dipeptide L-carnosine, a potential antiprotein-cross-linking agent. FEBS Lett 1995; 371 (1): 81–5

    PubMed  CAS  Article  Google Scholar 

  47. 47.

    Quinn PJ, Boldyrev AA, Formazuyk VE. Carnosine: its properties, functions and potential therapeutic applications. Mol Aspects Med 1992; 13 (5): 379–444

    PubMed  CAS  Article  Google Scholar 

  48. 48.

    Gallant S, Semyonova M, Yuneva M. Carnosine as a potential anti-senescence drug. Biochemistry (Mosc) 2000; 65 (7): 866–8

    CAS  Google Scholar 

  49. 49.

    Temperini C, Scozzafava A, Puccetti L, et al. Carbonic anhydrase activators: x-ray crystal structure of the adduct of human isozyme II with L-histidine as a platform for the design of stronger activators. Bioorg Med Chem Lett 2005; 15 (23): 5136–41

    PubMed  CAS  Article  Google Scholar 

  50. 50.

    Nakagawa K, Ueno A, Nishikawa Y. Interactions between carnosine and captopril on free radical scavenging activity and angiotensin-converting enzyme activity in vitro. Yakugaku Zasshi 2006; 126 (1): 37–42

    PubMed  CAS  Article  Google Scholar 

  51. 51.

    Begum G, Cunliffe A, Leveritt M. Physiological role of carnosine in contracting muscle. Int J Sport Nutr Exerc Metab 2005; 15 (5): 493–514

    PubMed  CAS  Google Scholar 

  52. 52.

    Hipkiss AR, Brownson C, Bertani MF, et al. Reaction of carnosine with aged proteins: another protective process? Ann N Y Acad Sci 2002; 959: 285–94

    PubMed  CAS  Article  Google Scholar 

  53. 53.

    Derave W, Ozdemir MS, Harris RC, et al. Beta-alanine supplementation augments muscle carnosine content and attenuates fatigue during repeated isokinetic contraction bouts in trained sprinters. J Appl Physiol 2007; 103 (5): 1736–43

    PubMed  CAS  Article  Google Scholar 

  54. 54.

    Dunnett M, Harris RC. High-performance liquid chromatographic determination of imidazole dipeptides, histidine, 1-methylhistidine and 3-methylhistidine in equine and camel muscle and individual muscle fibres. J Chromatogr B 1997; 688 (1): 47–5555

    CAS  Article  Google Scholar 

  55. 55.

    O’Dowd JJ, Robins DJ, Miller DJ. Detection, characterisation, and quantification of carnosine and other histidyl derivatives in cardiac and skeletal muscle. Biochim Biophys Acta 1988; 967 (2): 241–9

    PubMed  Article  Google Scholar 

  56. 56.

    Ozdemir MS, Reyngoudt H, De DY, et al. Absolute quantification of carnosine in human calf muscle by proton magnetic resonance spectroscopy. Phys Med Biol 2007; 52 (23): 6781–94

    PubMed  CAS  Article  Google Scholar 

  57. 57.

    Pan JW, Hamm JR, Rothman DL, et al. Intracellular pH in human skeletal muscle by 1H NMR. Proc Natl Acad Sci U S A 1988; 85 (21): 7836–9

    PubMed  CAS  Article  Google Scholar 

  58. 58.

    Harris RC, Dunnett M, Greenhaff PL. Carnosine and taurine contents in individual fibres of human vastus lateralis muscle. J Sports Sci 1998; 16 (7): 639–43

    Article  Google Scholar 

  59. 59.

    Kendrick IP, Kim HJ, Harris RC, et al. The effect of 4 weeks beta-alanine supplementation and isokinetic training on carnosine concentrations in type I and II human skeletal muscle fibres. Eur J Appl Physiol 2009; 106 (1): 131–8

    PubMed  CAS  Article  Google Scholar 

  60. 60.

    Dunnett M, Harris RC, Soliman MZ, et al. Carnosine, anserine and taurine contents in individual fibres from the middle gluteal muscle of the camel. Res Vet Sci 1997; 62 (3): 213–6

    PubMed  CAS  Article  Google Scholar 

  61. 61.

    Dunnett M, Harris RC. Carnosine and taurine contents of different fibre types in the middle gluteal muscle of the thoroughbred horse. Equine Vet J (Suppl.) 1995; 18: 214–7

    Google Scholar 

  62. 62.

    Mannion AF, Jakeman PM, Dunnett M, et al. Carnosine and anserine concentrations in the quadriceps femoris muscle of healthy humans. Eur J Appl Physiol 1992; 64 (1): 47–50

    CAS  Article  Google Scholar 

  63. 63.

    Mannion AF, Jakeman PM, Willan PL. Skeletal muscle buffer value, fibre type distribution and high intensity exercise performance in man. Exp Physiol 1995; 80 (1): 89–101

    PubMed  CAS  Google Scholar 

  64. 64.

    Simoneau JA, Bouchard C. Human variation in skeletal muscle fiber-type proportion and enzyme activities. Am J Physiol 1989; 257 (4Pt1): E567–72

    Google Scholar 

  65. 65.

    Komi PV, Karlsson J. Skeletal muscle fibre types, enzyme activities and physical performance in young males and females. Acta Physiol Scand 1978; 103 (2): 210–8

    PubMed  CAS  Article  Google Scholar 

  66. 66.

    Penafiel R, Ruzafa C, Monserrat F, et al. Gender-related differences in carnosine, anserine and lysine content of murine skeletal muscle. Amino Acids 2004; 26 (1): 53–8

    PubMed  CAS  Article  Google Scholar 

  67. 67.

    Marlin DJ, Harris RC, Gash SP, et al. Carnosine content of the middle gluteal muscle in thoroughbred horses with relation to age, sex and training. Comp Biochem Physiol A Comp Physiol 1989; 93 (3): 629–32

    PubMed  CAS  Article  Google Scholar 

  68. 68.

    Johnson P, Hammer JL. Histidine dipeptide levels in ageing and hypertensive rat skeletal and cardiac muscles. Comp Biochem Physiol B 1992; 103 (4): 981–4

    PubMed  CAS  Article  Google Scholar 

  69. 69.

    Derave W, Jones G, Hespel P, et al. Creatine supplementation augments skeletal muscle carnosine content in senescence-accelerated mice (SAMP8). Rejuvenation Res 2008; 11 (3): 641–7

    PubMed  CAS  Article  Google Scholar 

  70. 70.

    Tallon MJ, Harris RC, Maffulli N, et al. Carnosine, taurine and enzyme activities of human skeletal muscle fibres from elderly subjects with osteoarthritis and young moderately active subjects. Biogerontology 2007; 8 (2): 129–37

    PubMed  CAS  Article  Google Scholar 

  71. 71.

    Stuerenburg HJ. The roles of carnosine in aging of skeletal muscle and in neuromuscular diseases. Biochemistry (Mosc) 2000; 65 (7): 862–5

    CAS  Google Scholar 

  72. 72.

    Kim HJ. Comparison of the carnosine and taurine contents of vastus lateralis of elderly Korean males, with impaired glucose tolerance, and young elite Korean swimmers. Amino Acids 2009; 36 (2): 359–63

    PubMed  CAS  Article  Google Scholar 

  73. 73.

    Tallon MJ, Harris RC, Boobis LH, et al. The carnosine content of vastus lateralis is elevated in resistance-trained bodybuilders. J Strength Cond Res 2005; 19 (4): 725–9

    PubMed  Google Scholar 

  74. 74.

    Parkhouse WS, McKenzie DC, Hochachka PW, et al. Buffering capacity of deproteinized human vastus lateralis muscle. J Appl Physiol 1985; 58 (1): 14–7

    PubMed  CAS  Google Scholar 

  75. 75.

    Kendrick IP, Harris RC, Kim HJ, et al. The effects of 10 weeks of resistance training combined with beta-alanine supplementation on whole body strength, force production, muscular endurance and body composition. Amino Acids 2008; 34 (4): 547–54

    PubMed  CAS  Article  Google Scholar 

  76. 76.

    Mannion AF, Jakeman PM, Willan PL. Effects of isokinetic training of the knee extensors on high-intensity exercise performance and skeletal muscle buffering. Eur J Appl Physiol Occup Physiol 1994; 68 (4): 356–61

    PubMed  CAS  Article  Google Scholar 

  77. 77.

    Suzuki Y, Ito O, Takahashi H, et al. The effect of sprint training on skeletal muscle carnosine in humans. Int J Sport Health Sci 2004; 2: 105–10

    Article  Google Scholar 

  78. 78.

    Hirakoba K. Buffering capacity in human skeletal muscle: a brief review. Bulletin of the Faculty of Computer Science and Systems Engineering Kyushu Institute of Technology (Human Sciences) 1999; 12: 1–21

    Google Scholar 

  79. 79.

    Edge J, Bishop D, Goodman C. Effects of chronic NaHCO3 ingestion during interval training on changes to muscle buffer capacity, metabolism, and short-term endurance performance. J Appl Physiol 2006; 101 (3): 918–25

    PubMed  CAS  Article  Google Scholar 

  80. 80.

    Park YJ, Volpe SL, Decker EA. Quantitation of carnosine in humans plasma after dietary consumption of beef. J Agric Food Chem 2005; 53 (12): 4736–9

    PubMed  CAS  Article  Google Scholar 

  81. 81.

    Dunnett M, Harris RC. Influence of oral b-alanine and histidine supplementation on the carnosine content of the gluteus medius. Equine Vet J (Suppl.) 1999; 30: 499–504

    CAS  Google Scholar 

  82. 82.

    Tamaki N, Tsunemori F, Wakabayashi M, et al. Effect of histidine-free and -excess diets on anserine and carnosine contents in rat gastrocnemius muscle. J Nutr Sci Vitaminol (Tokyo) 1977; 23 (4): 331–40

    CAS  Article  Google Scholar 

  83. 83.

    Harris RC, Jones G, Hill CA, et al. The carnosine content of V lateralis in vegetarians and omnivores [abstract]. FASEB J 2007; 21 (6): A944

    Google Scholar 

  84. 84.

    Sato M, Karasawa N, Shimizu M, et al. Safety evaluation of chicken breast extract containing carnosine and anserine. Food Chem Toxicol 2008; 46 (2): 480–9

    PubMed  CAS  Article  Google Scholar 

  85. 85.

    Suzuki Y, Nakao T, Maemura H, et al. Carnosine and anserine ingestion enhances contribution of nonbicarbonate buffering. Med Sci Sports Exerc 2006; 38 (2): 334–8

    PubMed  CAS  Google Scholar 

  86. 86.

    Hill CA, Harris RC, Kim HJ, et al. The effect of betaalanine and creatine monohydrate supplementation on muscle composition and exercise performance [abstract]. Med Sci Sports Exerc 2005; 37 (5): S348

    Google Scholar 

  87. 87.

    Crozier RA, Ajit SK, Kaftan EJ, et al. MrgD activation inhibits KCNQ/M-currents and contributes to enhanced neuronal excitability. J Neurosci 2007; 27 (16): 4492–6

    PubMed  CAS  Article  Google Scholar 

  88. 88.

    Harris RC, Jones G, Wise JA. The plasma concentration-time profile of beta-alanine using a controlled-release formulation (Carnosyn®) [abstract]. FASEB J 2008; 22: 701

    Google Scholar 

  89. 89.

    Parkhouse WS, McKenzie DC. Possible contribution of skeletal muscle buffers to enhanced anaerobic performance: a brief review. Med Sci Sports Exerc 1984; 16 (4): 328–38

    PubMed  CAS  Google Scholar 

  90. 90.

    Suzuki Y, Ito O, Mukai N, et al. High level of skeletal muscle carnosine contributes to the latter half of exercise performance during 30-s maximal cycle ergometer sprinting. Jpn J Physiol 2002; 52 (2): 199–205

    PubMed  CAS  Article  Google Scholar 

  91. 91.

    Ponte J, Harris RC, Hill CA, et al. Effect of 14 and 28 days β-alanine supplementation on isometric endurance of the knee extensors (abstract). J Sports Sci 2006; 25: 344

    Google Scholar 

  92. 92.

    Stout JR, Cramer JT, Zoeller RF, et al. Effects of betaalanine supplementation on the onset of neuromuscular fatigue and ventilatory threshold in women. Amino Acids 2007; 32 (3): 381–6

    PubMed  CAS  Article  Google Scholar 

  93. 93.

    Stout JR, Graves BS, Smith AE, et al. The effect of betaalanine supplementation on neuromuscular fatigue in elderly (55-92 years): a double-blind randomized study. J Int Soc Sports Nutr 2008; 5: 21

    PubMed  Article  CAS  Google Scholar 

  94. 94.

    Van Thienen R, Van Proeyen K, Van den Eynde B, et al. Beta-alanine improves sprint performance in endurance cycling. Med Sci Sports Exerc 2009; 41: 898–903

    PubMed  Article  CAS  Google Scholar 

  95. 95.

    Boldyrev AA, Petukhov VB. Localization of carnosine effect on the fatigued muscle preparation. Gen Pharmacol 1978; 9 (1): 17–20

    PubMed  CAS  Article  Google Scholar 

  96. 96.

    Severin SE, Kirzon MV, Kaftanova TM. Effect of carnosine and anserine on action of isolated frog muscles [in Russian]. Dokl Akad Nauk SSSR 1953; 91 (3): 691–4

    PubMed  CAS  Google Scholar 

  97. 97.

    Baguet A, Koppo K, Pottier A, et al. Beta-alanine supplementation reduces acidosis but not oxygen uptake response during high-intensity cycling exercise. Eur J Appl Physiol 2010; 108 (3): 495–503

    PubMed  CAS  Article  Google Scholar 

  98. 98.

    Lamb GD, Stephenson DG, Bangsbo J, et al. Point/counterpoint: lactic acid accumulation is an advantage/disadvantage during muscle activity. J Appl Physiol 2006; 100: 1410–4

    PubMed  CAS  Article  Google Scholar 

  99. 99.

    Linderman JK, Gosselink KL. The effects of sodium bicarbonate ingestion on exercise performance. Sports Med 1994; 18 (2): 75–80

    PubMed  CAS  Article  Google Scholar 

  100. 100.

    Hultman E, Sahlin K. Acid-base balance during exercise. Exerc Sport Sci Rev 1980; 8: 41–128

    PubMed  CAS  Google Scholar 

  101. 101.

    Eberstein A, Sandow A. Fatigue in phasic and tonic fibers of frog muscle. Science 1961; 134: 383–4

    PubMed  CAS  Article  Google Scholar 

  102. 102.

    Rubtsov AM. Molecular mechanisms of regulation of the activity of sarcoplasmic reticulum Ca-release channels (ryanodine receptors), muscle fatigue, and Severin’s phenomenon. Biochemistry (Mosc) 2001; 66 (10): 1132–43

    CAS  Article  Google Scholar 

  103. 103.

    Batrukova MA, Rubtsov AM, Boldyrev AA. Effect of carnosine on Ca2+-release channels of skeletal-muscle sarcoplasmicreticulum. Biochemistry (Mosc) 1992; 57 (6): 619–23

    Google Scholar 

  104. 104.

    Batrukova MA, Rubtsov AM. Histidine-containing dipeptides as endogenous regulators of the activity of sarcoplasmic reticulum Ca-release channels. Biochim Biophys Acta 1997; 1324 (1): 142–50

    PubMed  CAS  Article  Google Scholar 

  105. 105.

    Dutka TL, Lamb GD. Effect of carnosine on excitationcontraction coupling in mechanically-skinned rat skeletal muscle. J Muscle Res Cell Motil 2004; 25 (3): 203–13

    PubMed  CAS  Article  Google Scholar 

  106. 106.

    Lamont C, Miller DJ. Calcium sensitizing action of carnosine and other endogenous imidazoles in chemically skinned striated muscle. J Physiol 1992; 454: 421–34

    PubMed  CAS  Google Scholar 

  107. 107.

    Mishima T, Yamada T, Sakamoto M, et al. Chicken breast attenuates high-intensity-exercise-induced decrease in rat sarcoplasmic reticulum Ca2+ handling. Int J Sport Nutr Exerc Metab 2008; 18 (4): 399–411

    PubMed  Google Scholar 

  108. 108.

    Reid MB. Free radicals and muscle fatigue: of ROS, canaries, and the IOC. Free Radic Biol Med 2008; 44 (2): 169–79

    PubMed  CAS  Article  Google Scholar 

  109. 109.

    Antonini FM, Petruzzi E, Pinzani P, et al. The meat in the diet of aged subjects and the antioxidant effects of carnosine. Arch Gerontol Geriatr Suppl 2002; 8: 7–14

    PubMed  CAS  Article  Google Scholar 

  110. 110.

    Moopanar TR, Allen DG. Reactive oxygen species reduce myofibrillar Ca2+ sensitivity in fatiguing mouse skeletal muscle at 37 degrees C. J Physiol 2005; 564 (Pt1): 189–99

    PubMed  CAS  Article  Google Scholar 

  111. 111.

    Tipton KD, Jeukendrup AE, Hespel P. Nutrition for the sprinter. J Sports Sci 2007; 25 Suppl. 1: 5–15

    Article  Google Scholar 

  112. 112.

    Smith AE, Walter AA, Graef JL, et al. Effects of beta-alanine supplementation and high-intensity interval training on endurance performance and body composition in men: a double-blind trial. J Int Soc Sports Nutr 2009; 6: 5

    PubMed  Article  CAS  Google Scholar 

  113. 113.

    Hoffman J, Ratamess N, Kang J, et al. Effect of creatine and beta-alanine supplementation on performance and endocrine responses in strength/power athletes. Int J Sport Nutr Exerc Metab 2006; 16 (4): 430–46

    PubMed  CAS  Google Scholar 

  114. 114.

    Hoffman JR, Ratamess NA, Faigenbaum AD, et al. Shortduration beta-alanine supplementation increases training volume and reduces subjective feelings of fatigue in college football players. Nutr Res 2008; 28 (1): 31–5

    PubMed  CAS  Article  Google Scholar 

  115. 115.

    Harris RC, Söderlund K, Hultman E. Elevation of creatine in resting and exercised muscle of normal subjects by creatine supplementation. Clin Sci 1992; 83: 367–74

    PubMed  CAS  Google Scholar 

  116. 116.

    Robinson TM, Sewell DA, Hultman E, et al. Role of submaximal exercise in promoting creatine and glycogen accumulation in human skeletal muscle. J Appl Physiol 1999; 87 (2): 598–604

    PubMed  CAS  Google Scholar 

  117. 117.

    Derave W, Eijnde BO, Hespel P. Creatine supplementation in health and disease: what is the evidence for long-term efficacy? Mol Cell Biochem 2003; 244 (1-2): 49–55

    PubMed  CAS  Article  Google Scholar 

  118. 118.

    Clarkson PM. Nutrition for improved sports performance: current issues on ergogenic aids. Sports Med 1996; 21 (6): 393–401

    PubMed  CAS  Article  Google Scholar 

  119. 119.

    Bishop D, Edge J, Davis C, et al. Induced metabolic alkalosis affects muscle metabolism and repeated-sprint ability. Med Sci Sports Exerc 2004; 36 (5): 807–13

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This review and the mentioned studies from our laboratory are financially supported by grants from the Research Foundation – Flanders (FWO 1.5.149.08 and G0.0046.09). Audrey Baguet is a recipient of a PhD scholarship from the Research Foundation – Flanders. The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wim Derave.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Derave, W., Everaert, I., Beeckman, S. et al. Muscle Carnosine Metabolism and β-Alanine Supplementation in Relation to Exercise and Training. Sports Med 40, 247–263 (2010). https://doi.org/10.2165/11530310-000000000-00000

Download citation

Keywords

  • Carnosine
  • Creatine Supplementation
  • Ergogenic Effect
  • Muscle Carnosine
  • Carnosine Content