Intravenous versus Oral Rehydration in Athletes

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.


Fluid is typically administered via intravenous (IV) infusion to athletes who develop clinical symptoms of heat illness, based on the perception that dehydration is a primary factor contributing to the condition. However, other athletes also voluntarily rehydrate with IV fluid as opposed to, or in conjunction with, oral rehydration. The voluntary use of IV fluids to accelerate rehydration in dehydrated, though otherwise healthy athletes, has recently been banned by the World Anti-Doping Agency. However, the technique remains appealing to many athletes. Given that it now violates the Anti-Doping Code, it is important to determine whether potential benefits of using this technique outweigh the risks involved. Several studies have shown that rehydration is more rapid with IV fluid. However, the benefits are generally transient and only small differences to markers of hydration status are seen when comparing IV and oral rehydration. Furthermore, several studies have shown improvements in cardiovascular function and thermoregulation with IV fluid, while others have indicated that oral fluid is superior. Subsequent exercise performance has not been improved to a greater extent with one technique over the other. The paucity of definitive findings is probably related to the small number of studies investigating these variables and the vast differences in the designs of studies that have been conducted. The major limitation of IV rehydration is that it bypasses oropharyngeal stimulation, which has an influence on factors such as thirst sensation, antidiuretic hormone (arginine vasopressin) release, cutaneous vasodilation and mean arterial pressure. Further research is necessary to determine the relative benefits of oral and IV rehydration for athletes.

This is a preview of subscription content, log in to check access.

Table I
Table II
Table III


  1. 1.

    Sawka MN, Noakes TD. Does dehydration impair exercise performance? Med Sci Sports Exerc 2007 Aug; 39 (8): 1209–17

    PubMed  Article  Google Scholar 

  2. 2.

    Cheuvront SN, Carter 3rd R, Castellani JW, et al. Hypohydration impairs endurance exercise performance in temperate but not cold air. J Appl Physiol 2005 Nov; 99 (5): 1972–6

    PubMed  Article  Google Scholar 

  3. 3.

    Judelson DA, Maresh CM, Anderson JM, et al. Hydration and muscular performance: does fluid balance affect strength, power and high-intensity endurance? Sports Med 2007; 37 (10): 907–21

    PubMed  Article  Google Scholar 

  4. 4.

    Cheuvront SN, Carter 3rd R, Sawka MN. Fluid balance and endurance exercise performance. Curr Sports Med Rep 2003 Aug; 2 (4): 202–8

    PubMed  Google Scholar 

  5. 5.

    Sharwood K, Collins M, Goedecke J, et al. Weight changes, sodium levels, and performance in the South African ironman triathlon. Clin J Sport Med 2002 Nov; 12 (6): 391–9

    PubMed  Article  Google Scholar 

  6. 6.

    Sharwood KA, Collins M, Goedecke JH, et al. Weight changes, medical complications, and performance during an ironman triathlon. Br J Sports Med 2004 Dec; 38 (6): 718–24

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Shirreffs SM, Armstrong LE, Cheuvront SN. Fluid and electrolyte needs for preparation and recovery from training and competition. J Sports Sci 2004 Jan; 22 (1): 57–63

    PubMed  Article  Google Scholar 

  8. 8.

    Noakes TD. Perpetuating ignorance: intravenous fluid therapy in sport. Br J Sports Med 1999 Oct; 33 (5): 296–7

    PubMed  CAS  Google Scholar 

  9. 9.

    Casa D, Ganio MS, Lopez RM, et al. Intravenous versus oral rehydration: physiological, performance, and legal considerations. Curr Sports Med Rep 2008; 7 (4): S41–9

    Google Scholar 

  10. 10.

    WADA. The World Anti-Doping Code: the 2007 Prohibited List-International Standard. 2007 [online]. Available from URL: [Accessed 2009 May 20]

    Google Scholar 

  11. 11.

    Speedy DB, Noakes TD, Holtzhausen LM. Exerciseassociated collapse: postural hypotension, or something deadlier? Phys Sportsmed 2003; 31 (3): 23–9

    PubMed  Google Scholar 

  12. 12.

    Holtzhausen LM, Noakes TD. Collapsed ultraendurance athlete: proposed mechanisms and an approach to management. Clin J Sport Med 1997 Oct; 7 (4): 292–301

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Noakes T. Hyponatremia in distance athletes: pulling the IV on the ‘dehydration myth’. Phys Sportsmed 2000; 28 (9): 71–6

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Pyne S. Intravenous fluids post marathon: when and why? Sports Med 2007; 37 (4-5): 434–6

    PubMed  Article  Google Scholar 

  15. 15.

    Castellani JW, Maresh CM, Armstrong LE, et al. Intravenous vs. oral rehydration: effects on subsequent exercise-heat stress. J Appl Physiol 1997 Mar; 82 (3): 799–806

    PubMed  CAS  Google Scholar 

  16. 16.

    Maresh CM, Herrera-Soto JA, Armstrong LE, et al. Perceptual responses in the heat after brief intravenous versus oral rehydration. Med Sci Sports Exerc 2001 Jun; 33 (6): 1039–45

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Casa DJ, Maresh CM, Armstrong LE, et al. Intravenous versus oral rehydration during a brief period: responses to subsequent exercise in the heat. Med Sci Sports Exerc 2000 Jan; 32 (1): 124–33

    PubMed  CAS  Google Scholar 

  18. 18.

    Kenefick RW, O’Moore KM, Mahood NV, et al. Rapid IV versus oral rehydration: responses to subsequent exercise heat stress. Med Sci Sports Exerc 2006 Dec; 38 (12): 2125–31

    PubMed  Article  Google Scholar 

  19. 19.

    Deschamps A, Levy RD, Cosio MG, et al. Effect of saline infusion on body temperature and endurance during heavy exercise. J Appl Physiol 1989 Jun; 66 (6): 2799–804

    PubMed  CAS  Google Scholar 

  20. 20.

    Nose H, Mack GW, Shi XR, et al. Effect of saline infusion during exercise on thermal and circulatory regulations. J Appl Physiol 1990 Aug; 69 (2): 609–16

    PubMed  CAS  Google Scholar 

  21. 21.

    Hamilton MT, Gonzalez-Alonso J, Montain SJ, et al. Fluid replacement and glucose infusion during exercise prevent cardiovascular drift. J Appl Physiol 1991 Sep; 71 (3): 871–7

    PubMed  CAS  Google Scholar 

  22. 22.

    Polak AA, van Linge B, Rutten FL, et al. Effect of intravenous fluid administration on recovery after running a marathon. Br J Sports Med 1993 Sep; 27 (3): 205–8

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Riebe D, Maresh CM, Armstrong LE, et al. Effects of oral and intravenous rehydration on ratings of perceived exertion and thirst. Med Sci Sports Exerc 1997 Jan; 29 (1): 117–24

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Castellani JW, Maresh CM, Armstrong LE, et al. Endocrine responses during exercise-heat stress: effects of prior isotonic and hypotonic intravenous rehydration. Eur J Appl Physiol Occup Physiol 1998 Feb; 77 (3): 242–8

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Casa DJ, Maresh CM, Armstrong LE, et al. Intravenous versus oral rehydration during a brief period: stress hormone responses to subsequent exhaustive exercise in the heat. Int J Sport Nutr Exerc Metab 2000 Dec; 10 (4): 361–74

    PubMed  CAS  Google Scholar 

  26. 26.

    Kenefick RW, Maresh CM, Armstrong LE, et al. Plasma vasopressin and aldosterone responses to oral and intravenous saline rehydration. J Appl Physiol 2000 Dec; 89 (6): 2117–22

    PubMed  CAS  Google Scholar 

  27. 27.

    Echegaray M, Armstrong LE, Maresh CM, et al. Blood glucose responses to carbohydrate feeding prior to exercise in the heat: effects of hypohydration and rehydration. Int J Sport Nutr Exerc Metab 2001 Mar; 11 (1): 72–83

    PubMed  CAS  Google Scholar 

  28. 28.

    Kenefick RW, Maresh CM, Armstrong LE, et al. Rehydration with fluid of varying tonicities: effects on fluid regulatory hormones and exercise performance in the heat. J Appl Physiol 2007 May; 102 (5): 1899–905

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Figaro MK, Mack GW. Regulation of fluid intake in dehydrated humans: role of oropharyngeal stimulation. Am J Physiol 1997 Jun; 272 (6Pt2): R1740–6

    Google Scholar 

  30. 30.

    Kamijo Y, Okumoto T, Takeno Y, et al. Transient cutaneous vasodilatation and hypotension after drinking in dehydrated and exercising men. J Physiol 2005 Oct 15; 568 (Pt2): 689–98

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Montain SJ, Coyle EF. Fluid ingestion during exercise increases skin blood flow independent of increases in blood volume. J Appl Physiol 1992 Sep; 73 (3): 903–10

    PubMed  CAS  Google Scholar 

  32. 32.

    Fortney SM, Nadel ER, Wenger CB, et al. Effect of acute alterations of blood volume on circulatory performance in humans. J Appl Physiol 1981 Feb; 50 (2): 292–8

    PubMed  CAS  Google Scholar 

  33. 33.

    Ekblom B, Wilson G, Astrand PO. Central circulation during exercise after venesection and reinfusion of red blood cells. J Appl Physiol 1976 Mar; 40 (3): 379–83

    PubMed  CAS  Google Scholar 

  34. 34.

    Williams MH, Goodwin AR, Perkins R, et al. Effect of blood reinjection upon endurance capacity and heart rate. Med Sci Sports 1973 Fall; 5 (3): 181–6

    PubMed  CAS  Google Scholar 

  35. 35.

    Kay D, Marino FE. Fluid ingestion and exercise hyperthermia: implications for performance, thermoregulation, metabolism and the development of fatigue. J Sports Sci 2000 Feb; 18 (2): 71–82

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    Mack G, Nose H, Nadel ER. Role of cardiopulmonary baroreflexes during dynamic exercise. J Appl Physiol 1988 Oct; 65 (4): 1827–32

    PubMed  CAS  Google Scholar 

  37. 37.

    Nadel ER, Fortney SM, Wenger CB. Effect of hydration state of circulatory and thermal regulations. J Appl Physiol 1980 Oct; 49 (4): 715–21

    PubMed  CAS  Google Scholar 

  38. 38.

    Moses AM, Miller M, Streeten DH. Quantitative influence of blood volume expansion on the osmotic threshold for vasopressin release. J Clin Endocrinol Metab 1967 May; 27 (5): 655–62

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    Moses AM, Miller M. Osmotic threshold for vasopressin release as determined by saline infusion and by dehydration. Neuroendocrinology 1971; 7 (4): 219–26

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Seckl JR, Williams TD, Lightman SL. Oral hypertonic saline causes transient fall of vasopressin in humans. Am J Physiol 1986 Aug; 251 (2Pt2): R214–7

    Google Scholar 

  41. 41.

    Robertson GL, Athar S. The interaction of blood osmolality and blood volume in regulating plasma vasopressin inman. J Clin Endocrinol Metab 1976 Apr; 42 (4): 613–20

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    Rolls BJ, Wood RJ, Rolls ET, et al. Thirst following water deprivation in humans. Am J Physiol 1980 Nov; 239 (5): R476–82

    Google Scholar 

  43. 43.

    Thompson CJ, Burd JM, Baylis PH. Acute suppression of plasma vasopressin and thirst after drinking in hypernatremic humans. Am J Physiol 1987 Jun; 252 (6Pt2): R1138–42

    Google Scholar 

  44. 44.

    Geelen G, Keil LC, Kravik SE, et al. Inhibition of plasma vasopressin after drinking in dehydrated humans. Am J Physiol 1984 Dec; 247 (6Pt2): R968–71

    Google Scholar 

  45. 45.

    Nose H, Mack GW, Shi XR, et al. Involvement of sodium retention hormones during rehydration in humans. J Appl Physiol 1988 Jul; 65 (1): 332–6

    PubMed  CAS  Google Scholar 

  46. 46.

    Noakes TD. Drinking guidelines for exercise: what evidence is there that athletes should drink ‘as much as tolerable’, ‘to replace the weight lost during exercise’ or ‘ad libitum’? J Sports Sci 2007 May; 25 (7): 781–96

    PubMed  Article  CAS  Google Scholar 

  47. 47.

    Rivera-Brown AM, Ramirez-Marrero FA, Wilk B, et al. Voluntary drinking and hydration in trained, heat-acclimatized girls exercising in a hot and humid climate. Eur J Appl Physiol 2008 May; 103 (1): 109–16

    PubMed  Article  Google Scholar 

  48. 48.

    Zetou E, Giatsis G, Mountaki F, et al. Body weight changes and voluntary fluid intakes of beach volleyball players during an official tournament. J Sci Med Sport 2008 Apr; 11 (2): 139–45

    PubMed  Article  CAS  Google Scholar 

  49. 49.

    Noakes TD. Fluid replacement during exercise. Exerc Sport Sci Rev 1993; 21: 297–330

    PubMed  Article  CAS  Google Scholar 

  50. 50.

    Noakes T. Hyponatremia in distance runners: fluid and sodium balance during exercise. Curr Sports Med Rep 2002 Aug; 1 (4): 197–207

    PubMed  Google Scholar 

  51. 51.

    Jeukendrup A, Saris WH, Brouns F, et al. A new validated endurance performance test. Med Sci Sports Exerc 1996 Feb; 28 (2): 266–70

    PubMed  Article  CAS  Google Scholar 

  52. 52.

    Palmer GS, Dennis SC, Noakes TD, et al. Assessment of the reproducibility of performance testing on an air-braked cycle ergometer. Int J Sports Med 1996 May; 17 (4): 293–8

    PubMed  Article  CAS  Google Scholar 

  53. 53.

    McLellan TM, Cheung SS, Jacobs I. Variability of time to exhaustion during submaximal exercise. Can J Appl Physiol 1995 Mar; 20 (1): 39–51

    PubMed  Article  CAS  Google Scholar 

  54. 54.

    Sawka MN, Burke LM, Eichner ER, et al. American College of Sports Medicine position stand: exercise and fluid replacement. Med Sci Sports Exerc 2007 Feb; 39 (2): 377–90

    PubMed  Article  Google Scholar 

  55. 55.

    Shirreffs SM, Taylor AJ, Leiper JB, et al. Post-exercise rehydration in man: effects of volume consumed and drink sodium content. Med Sci Sports Exerc 1996 Oct; 28 (10): 1260–71

    PubMed  Article  CAS  Google Scholar 

  56. 56.

    Story DA. Hyperchloraemic acidosis: another misnomer? Crit Care Resusc 2004 Sep; 6 (3): 188–92

    PubMed  CAS  Google Scholar 

  57. 57.

    Story DA. Intravenous fluid administration and controversies in acid-base. Crit Care Resusc 1999 Jun; 1 (2): 156

    PubMed  CAS  Google Scholar 

  58. 58.

    Kirkendol PL, Starrs J, Gonzalez FM. The effects of acetate, lactate, succinate and gluconate on plasma pH and electrolytes in dogs. Trans Am Soc Artific Intern Organs 1980; 26: 323–7

    CAS  Google Scholar 

  59. 59.

    Robertson HT, Pellegrino R, Pini D, et al. Exercise response after rapid intravenous infusion of saline in healthy humans. J Appl Physiol 2004 Aug; 97 (2): 697–703

    PubMed  Article  Google Scholar 

  60. 60.

    Pellegrino R, Dellaca R, Macklem PT, et al. Effects of rapid saline infusion on lung mechanics and airway responsiveness in humans. J Appl Physiol 2003 Aug; 95 (2): 728–34

    PubMed  Google Scholar 

  61. 61.

    Speedy DB, Faris JG, Hamlin M, et al. Hyponatremia and weight changes in an ultradistance triathlon. Clin J Sport Med 1997 Jul; 7 (3): 180–4

    PubMed  Article  CAS  Google Scholar 

  62. 62.

    Speedy DB, Noakes TD, Rogers IR, et al. Hyponatremia in ultradistance triathletes. Med Sci Sports Exerc 1999 Jun; 31 (6): 809–15

    PubMed  Article  CAS  Google Scholar 

  63. 63.

    Noakes TD, Sharwood K, Speedy D, et al. Three independent biological mechanisms cause exercise-associated hyponatremia: evidence from 2,135 weighed competitive athletic performances. Proc Natl Acad Sci U S A 2005 Dec 20; 102 (51): 18550–5

    PubMed  Article  CAS  Google Scholar 

  64. 64.

    Irving RA, Noakes TD, Buck R, et al. Evaluation of renal function and fluid homeostasis during recovery from exercise-induced hyponatremia. J Appl Physiol 1991 Jan; 70 (1): 342–8

    PubMed  CAS  Google Scholar 

Download references


The authors acknowledge the University of Queensland Graduate School Research Travel Grant for financial assistance. The authors have no conflicts of interest that are directly relevant to the contents of this review.

Author information



Corresponding author

Correspondence to Mr Simon Piet van Rosendal.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

van Rosendal, S.P., Osborne, M.A., Fassett, R.G. et al. Intravenous versus Oral Rehydration in Athletes. Sports Med 40, 327–346 (2010).

Download citation


  • Skin Temperature
  • Plasma Volume
  • Oral Fluid
  • Thermal Sensation
  • Sweat Rate