Neuro-Musculoskeletal and Performance Adaptations to Lower-Extremity Plyometric Training

Abstract

Plyometric training (PLY) is a very popular form of physical conditioning of healthy individuals that has been extensively studied over the last 3 decades. In this article, we critically review the available literature related to lower-body PLY and its effects on human neural and musculoskeletal systems, athletic performance and injury prevention. We also considered studies that combined lower-body PLY with other popular training modalities, as well as studies that applied PLY on non-rigid surfaces. The available evidence suggests that PLY, either alone or in combination with other typical training modalities, elicits numerous positive changes in the neural and musculoskeletal systems, muscle function and athletic performance of healthy individuals. Specifically, the studies have shown that long-term PLY (i.e. 3–5 sessions a week for 5–12 months) represents an effective training method for enhancing bone mass in prepubertal/early pubertal children, young women and premenopausal women. Furthermore, short-term PLY (i.e. 2–3 sessions a week for 6–15 weeks) can change the stiffness of various elastic components of the muscle-tendon complex of plantar flexors in both athletes and non-athletes. Short-term PLY also improves the lower-extremity strength, power and stretch-shortening cycle (SSC) muscle function in healthy individuals. These adaptive changes in neuromuscular function are likely the result of (i) an increased neural drive to the agonist muscles; (ii) changes in the muscle activation strategies (i.e. improved intermuscular coordination); (iii) changes in the mechanical characteristics of the muscle-tendon complex of plantar flexors; (iv) changes in muscle size and/or architecture; and (v) changes in single-fibre mechanics. Our results also show that PLY, either alone or in combination with other training modalities, has the potential to (i) enhance a wide range of athletic performance (i.e. jumping, sprinting, agility and endurance performance) in children and young adults of both sexes; and (ii) to reduce the risk of lower-extremity injuries in female athletes. Finally, available evidence suggests that short-term PLY on non-rigid surfaces (i.e. aquatic- or sand-based PLY) could elicit similar increases in jumping and sprinting performance as traditional PLY, but with substantially less muscle soreness. Although many issues related to PLY remain to be resolved, the results of this review allow us to recommend the use of PLY as a safe and effective training modality for improving lower-extremity muscle function and functional performance of healthy individuals. For performance enhancement and injury prevention in competitive sports, we recommend an implementation of PLY into a well designed, sport-specific physical conditioning programme.

This is a preview of subscription content, access via your institution.

Table I
Table II
Table III
Table IV
Table V

References

  1. 1.

    Chmielewski TL, Myer GD, Kauffman D, et al. Plyometric exercise in the rehabilitation of athletes: physiological responses and clinical application. J Orthop Sports Phys Ther 2006 May; 36 (5): 308–19

    PubMed  Google Scholar 

  2. 2.

    Bobbert MF. Drop jumping as a training method for jumping ability. Sports Med 1990 Jan; 9 (1): 7–22

    PubMed  CAS  Google Scholar 

  3. 3.

    Markovic G. Does plyometric training improve vertical jump height? A meta-analytical review. Br J Sports Med 2007 Jun; 41 (6): 349–55; discussion 55

    PubMed  Google Scholar 

  4. 4.

    Lundin P, Berg W. Plyometrics: a review of plyometric training. Nat Strength Cond Assoc J 1991; 13 (6): 22–34

    Google Scholar 

  5. 5.

    Blattner SE, Noble L. Relative effects of isokinetic and plyometric training on vertical jumping performance. ResQ 1979; 50: 583–8

    Google Scholar 

  6. 6.

    Clutch D, Wilton M, McGown C, et al. The effect of depth jumps and weight training on leg strength and verticaljump. Res Q Exerc Sport 1983; 54 (1): 5–10

    Google Scholar 

  7. 7.

    Ford Jr HT, Puckett JR, Drummond JP, et al. Effects of three combinations of plyometric and weight trainingprograms on selected physical fitness test items. Percept Mot Skills 1983 Jun; 56 (3): 919–22

    PubMed  Google Scholar 

  8. 8.

    Dvir Z. Pre-stretch conditioning: the effect of incorporating high vs low intensity pre-stretch stimulus on verticaljump scores. Part II. Aus J Sci Med Sport 1985; 17 (2): 15–9

    Google Scholar 

  9. 9.

    Brown ME, Mayhew JL, Boleach LW. Effect of plyometric training on vertical jump performance in high schoolbasketball players. J Sports Med Phys Fitness 1986 Mar; 26 (1): 1–4

    PubMed  CAS  Google Scholar 

  10. 10.

    Adams TM, Worley D, Throgmartin D. The effects of selected plyometric and weight training on muscle leg power. Track Field Q Rev 1987; 87: 45–7

    Google Scholar 

  11. 11.

    Hortobagyi T, Sio A, Fodor T, et al. Effects of targeted skill development and plyometric conditioning on longjump performance in 16-year-old boys. J Hum Movement Stud 1991 Jul; 21 (1): 1–17

    Google Scholar 

  12. 12.

    Hortobagyi T, Havasi J, Varga Z. Comparison of 2 stretchshorten exercise programs in 13-year-old boys-nonspecifictraining effects. J Hum Movement Stud 1990; 18 (4): 177–88

    Google Scholar 

  13. 13.

    de Villarreal ES, Kellis E, Kraemer WJ, et al. Determining variables of plyometric training for improving verticaljump height performance: a meta-analysis. J Strength Cond Res 2009; 23 (2): 495–506

    PubMed  Google Scholar 

  14. 14.

    Markovic G, Jukic I, Milanovic D, et al. Effects of sprint and plyometric training on muscle function and athleticperformance. J Strength Cond Res 2007 May; 21 (2): 543–9

    PubMed  Google Scholar 

  15. 15.

    Fatouros IG, Jamurtas AZ, Leontsini D, et al. Evaluation of plyometric exercise training, weight training, and theircombination on vertical jumping performance and legstrength. J Strength Cond Res 2000 Nov; 14 (4): 470–6

    Google Scholar 

  16. 16.

    Hakkinen K, Komi PV, Alen M. Effect of explosive type strength training on isometric force- and relaxation-time,electromyographic and muscle fibre characteristics of legextensor muscles. Acta Physiol Scand 1985 Dec; 125 (4): 587–600

    PubMed  CAS  Google Scholar 

  17. 17.

    Matavulj D, Kukolj M, Ugarkovic D, et al. Effects of plyometric training on jumping performance in juniorbasketball players. J Sports Med Phys Fitness 2001 Jun; 41 (2): 159–64

    PubMed  CAS  Google Scholar 

  18. 18.

    Salonikidis K, Zafeiridis A. The effects of plyometric, tennis- drills, and combined training on reaction, lateral andlinear speed, power, and strength in novice tennis players. J Strength Cond Res 2008 Jan; 22 (1): 182–91

    PubMed  Google Scholar 

  19. 19.

    Spurrs RW, Murphy AJ, Watsford ML. The effect of plyometric training on distance running performance. EurJ Appl Physiol 2003 Mar; 89 (1): 1–7

    Google Scholar 

  20. 20.

    Saunders PU, Telford RD, Pyne DB, et al. Short-term plyometric training improves running economy in highlytrained middle and long distance runners. J Strength Cond Res 2006 Nov; 20 (4): 947–54

    PubMed  Google Scholar 

  21. 21.

    Myer GD, Ford KR, Palumbo JP, et al. Neuromuscular training improves performance and lower-extremity biomechanicsin female athletes. J Strength Cond Res 2005 Feb; 19 (1): 51–60

    PubMed  Google Scholar 

  22. 22.

    Myer GD, Ford KR, McLean SG, et al. The effects of plyometric versus dynamic stabilization and balancetraining on lower extremity biomechanics. Am J Sports Med 2006 Mar; 34 (3): 445–55

    PubMed  Google Scholar 

  23. 23.

    Myer GD, Ford KR, Brent JL, et al. The effects of plyometric vs. dynamic stabilization and balance training onpower, balance, and landing force in female athletes. J Strength Cond Res 2006 May; 20 (2): 345–53

    PubMed  Google Scholar 

  24. 24.

    Chappell JD, Limpisvasti O. Effect of a neuromuscular training program on the kinetics and kinematics ofjumping tasks. Am J Sports Med 2008 Jun; 36 (6): 1081–6

    PubMed  Google Scholar 

  25. 25.

    Hewett TE, Stroupe AL, Nance TA, et al. Plyometric training in female athletes: decreased impact forces andincreased hamstring torques. Am J Sports Med 1996 Nov-Dec; 24 (6): 765–73

    PubMed  CAS  Google Scholar 

  26. 26.

    Irmischer BS, Harris C, Pfeiffer RP, et al. Effects of a knee ligament injury prevention exercise program on impactforces in women. J Strength Cond Res 2004 Nov; 18 (4): 703–7

    PubMed  Google Scholar 

  27. 27.

    Lephart SM, Abt JP, Ferris CM, et al. Neuromuscular and biomechanical characteristic changes in high school athletes:a plyometric versus basic resistance program. Br JSports Med 2005 Dec; 39 (12): 932–8

    CAS  Google Scholar 

  28. 28.

    Chimera NJ, Swanik KA, Swanik CB, et al. Effects of plyometric training on muscle-activation strategies andperformance in female athletes. J Athl Train 2004 Mar; 39 (1): 24–31

    PubMed  Google Scholar 

  29. 29.

    Mandelbaum BR, Silvers HJ, Watanabe DS, et al. Effectiveness of a neuromuscular and proprioceptive trainingprogram in preventing anterior cruciate ligament injuriesin female athletes: 2-year follow-up. Am J Sports Med 2005 Jul; 33 (7): 1003–10

    PubMed  Google Scholar 

  30. 30.

    Myklebust G, Engebretsen L, Braekken IH, et al. Prevention of anterior cruciate ligament injuries in female teamhandball players: a prospective intervention study overthree seasons. Clin J Sport Med 2003 Mar; 13 (2): 71–8

    PubMed  Google Scholar 

  31. 31.

    Petersen W, Braun C, Bock W, et al. A controlled prospective case control study of a prevention training program infemale team handball players: the German experience. Arch Orthop Trauma Surg 2005 Nov; 125 (9): 614–21

    PubMed  Google Scholar 

  32. 32.

    Kato T, Terashima T, Yamashita T, et al. Effect of lowrepetition jump training on bone mineral density in youngwomen. J Appl Physiol 2006 Mar; 100 (3): 839–43

    PubMed  Google Scholar 

  33. 33.

    Witzke KA, Snow CM. Effects of plyometric jump training on bone mass in adolescent girls. Med Sci Sports Exerc 2000 Jun; 100 (6): 1051–7

    Google Scholar 

  34. 34.

    Kubo K, Morimoto M, Komuro T, et al. Effects of plyometric and weight training onmuscle-tendon complex and jump performance. Med Sci Sports Exerc 2007 Oct; 39 (10): 1801–10

    PubMed  Google Scholar 

  35. 35.

    Grosset JF, Piscione J, Lambertz D, et al. Paired changes in electromechanical delay and musculo-tendinous stiffnessafter endurance or plyometric training. Eur J Appl Physiol 2009; 105 (1): 1673–83

    Google Scholar 

  36. 36.

    Lanyon LE, Rubin CT. Static vs dynamic loads as an influence on bone remodelling. J Biomech 1984; 17 (12): 897–905

    PubMed  CAS  Google Scholar 

  37. 37.

    Rubin CT, Lanyon LE. Regulation of bone formation by applied dynamic loads. J Bone Joint Surg Am 1984 Mar; 66 (3): 397–402

    PubMed  CAS  Google Scholar 

  38. 38.

    Bobbert MF, Mackay M, Schinkelshoek D, et al. Biomechanical analysis of drop and countermovement jumps. Eur J Appl Physiol Occup Physiol 1986; 54 (6): 566–73

    PubMed  CAS  Google Scholar 

  39. 39.

    Bassey EJ, Ramsdale SJ. Increase in femoral bone density in young women following high-impact exercise. Osteoporos Int 1994 Mar; 4 (2): 72–5

    PubMed  CAS  Google Scholar 

  40. 40.

    Bassey EJ, Rothwell MC, Littlewood JJ, et al. Pre- and postmenopausal women have different bone mineraldensity responses to the same high-impact exercise. J Bone Miner Res 1998 Dec; 13 (12): 1805–13

    PubMed  CAS  Google Scholar 

  41. 41.

    Heinonen A, Sievanen H, Kannus P, et al. High-impact exercise and bones of growing girls: a 9-month controlledtrial. Osteoporos Int 2000; 11 (12): 1010–7

    PubMed  CAS  Google Scholar 

  42. 42.

    Fuchs RK, Bauer JJ, Snow CM. Jumping improves hip and lumbar spine bone mass in prepubescent children: a randomizedcontrolled trial. J Bone Miner Res 2001 Jan; 16 (1): 148–56

    PubMed  CAS  Google Scholar 

  43. 43.

    Mackelvie KJ, McKay HA, Khan KM, et al. A schoolbased exercise intervention augments bone mineral accrualin early pubertal girls. J Pediatr 2001 Oct; 139 (4): 501–8

    PubMed  CAS  Google Scholar 

  44. 44.

    Petit MA, McKay HA, MacKelvie KJ, et al. A randomized school-based jumping intervention confers site and maturity-specific benefits on bone structural properties ingirls: a hip structural analysis study. J Bone Miner Res 2002 Mar; 17 (3): 363–72

    PubMed  CAS  Google Scholar 

  45. 45.

    MacKelvie KJ, McKay HA, Petit MA, et al. Bone mineral response to a 7-month randomized controlled, school based jumping intervention in 121 prepubertal boys:associations with ethnicity and body mass index. J Bone Miner Res 2002 May; 17 (5): 834–44

    PubMed  CAS  Google Scholar 

  46. 46.

    Johannsen N, Binkley T, Englert V, et al. Bone response to jumping is site-specific in children: a randomized trial. Bone 2003 Oct; 33 (4): 533–9

    PubMed  Google Scholar 

  47. 47.

    Iuliano-Burns S, Saxon L, Naughton G, et al. Regional specificity of exercise and calcium during skeletal growthin girls: a randomized controlled trial. J Bone Miner Res 2003 Jan; 18 (1): 156–62

    PubMed  Google Scholar 

  48. 48.

    MacKelvie KJ, Khan KM, Petit MA, et al. A school-based exercise intervention elicits substantial bone health benefits:a 2-year randomized controlled trial in girls. Pediatrics 2003 Dec; 112 (6): E447–52

    PubMed  Google Scholar 

  49. 49.

    MacKelvie KJ, Petit MA, Khan KM, et al. Bone mass and structure are enhanced following a 2-year randomizedcontrolled trial of exercise in prepubertal boys. Bone 2004 Apr; 34 (4): 755–64

    PubMed  Google Scholar 

  50. 50.

    Vainionpää A, Korpelainen R, Leppaluoto J, et al. Effects of high-impact exercise on bone mineral density: a randomizedcontrolled trial in premenopausal women. Osteoporos Int 2005 Feb; 16 (2): 191–7

    PubMed  Google Scholar 

  51. 51.

    McKay HA, MacLean L, Petit M, et al. “Bounce at the Bell”: a novel programof short bouts of exercise improvesproximal femur bone mass in early pubertal children. Br JSports Med 2005 Aug; 39 (8): 521–6

    CAS  Google Scholar 

  52. 52.

    Gunter K, Baxter-Jones AD, Mirwald RL, et al. Jump starting skeletal health: a 4-year longitudinal study assessingthe effects of jumping on skeletal development in preand circum pubertal children. Bone 2008 Apr; 42 (4): 710–8

    PubMed  Google Scholar 

  53. 53.

    Weeks BK, Young CM, Beck BR. Eight months of regular in-school jumping improves indices of bone strength inadolescent boys and girls: the POWER PE study. J Bone Miner Res 2008 Jul; 23 (7): 1002–11

    PubMed  Google Scholar 

  54. 54.

    Guadalupe-Grau A, Perez-Gomez J, Olmedillas H, et al. Strength training combined with plyometric jumps inadults: sex differences in fat-bone axis adaptations. J Appl Physiol 2009 Apr; 106 (4): 1100–11

    PubMed  CAS  Google Scholar 

  55. 55.

    Gunter K, Baxter-Jones AD, Mirwald RL, et al. Impact exercise increases BMC during growth: an 8-year longitudinalstudy. J Bone Miner Res 2008 Jul; 23 (7): 986–93

    PubMed  Google Scholar 

  56. 56.

    Aagaard P. Training-induced changes in neural function. Exerc Sport Sci Rev 2003 Apr; 31 (2): 61–7

    PubMed  Google Scholar 

  57. 57.

    Alexander RM, Bennet-Clark HC. Storage of elastic strain energy in muscle and other tissues. Nature 1977 Jan 13; 265 (5590): 114–7

    PubMed  CAS  Google Scholar 

  58. 58.

    Alexander RM. Tendon elasticity and muscle function. Comp Biochem Physiol A Mol Integr Physiol 2002 Dec; 133 (4): 1001–11

    PubMed  Google Scholar 

  59. 59.

    Komi PV. Physiological and biomechanical correlates of muscle function: effects of muscle structure and stretchshorteningcycle on force and speed. Exerc Sport Sci Rev 1984; 12: 81–121

    PubMed  CAS  Google Scholar 

  60. 60.

    Aura O, Komi PV. Effects of prestretch intensity on mechanical efficiency of positive work and on elastic behaviorof skeletal muscle in stretch-shortening cycle exercise. Int J Sports Med 1986 Jun; 7 (3): 137–43

    PubMed  CAS  Google Scholar 

  61. 61.

    Aura O, Komi PV. Effects of muscle fiber distribution on the mechanical efficiency of human locomotion. Int JSports Med 1987 Mar; 8Suppl.1: 30–7

    Google Scholar 

  62. 62.

    Asmussen E, Bonde-Petersen F, Jorgensen K. Mechanoelastic properties of human muscles at different temperatures. Acta Physiol Scand 1976 Jan; 96 (1): 83–93

    PubMed  CAS  Google Scholar 

  63. 63.

    Komi PV. Training of muscle strength and power: interaction of neuromotoric, hypertrophic, and mechanicalfactors. Int J Sports Med 1986 Jun; 7 Suppl.1: 10–5

    PubMed  Google Scholar 

  64. 64.

    Kubo K, Kawakami Y, Fukunaga T. Influence of elastic properties of tendon structures on jump performance inhumans. J Appl Physiol 1999 Dec; 87 (6): 2090–6

    PubMed  CAS  Google Scholar 

  65. 65.

    Walshe AD, Wilson GJ. The influence of musculotendinous stiffness on drop jump performance. Can J Appl Physiol 1997 Apr; 22 (2): 117–32

    PubMed  CAS  Google Scholar 

  66. 66.

    Kubo K, Morimoto M, Komuro T, et al. Influences of tendon stiffness, joint stiffness, and electromyographicactivity on jump performances using single joint. Eur JAppl Physiol 2007 Feb; 99 (3): 235–43

    Google Scholar 

  67. 67.

    Kubo K, Kanehisa H, Fukunaga T. Is passive stiffness in human muscles related to the elasticity of tendon structures? Eur J Appl Physiol 2001 Aug; 85 (3-4): 226–32.

    PubMed  CAS  Google Scholar 

  68. 68.

    Wilson GJ, Wood GA, Elliott BC. Optimal stiffness of series elastic component in a stretch-shorten cycle activity. J Appl Physiol 1991 Feb; 70 (2): 825–33

    PubMed  CAS  Google Scholar 

  69. 69.

    Stafilidis S, Arampatzis A. Muscle-tendon unit mechanical and morphological properties and sprint performance. J Sports Sci 2007 Jul; 25 (9): 1035–46

    PubMed  Google Scholar 

  70. 70.

    Wilson GJ, Elliott BC, Wood GA. Stretch shorten cycle performance enhancement through flexibility training. Med Sci Sports Exerc 1992 Jan; 24 (1): 116–23

    PubMed  CAS  Google Scholar 

  71. 71.

    Cornu C, Almeida Silveira MI, Goubel F. Influence of plyometric training on the mechanical impedance of thehuman ankle joint. Eur J Appl Physiol Occup Physiol 1997; 76 (3): 282–8

    PubMed  CAS  Google Scholar 

  72. 72.

    Foure A, Nordez A, Guette M, et al. Effects of plyometric training on passive stiffness of gastrocnemii and themusculo-articular complex of the ankle joint. Scand JMed Sci Sports 2008; 19 (6): 811–8

    Google Scholar 

  73. 73.

    Malisoux L, Francaux M, Nielens H, et al. Stretch-shortening cycle exercises: an effective training paradigm toenhance power output of human single muscle fibers. J Appl Physiol 2006 Mar; 100 (3): 771–9

    PubMed  Google Scholar 

  74. 74.

    Pousson M, Lengrad J, Berjaud S, et al. Détente et é lasticite : effets d’un entraimenent pliométrique. Sci Motric 1995; 25 (1): 19–26

    Google Scholar 

  75. 75.

    Burgess KE, Connick MJ, Graham-Smith P, et al. Plyometric vs. isometric training influences on tendon propertiesand muscle output. J Strength Cond Res 2007 Aug; 21 (3): 986–9

    PubMed  Google Scholar 

  76. 76.

    Wu YK, Lien YH, Lin KH, et al. Relationships between three potentiation effects of plyometric training and performance. Scand J Med Sci Sports 2009 Apr 15; 20 (1): E80–6

    Google Scholar 

  77. 77.

    Rabita G, Couturier A, Lambertz D. Influence of training background on the relationships between plantarflexorintrinsic stiffness and overall musculoskeletal stiffnessduring hopping. Eur J Appl Physiol 2008 May; 103 (2): 163–71

    PubMed  Google Scholar 

  78. 78.

    Latash ML, Zatsiorsky VM. Joint stiffness: myth or reality? Hum Mov Sci 1993; 12: 653–92.

    Google Scholar 

  79. 79.

    Pousson M, Perot C, Goubel F. Stiffness changes and fibre type transitions in rat soleus muscle produced by jumpingtraining. Pflugers Arch 1991 Sep; 419 (2): 127–30

    PubMed  CAS  Google Scholar 

  80. 80.

    Almeida-Silveira MI, Perot C, Pousson M, et al. Effects of stretch-shortening cycle training onmechanical propertiesand fibre type transition in the rat soleus muscle. Pflugers Arch 1994 Jun; 427 (3-4): 289–94

    PubMed  CAS  Google Scholar 

  81. 81.

    Watt PW, Kelly FJ, Goldspink DF, et al. Exercise-induced morphological and biochemical changes in skeletal musclesof the rat. J Appl Physiol 1982 Nov; 53 (5): 1144–51

    PubMed  CAS  Google Scholar 

  82. 82.

    Almeida-Silveira MI, Perot C, Goubel F. Neuromuscular adaptations in rats trained by muscle stretch-shortening. Eur J Appl Physiol Occup Physiol 1996; 72 (3): 261–6

    PubMed  CAS  Google Scholar 

  83. 83.

    Malisoux L, Francaux M, Nielens H, et al. Calcium sensitivity of human single muscle fibers following plyometrictraining. Med Sci Sports Exerc 2006 Nov; 38 (11): 1901–8

    PubMed  CAS  Google Scholar 

  84. 84.

    Kyrolainen H, Avela J, McBride JM, et al. Effects of power training on muscle structure and neuromuscular performance. Scand J Med Sci Sports 2005 Feb; 15 (1): 58–64

    PubMed  CAS  Google Scholar 

  85. 85.

    Potteiger JA, Lockwood RH, Haub MD, et al. Muscle power and fiber characteristics following 8 weeks of plyometric training. J Strength Cond Res 1999 Aug; 13 (3): 275–9

    Google Scholar 

  86. 86.

    Perez-Gomez J, Olmedillas H, Delgado-Guerra S, et al. Effects of weight lifting training combined with plyometricexercises on physical fitness, body composition,and knee extension velocity during kicking in football. Appl Physiol Nutr Metab 2008 Jun; 33 (3): 501–10

    PubMed  CAS  Google Scholar 

  87. 87.

    Hakkinen K, Pakarinen A, Kyrolainen H, et al. Neuromuscular adaptations and serum hormones in femalesduring prolonged power training. Int J Sports Med 1990 Apr; 11 (2): 91–8

    PubMed  CAS  Google Scholar 

  88. 88.

    Fitts RH, Widrick JJ. Muscle mechanics: adaptations with exercise-training. Exerc Sport Sci Rev 1996; 24: 427–73

    PubMed  CAS  Google Scholar 

  89. 89.

    Fitts RH, Riley DR, Widrick JJ. Functional and structural adaptations of skeletal muscle to microgravity. J Exp Biol 2001 Sep; 204 (Pt18): 3201–8

    PubMed  CAS  Google Scholar 

  90. 90.

    Malisoux L, Francaux M, Theisen D. What do single-fiber studies tell us about exercise training? Med Sci Sports Exerc 2007 Jul; 39 (7): 1051–60

    PubMed  Google Scholar 

  91. 91.

    Harridge SD. Plasticity of human skeletal muscle: gene expression to in vivo function. Exp Physiol 2007 Sep; 92 (5): 783–97

    PubMed  CAS  Google Scholar 

  92. 92.

    Blazevich AJ. Effects of physical training and detraining, immobilisation, growth and aging on human fasciclegeometry. Sports Med 2006; 36 (12): 1003–17

    PubMed  Google Scholar 

  93. 93.

    Blazevich AJ, Gill ND, Bronks R, et al. Training-specific muscle architecture adaptation after 5-wk training inathletes. Med Sci Sports Exerc 2003 Dec; 35 (12): 2013–22

    PubMed  Google Scholar 

  94. 94.

    Komi PV. Stretch-shortening cycle. In: Komi PV, editor. Strength and power in sport. 2nd ed. Oxford: BlackwellScience, 2000: 184–202

    Google Scholar 

  95. 95.

    Kyrolainen H, Komi PV, Kim DH. Effects of power training on neuromuscular performance and mechanicalefficiency. Scand J Med Sci Sports 1991; 1 (2): 78–87

    Google Scholar 

  96. 96.

    Kyrolainen H, Hakkinen K, Komi PV, et al. Prolonged power training of stretch-shortening cycle exercises in female:neuromuscular adaptation and changes in mechanicalperformance of muscles. J Hum Movement Stud 1989; 17: 9–22

    Google Scholar 

  97. 97.

    Hakkinen K, Komi PV. Effect of explosive type strength training on electromyographic and force productioncharacteristics of leg extensor muscles during concentricand various stretch-shortening cycle exercises. Scand JSports Sci 1985; 7 (2): 65–76

    Google Scholar 

  98. 98.

    Toumi H, Best TM, Martin A, et al. Muscle plasticity after weight and combined (weight + jump) training. Med Sci Sports Exerc 2004 Sep; 36 (9): 1580–8

    PubMed  Google Scholar 

  99. 99.

    Voigt M, Chelli F, Frigo C. Changes in the excitability of soleus muscle short latency stretch reflexes during humanhopping after 4 weeks of hopping training. Eur J Appl Physiol Occup Physiol 1998 Nov; 78 (6): 522–32

    PubMed  CAS  Google Scholar 

  100. 100.

    Moritani T. Neuromuscular adaptations during the acquisition of muscle strength, power and motor tasks. J Biomech 1993; 26 Suppl.1: 95–107

    PubMed  Google Scholar 

  101. 101.

    Kamen G, Caldwell GE. Physiology and interpretation of the electromyogram. J Clin Neurophysiol 1996 Sep; 13 (5): 366–84

    PubMed  CAS  Google Scholar 

  102. 102.

    Bauer T, Thayer RE, Baras G. Comparison of training modalities for power development in the lower extremity. J Appl Sport Sci Res 1990; 4 (4): 115–21

    Google Scholar 

  103. 103.

    Wilson GJ, Newton RU, Murphy AJ, et al. The optimal training load for the development of dynamic athletic performance. Med Sci Sports Exerc 1993 Nov; 25 (11): 1279–86

    PubMed  CAS  Google Scholar 

  104. 104.

    Holcomb WR, Lander JE, Rutland RM, et al. The effectiveness of a modified plyometric program on power andthe vertical jump. J Strength Cond Res 1996; 10 (2): 89–92

    Google Scholar 

  105. 105.

    Wilson GJ, Murphy AJ, Giorgi A. Weight and plyometric training: effects on eccentric and concentric force production. Can J Appl Physiol 1996 Aug; 21 (4): 301–15

    PubMed  CAS  Google Scholar 

  106. 106.

    Wagner DR, Kocak S. A multivariate approach to assessing anaerobic power following a plyometric trainingprogram. J Strength Cond Res 1997; 11 (4): 251–5

    Google Scholar 

  107. 107.

    Gehri DJ, Ricard MD, Kleiner DM, et al. A comparison of plyometric training techniques for improving verticaljump ability and energy production. J Strength Cond Resv 1998; 12 (3): 85–9

    Google Scholar 

  108. 108.

    Young WB, Wilson GJ, Byrne C. A comparison of drop jump training methods: effects on leg extensor strengthqualities and jumping performance. Int J Sports Med 1999; Jul; 20 (5): 295–303

    PubMed  CAS  Google Scholar 

  109. 109.

    Paavolainen L, Hakkinen K, Hamalainen I, et al. Explosive- strength training improves 5-km running time byimproving running economy and muscle power. J Appl Physiol 1999 May; 86 (5): 1527–33

    PubMed  CAS  Google Scholar 

  110. 110.

    Rimmer E, Sleivert G. Effects of a plyometrics intervention program on sprint performance. J Strength Cond Res 2000; 14 (3): 295–301

    Google Scholar 

  111. 111.

    Diallo O, Dore E, Duche P, et al. Effects of plyometric training followed by a reduced training programmeon physical performance in prepubescent soccer players. J Sports Med Phys Fitness 2001 Sep; 41 (3): 342–8

    PubMed  CAS  Google Scholar 

  112. 112.

    Miller MG, Berry DC, Bullard S, et al. Comparisons of land-based and aquatic-based plyometric programsduring an 8-week training period. J Sport Rehabil 2002; 11: 268–83

    Google Scholar 

  113. 113.

    Turner AM, Owings M, Schwane JA. Improvement in running economy after 6 weeks of plyometric training. J Strength Cond Res 2003 Feb; 17 (1): 60–7

    PubMed  Google Scholar 

  114. 114.

    Luebbers PE, Potteiger JA, Hulver MW, et al. Effects of plyometric training and recovery on vertical jump performanceand anaerobic power. J Strength Cond Res 3003 Nov; 17 (4): 704–9

    Google Scholar 

  115. 115.

    Canavan PK, Vescovi JD. Evaluation of power prediction equations: peak vertical jumping power in women. Med Sci Sports Exerc 2004 Sep; 36 (9): 1589–93

    PubMed  Google Scholar 

  116. 116.

    Robinson LE, Devor ST, Merrick MA, et al. The effects of land vs. aquatic plyometrics on power, torque, velocity, and muscle soreness in women. J Strength Cond Res 2004 Feb; 18 (1): 84–91

    PubMed  Google Scholar 

  117. 117.

    Lehance C, Croisier JL, Bury T. Optojump system efficiency in the assessment of lower limbs explosive strength. Sci Sports 2005 Jun; 20 (3): 131–5

    Google Scholar 

  118. 118.

    Tricoli V, Lamas L, Carnevale R, et al. Short-term effects on lower-body functional power development: weightlifting vs. vertical jump training programs. J Strength Cond Res 2005 May; 19 (2): 433–7

    PubMed  Google Scholar 

  119. 119.

    Herrero JA, Izquierdo M, Maffiuletti NA, et al. Electromyostimulation and plyometric training effects on jumpingand sprint time. Int J Sports Med 2006 Jul; 27 (7): 533–9

    PubMed  CAS  Google Scholar 

  120. 120.

    Kotzamanidis C. Effect of plyometric training on running performance and vertical jumping in prepubertal boys. J Strength Cond Res 2006 May; 20 (2): 441–5

    PubMed  Google Scholar 

  121. 121.

    Miller MG, Herniman JJ, Ricard MD, et al. The effects of a 6-week plyometric training programon agility. J Sport Sci Med 2006 Sep; 5 (3): 459–65

    Google Scholar 

  122. 122.

    Stemm JD, Jacobson BH. Comparison of land- and aquatic- based plyometric training on vertical jump performance. J Strength Cond Res 2007 May; 21 (2): 568–71

    PubMed  Google Scholar 

  123. 123.

    Dodd DJ, Alvar BA. Analysis of acute explosive training modalities to improve lower-body powerin baseballplayers. J Strength Cond Res 2007 Nov; 21 (4): 1177–82

    PubMed  Google Scholar 

  124. 124.

    de Villarreal ES, Gonzalez-Badillo JJ, Izquierdo M. Low and moderate plyometric training frequency producesgreater jumping and sprinting gains compared with highfrequency. J Strength Cond Res 2008 May; 22 (3): 715–25

    PubMed  Google Scholar 

  125. 125.

    Vescovi JD, Canavan PK, Hasson S. Effects of a plyometric program on vertical landing force and jumpingperformance in college women. Phys Ther Sport 2008 Nov; 9 (4): 185–92

    PubMed  Google Scholar 

  126. 126.

    Potach DH, Katsavelis D, Karst GM, et al. The effects of a plyometric training program on the latency time of thequadriceps femoris and gastrocnemius short-latency responses. J Sports Med Phys Fitness 2009 Mar; 49 (1): 35–43

    PubMed  CAS  Google Scholar 

  127. 127.

    Saez-Saez de Villarreal E, Requena B, Newton RU. Does plyometric training improve strength performance? Ameta-analysis. J Sci Med Sport Epub 2009 Nov 6

    Google Scholar 

  128. 128.

    Polhemus R, Burkhardt E. The effect of plyometric training drills on the physical strength gains of collegiatefootball players. NSCA J 1980; 2 (5): 14–7

    Google Scholar 

  129. 129.

    Polhemus R, Burkhardt E, Osina M, et al. The effects of plyometric training with ankle and vest weights on conventionalweight training programs for men and women. NSCA J 1981; 3: 13–5

    Google Scholar 

  130. 130.

    Blakey JB, Southard D. The combined effects of weight training and plyometrics on dynamic leg strength and legpower. J Appl Sport Sci Res 1987; 1 (1): 14–6

    Google Scholar 

  131. 131.

    Paavolainen L, Hakkinen K, Rusko H. Effects of explosive type strength training on physical performance characteristicsin cross-country skiers. Eur J Appl Physiol Occup Physiol 1991; 62 (4): 251–5

    PubMed  CAS  Google Scholar 

  132. 132.

    Kramer JF, Morrow A, Leger A. Changes in rowing ergometer, weight lifting, vertical jump and isokinetic performancein response to standard and standard plusplyometric training programs. Int J Sports Med 1993 Nov; 14 (8): 449–54

    PubMed  CAS  Google Scholar 

  133. 133.

    Delecluse C, Van Coppenolle H, Willems E, et al. Influence of high-resistance and high-velocity training on sprintperformance. Med Sci Sports Exerc 1995 Aug; 27 (8): 1203–9

    PubMed  CAS  Google Scholar 

  134. 134.

    Lyttle AD. Enhancing performance: maximal power versus combined weights and plyometrics training. J Strength Cond Res 1996; 10 (3): 173–9

    Google Scholar 

  135. 135.

    Hunter JP, Marshall RN. Effects of power and flexibility training on vertical jump technique. Med Sci Sports Exerc 2002 Mar; 34 (3): 478–86

    PubMed  Google Scholar 

  136. 136.

    Maffiuletti NA, Dugnani S, Folz M, et al. Effect of combined electrostimulation and plyometric training onvertical jump height. Med Sci Sports Exerc 2002 Oct; 34 (10): 1638–44PhysiologicalAdaptationtoPlyometricTraining893

    PubMed  Google Scholar 

  137. 137.

    Wilkerson GB, Colston MA, Shortt NI, et al. Neuromuscular changes in female collegiate athletes resulting from aplyometric jump-training program. J Athl Training 2004 Jan-Mar; 39 (1): 17–23

    Google Scholar 

  138. 138.

    Moore EWG, Hickey MS, Reiser RF. Comparison of two twelve week off-season combined training programs onentry level collegiate soccer players’ performance. J Strength Cond Res 2005 Nov; 19 (4): 791–8

    PubMed  Google Scholar 

  139. 139.

    Ratamess NA, Kraemer WJ, Volek JS, et al. The effects of ten weeks of resistance and combined plyometric/sprinttraining with theMeridian Elyte athletic shoe on muscularperformance in women. J Strength Cond Res 2007 Aug; 21 (3): 882–7

    PubMed  Google Scholar 

  140. 140.

    Faigenbaum AD, McFarland JE, Keiper FB, et al. Effects of a short-term plyometric and resistance training programon fitness performance in boys age 12 to 15 years. J Sport Sci Med 2007 Dec; 6 (4): 519–25

    Google Scholar 

  141. 141.

    Marques MC, Tillaar R, Vescovi JD, et al. Changes in strength and power performance in elite senior femaleprofessional volleyball players during the in-season: a casestudy. J Strength Cond Res 2008 Jul; 22 (4): 1147–55

    PubMed  Google Scholar 

  142. 142.

    Ronnestad BR, Kvamme NH, Sunde A, et al. Short-term effects of strength and plyometric training on sprint andjump performance in professional soccer players. J Strength Cond Res 2008 May; 22 (3): 773–80

    PubMed  Google Scholar 

  143. 143.

    Mihalik JP, Libby JJ, Battaglini CL, et al. Comparing short-term complex and compound training programs onvertical jump height and power output. J Strength Cond Res 2008 Jan; 22 (1): 47–53

    PubMed  Google Scholar 

  144. 144.

    Schmidtbleicher D. Training for power events. In: Komi PV, editor. Strength and power in sport. Oxford: Blackwell,1992: 169–79

    Google Scholar 

  145. 145.

    Ettema GJ, van Soest AJ, Huijing PA. The role of series elastic structures in prestretch-induced work enhancementduring isotonic and isokinetic contractions. J Exp Biol 1990 Nov; 154: 121–36

    PubMed  CAS  Google Scholar 

  146. 146.

    Walshe AD, Wilson GJ, Ettema GJ. Stretch-shorten cycle compared with isometric preload: contributions to enhancedmuscular performance. J Appl Physiol 1998 Jan; 84 (1): 97–106

    PubMed  CAS  Google Scholar 

  147. 147.

    van Ingen Schenau, Bobbert ME, de Haan A. Does elastic energy enhance work and efficiency in the stretchshorteningcycle. J Appl Biomech 1997; 13: 389–415

    Google Scholar 

  148. 148.

    Bosco C, Komi PV. Influence of aging on the mechanical behavior of leg extensor muscles. Eur J Appl Physiol Occup Physiol 1980; 45 (2-3): 209–19

    PubMed  CAS  Google Scholar 

  149. 149.

    Sale DG. Neural adaptation to strength training. In: Komi PV, editor. Strength and power in sport. London: Blackwell Scientific, 1992: 249–66

    Google Scholar 

  150. 150.

    Kraemer WJ, Ratamess NA, Volek JS, et al. The effect of the Meridian shoe on vertical jump and sprint performancesfollowing short-term combined plyometric/sprint and resistancetraining. J Strength Cond Res 2000; 14 (2): 228–38

    Google Scholar 

  151. 151.

    Sheppard JM, Young WB. Agility literature review: classifications, training and testing. J Sports Sci 2006 Sep; 24 (9): 919–32

    PubMed  CAS  Google Scholar 

  152. 152.

    Roper RL. Incorporating agility training and backward movement into a plyometric program. Strength Cond J 1998 Aug; 20 (4): 60–3

    Google Scholar 

  153. 153.

    Young WB, James R, Montgomery I. Is muscle power related to running speed with changes of direction? J Sports Med Phys Fitness 2002 Sep; 42 (3): 282–8.

    PubMed  CAS  Google Scholar 

  154. 154.

    Jung AP. The impact of resistance training on distance running performance. Sports Med 2003; 33 (7): 539–52

    PubMed  Google Scholar 

  155. 155.

    Noakes TD. Implications of exercise testing for prediction of athletic performance: a contemporary perspective. Med Sci Sports Exerc 1988 Aug; 20 (4): 319–30

    PubMed  CAS  Google Scholar 

  156. 156.

    Jamurtas AZ, Fatouros IG, Buckenmeyer P, et al. Effects of plyometric exercise on muscle soreness and plasmacreatine kinase levels and its comparison with eccentricand concentric exercise. J Strength Cond Res 2000 Feb; 14 (1): 68–74

    Google Scholar 

  157. 157.

    Miyama M, Nosaka K. Influence of surface on muscle damage and soreness induced by consecutive drop jumps. J Strength Cond Res 2004 May; 18 (2): 206–11

    PubMed  Google Scholar 

  158. 158.

    Saxton JM, Clarkson PM, James R, et al. Neuromuscular dysfunction following eccentric exercise. Med Sci Sports Exerc 1995 Aug; 27 (8): 1185–93

    PubMed  CAS  Google Scholar 

  159. 159.

    Almeida SA, Williams KM, Shaffer RA, et al. Epidemiological patterns of musculoskeletal injuries and physicaltraining. Med Sci Sports Exerc 1999 Aug; 31 (8): 1176–82

    PubMed  CAS  Google Scholar 

  160. 160.

    Kyrolainen H, Takala TE, Komi PV. Muscle damage induced by stretch-shortening cycle exercise. Med Sci SportsExerc 1998 Mar; 30 (3): 415–20

    PubMed  CAS  Google Scholar 

  161. 161.

    Nosaka K, Kuramata T. Muscle soreness and serum enzyme activity following consecutive drop jumps. J Sports Sci 1991 Summer; 9 (2): 213–20

    PubMed  CAS  Google Scholar 

  162. 162.

    Impellizzeri FM, Rampinini E, Castagna C, et al. Effect of plyometric training on sand versus grass on muscle sorenessand jumping and sprinting ability in soccer players. Br J Sports Med 2008 Jan; 42 (1): 42–6

    PubMed  CAS  Google Scholar 

  163. 163.

    Martel GF, Harmer ML, Logan JM, et al. Aquatic plyometric training increases vertical jump in female volleyballplayers. Med Sci Sports Exerc 2005 Oct; 37 (10): 1814–9

    PubMed  Google Scholar 

  164. 164.

    Alentorn-Geli E, Myer GD, Silvers HJ, et al. Prevention of non-contact anterior cruciate ligament injuries in soccerplayers. Part 2: a review of prevention programs aimed tomodify risk factors and to reduce injury rates. Knee Surg Sports Traumatol Arthrosc 2009 Aug; 17 (8): 859–79

    PubMed  Google Scholar 

  165. 165.

    Hewett TE, Ford KR, Myer GD. Anterior cruciate ligament injuries in female athletes. Part 2: a meta-analysis ofneuromuscular interventions aimed at injury prevention. Am J Sports Med 2006 Mar; 34 (3): 490–8

    PubMed  Google Scholar 

  166. 166.

    Hewett TE, Myer GD, Ford KR. Reducing knee and anterior cruciate ligament injuries among female athletes:a systematic review of neuromuscular training interventions. J Knee Surg 2005 Jan; 18 (1): 82–8

    PubMed  Google Scholar 

  167. 167.

    Steele JR. Biomechanical factors affecting performance in netball: implications for improving performance and injuryreduction. Sports Med 1990 Aug; 10 (2): 88–102

    PubMed  CAS  Google Scholar 

  168. 168.

    Hewett TE, Lindenfeld TN, Riccobene JV, et al. The effect of neuromuscular training on the incidence of knee injuryin female athletes: a prospective study. Am J Sports Med 1999 Nov-Dec; 27 (6): 699–706

    PubMed  CAS  Google Scholar 

  169. 169.

    Heidt Jr RS, Sweeterman LM, Carlonas RL, et al. Avoidance of soccer injuries with preseason conditioning. Am JSports Med 2000 Sep-Oct; 28 (5): 659–62

    Google Scholar 

  170. 170.

    Pfeiffer RP, Shea KG, Roberts D, et al. Lack of effect of a knee ligament injury prevention program on the incidence of noncontact anterior cruciate ligament injury. J Bone Joint Surg Am 2006 Aug; 88 (8): 1769–74

    PubMed  Google Scholar 

  171. 171.

    Gilchrist J, Mandelbaum BR, Melancon H, et al. A randomized controlled trial to prevent noncontact anteriorcruciate ligament injury in female collegiate soccer players. Am J Sports Med 2008 Aug; 36 (8): 1476–83

    PubMed  Google Scholar 

  172. 172.

    Steffen K, Myklebust G, Olsen OE, et al. Preventing injuries in female youth football: a cluster-randomizedcontrolled trial. Scand J Med Sci Sports 2008 Oct; 18 (5): 605–14

    PubMed  CAS  Google Scholar 

  173. 173.

    Soligard T, Myklebust G, Steffen K, et al. Comprehensive warm-up programme to prevent injuries in young femalefootballers: cluster randomised controlled trial. BMJ 2008 Dec; 337: a2469

    Google Scholar 

  174. 174.

    Pasanen K, Parkkari J, Pasanen M, et al. Neuromuscular training and the risk of leg injuries in female floorballplayers: cluster randomised controlled study. BMJ 2008 Jul; 337 (7661): 96–9

    Google Scholar 

  175. 175.

    Pollard CD, Sigward SM, Ota S, et al. The influence of inseason injury prevention training on lower-extremity kinematicsduring landing in female soccer players. ClinJ Sport Med 2006 May; 16 (3): 223–7

    Google Scholar 

  176. 176.

    Myer GD, Ford KR, Brent JL, et al. Differential neuromuscular training effects on ACL injury risk factorsin “high-risk” versus “low-risk” athletes. BMC Musculoskelet Disord 2007; 8: 39

    PubMed  Google Scholar 

  177. 177.

    Zebis MK, Bencke J, Andersen LL, et al. The effects of neuromuscular training on knee joint motor controlduring sidecutting in female elite soccer and handballplayers. Clin J Sport Med 2008 Jul; 18 (4): 329–37

    PubMed  Google Scholar 

Download references

Acknowledgements

Goran Markovic was supported by the Croatian, Ministry of Science, Education and Sport Grant (no. 034-0342607-2623). The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dr Goran Markovic.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Markovic, G., Mikulic, P. Neuro-Musculoskeletal and Performance Adaptations to Lower-Extremity Plyometric Training. Sports Med 40, 859–895 (2010). https://doi.org/10.2165/11318370-000000000-00000

Download citation

Keywords

  • Female Athlete
  • Athletic Performance
  • Lactate Threshold
  • Vertical Jump
  • Plantar Flexor