Skip to main content
Log in

Efflux-Mediated Drug Resistance in Bacteria

An Update

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Drug efflux pumps play a key role in drug resistance and also serve other functions in bacteria. There has been a growing list of multidrug and drug-specific efflux pumps characterized from bacteria of human, animal, plant and environmental origins. These pumps are mostly encoded on the chromosome, although they can also be plasmid-encoded. A previous article in this journal provided a comprehensive review regarding efflux-mediated drug resistance in bacteria. In the past 5 years, significant progress has been achieved in further understanding of drug resistance-related efflux transporters and this review focuses on the latest studies in this field since 2003. This has been demonstrated in multiple aspects that include but are not limited to: further molecular and biochemical characterization of the known drug efflux pumps and identification of novel drug efflux pumps; structural elucidation of the transport mechanisms of drug transporters; regulatory mechanisms of drug efflux pumps; determining the role of the drug efflux pumps in other functions such as stress responses, virulence and cell communication; and development of efflux pump inhibitors. Overall, the multifaceted implications of drug efflux transporters warrant novel strategies to combat multidrug resistance in bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li X-Z, Nikaido H. Efflux-mediated drug resistance in bacteria. Drugs 2004; 64 (2): 159–204

    PubMed  CAS  Google Scholar 

  2. Poole K. Efflux-mediated antimicrobial resistance. J Antimicrob Chemother 2005; 56 (1): 20–51

    PubMed  CAS  Google Scholar 

  3. Alekshun MN, Levy SB. Molecular mechanisms of antibacterial multidrug resistance. Cell 2007;128 (6): 1037–50

    PubMed  CAS  Google Scholar 

  4. Higgins CF. Multiple molecular mechanisms for multidrug resistance transporters. Nature 2007; 446 (7137): 749–57

    PubMed  CAS  Google Scholar 

  5. Lubelski J, Konings WN, Driessen AJ. Distribution and physiology of ABC-type transporters contributing to multidrug resistance in bacteria. Microbiol Mol Biol Rev 2007; 71 (3): 463–76

    Google Scholar 

  6. Poole K. Efflux pumps as antimicrobial resistance mechanisms. Ann Med 2007; 39 (3): 162–76

    Google Scholar 

  7. Lomovskaya O, Zgurskaya HI, Bostian KA, et al. Multidrug efflux pumps: structure, mechanism, and inhibition. In: Wax RG, Lewis K, Salyers AA, et al., editors. Bacterial resistance to antimicrobials. 2nd ed. Boca Raton (FL): CRC Press, 2008: 45–70

    Google Scholar 

  8. Nikaido H, Takatsuka Y. Mechanisms of RND multidrug efflux pumps. Biochim Biophys Acta 2009; 1794 (5): 769–81

    PubMed  CAS  Google Scholar 

  9. Pages JM, James CE, Winterhalter M. The porin and the permeating antibiotic: a selective diffusion barrier in Gram-negative bacteria. Nat Rev Microbiol 2008; 6 (12): 893–903

    PubMed  CAS  Google Scholar 

  10. Nikaido H. Multidrug resistance in bacteria. Ann Rev Biochem 2009; 78: 119–46

    PubMed  CAS  Google Scholar 

  11. The Royal Society London. Innovative mechanism tacking antibacterial resistance [online]. Available from URL: http://royalsociety.org/document.asp?tip=0&id=7888 [Accessed 2009 Mar 20]

    Google Scholar 

  12. Jassal M, Bishai WR. Extensively drug-resistant tuberculosis. Lancet Infect Dis 2009; 9 (1): 19–30

    PubMed  Google Scholar 

  13. Livermore DM. Minimising antibiotic resistance. Lancet Infect Dis 2005; 5 (7): 450–9

    Google Scholar 

  14. Mulvey MR, Boyd DA, Olson AB, et al. The genetics of Salmonella genomic island 1. Microbes Infect 2006; 8 (7): 1915–22

    PubMed  CAS  Google Scholar 

  15. Li X-Z. Antimicrobial resistance in Salmonella: features and mechanisms. In: Giordano LS, Moretti MA, editors. Salmonella infections: new research. Hauppauge (NY): Nova Science Publishers, 2008: 1–43

    Google Scholar 

  16. Fournier PE, Vallenet D, Barbe V, et al. Comparative genomics of multidrug resistance in Acinetobacter baumannii. PLoS Genet 2006; 2 (1): e7

    PubMed  Google Scholar 

  17. Adams MD, Goglin K, Molyneaux N, et al. Comparative genome sequence analysis of multidrug-resistant Acinetobacter baumannii. J Bacteriol 2008; 190 (24): 8053–64

    PubMed  CAS  Google Scholar 

  18. Livermore DM, Woodford N. The β-lactamase threat in Enterobacteriaceae, Pseudomonas and Acinetobacter. Trends Microbiol 2006; 14 (9): 413–20

    Google Scholar 

  19. Jacoby GA. AmpC β-lactamases. Clin Microbiol Rev 2009; 22 (1): 161–82

    Google Scholar 

  20. Robicsek A, Strahilevitz J, Jacoby GA, et al. Fluoroquinolone-modifying enzyme: a new adaptation of a common aminoglycoside acetyltransferase. Nat Med 2006; 12 (1): 83–8

    PubMed  CAS  Google Scholar 

  21. Li X-Z. Quinolone resistance in bacteria: emphasis on plasmid-mediated mechanisms. Int J Antimicrob Agents 2005; 25 (6): 453–63

    PubMed  CAS  Google Scholar 

  22. Robicsek A, Jacoby GA, Hooper DC. The worldwide emergence of plasmid-mediated quinolone resistance. Lancet Infect Dis 2006; 6 (10): 629–40

    PubMed  CAS  Google Scholar 

  23. Yamane K, Wachino J, Suzuki S, et al. New plasmidmediated fluoroquinolone efflux pump, QepA, found in an Escherichia coli clinical isolate. Antimicrob Agents Chemother 2007; 51 (9): 3354–60

    PubMed  CAS  Google Scholar 

  24. Piddock LJ. Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clin Microbiol Rev 2006; 19 (2): 382–402

    PubMed  CAS  Google Scholar 

  25. Nordmann P, Poirel L, Mak JK, et al. Multidrug-resistant Salmonella strains expressing emerging antibiotic resistance determinants. Clin Infect Dis 2008; 46 (2): 324–5

    PubMed  Google Scholar 

  26. Li X-Z, Mehrotra M, Ghimire S, et al. β-Lactam resistance and β-lactamases in bacteria of animal origin. Vet Microbiol 2007; 121 (3–4): 197–214

    PubMed  CAS  Google Scholar 

  27. Aarestrup FM, Wegener HC, Collignon P. Resistance in bacteria of the food chain: epidemiology and control strategies. Expert Rev Anti Infect Ther 2008; 6 (5): 733–50

    PubMed  Google Scholar 

  28. Weese SJ. Antimicrobial resistance in companion animals. Anim Health Res Rev 2008; 9 (2): 169–76

    Google Scholar 

  29. de Lencastre H, Oliveira D, Tomasz A. Antibiotic resistant Staphylococcus aureus: a paradigm of adaptive power. Curr Opin Microbiol 2007; 10 (5): 428–35

    PubMed  Google Scholar 

  30. Wulf M, Voss A. MRSA in livestock animals: an epidemic waiting to happen? Clin Microbiol Infect 2008; 14 (6): 519–21

    CAS  Google Scholar 

  31. Pao SS, Paulsen IT, Saier Jr MH. Major facilitator superfamily. Microbiol Mol Biol Rev 1998; 62 (1): 1–34

    PubMed  CAS  Google Scholar 

  32. Kuroda T, Tsuchiya T. Multidrug efflux transporters in the MATE family. Biochim Biophys Acta 2009; 1794 (5): 763–8

    PubMed  CAS  Google Scholar 

  33. Jack DL, Yang NM, Saier Jr MH. The drug/metabolite transporter superfamily. Eur J Biochem 2001; 268 (13): 3620–39

    PubMed  CAS  Google Scholar 

  34. Tseng TT, Gratwick KS, Kollman J, et al. The RND permease superfamily: an ancient, ubiquitous and diverse family that includes human disease and development proteins. J Mol Microbiol Biotechnol 1999; 1 (1): 107–25

    PubMed  CAS  Google Scholar 

  35. Seeger MA, Diederichs K, Eicher T, et al. The AcrB efflux pump: conformational cycling and peristalsis lead to multidrug resistance. Curr Drug Targets 2008; 9 (9): 729–49

    PubMed  CAS  Google Scholar 

  36. Altmann SW, Davis Jr HR, Zhu LJ, et al. Niemann-Pick C1 Like 1 protein is critical for intestinal cholesterol absorption. Science 2004; 303 (5661): 1201–4

    PubMed  CAS  Google Scholar 

  37. Murakami S. Multidrug efflux transporter, AcrB: the pumping mechanism. Curr Opin Struct Biol 2008; 18 (4): 459–65

    PubMed  CAS  Google Scholar 

  38. Murakami S, Yamaguchi A. Multidrug-exporting secondary transporters. Curr Opin Struct Biol 2003; 13 (4): 443–52

    PubMed  CAS  Google Scholar 

  39. Yu EW, Aires JR, McDermott G, et al. A periplasmic drug-binding site of the AcrB multidrug efflux pump: a crystallographic and site-directed mutagenesis study. J Bacteriol 2005; 187 (19): 6804–15

    PubMed  CAS  Google Scholar 

  40. Drew D, Klepsch MM, Newstead S, et al. The structure of the efflux pump AcrB in complex with bile acid. Mol Membr Biol 2008; 25 (8): 677–82

    PubMed  CAS  Google Scholar 

  41. Yu EW, Aires JR, Nikaido H. AcrB multidrug efflux pump of Escherichia coli: composite substrate-binding cavity of exceptional flexibility generates its extremely wide substrate specificity. J Bacteriol 2003; 185 (19): 5657–64

    PubMed  CAS  Google Scholar 

  42. Törnroth-Horsefield S, Gourdon P, Horsefield R, et al. Crystal structure of AcrB in complex with a single transmembrane subunit reveals another twist. Structure 2007; 15 (12): 1663–73

    Google Scholar 

  43. Murakami S, Tamura N, Saito A, et al. Extramembrane central pore of multidrug exporter AcrB in Escherichia coli plays an important role in drug transport. J Biol Chem 2004; 279 (5): 3743–8

    PubMed  CAS  Google Scholar 

  44. Middlemiss JK, Poole K. Differential impact of MexB mutations on substrate selectivity of the MexAB-OprM multidrug efflux pump of Pseudomonas aeruginosa. J Bacteriol 2004; 186 (5): 1258-69

    Google Scholar 

  45. Takatsuka Y, Nikaido H. Threonine-978 in the transmembrane segment of the multidrug efflux pump AcrB of Escherichia coli is crucial for drug transport as a probable component of the proton relay network. J Bacteriol 2006; 188 (20): 7284–9

    PubMed  CAS  Google Scholar 

  46. Su CC, Li M, Gu R, et al. Conformation of the AcrB multidrug efflux pump in mutants of the putative proton relay pathway. J Bacteriol 2006; 188 (20): 7290–6

    PubMed  CAS  Google Scholar 

  47. Bohnert JA, Schuster S, Fahnrich E, et al. Altered spectrum of multidrug resistance associated with a single point mutation in the Escherichia coli RND-type MDR efflux pump YhiV (MdtF). J Antimicrob Chemother 2007; 59 (6): 1216–22

    Google Scholar 

  48. Das D, Xu QS, Lee JY, et al. Crystal structure of the multidrug efflux transporter AcrB at 3.1A resolution reveals the N-terminal region with conserved amino acids. J Struct Biol 2007; 158 (3): 494–502

    PubMed  CAS  Google Scholar 

  49. Dastidar V, Mao W, Lomovskaya O, et al. Drug-induced conformational changes in multidrug efflux transporter AcrB from Haemophilus influenzae. J Bacteriol 2007; 189 (15): 5550–8

    PubMed  CAS  Google Scholar 

  50. Bohnert JA, Schuster S, Seeger MA, et al. Site-directed mutagenesis reveals putative substrate binding residues in the Escherichia coli RND efflux pump AcrB. J Bacteriol 2008; 190 (24): 8225–9

    PubMed  CAS  Google Scholar 

  51. Wehmeier C, Schuster S, Fahnrich E, et al. Site-directed mutagenesis reveals amino acid residues in the Escherichia coli RND efflux pump AcrB that confer macrolide resistance. Antimicrob Agents Chemother 2009; 53 (1): 329–30

    PubMed  CAS  Google Scholar 

  52. Seeger MA, von Ballmoos C, Verrey F, et al. Crucial role of Asp408 in the proton translocation pathway of multidrug transporter AcrB: evidence from site-directed mutagenesis and carbodiimide labeling. Biochemistry 2009; 48 (25): 5801–12

    PubMed  CAS  Google Scholar 

  53. Aires JR, Nikaido H. Aminoglycosides are captured from both periplasm and cytoplasm by the AcrD multidrug efflux transporter of Escherichia coli. J Bacteriol 2005; 187 (6): 1923–9

    PubMed  CAS  Google Scholar 

  54. Li X-Z, Ma D, Livermore DM, et al. Role of efflux pump(s) in intrinsic resistance of Pseudomonas aeruginosa: active efflux as a contributing factor to β-lactam resistance. Antimicrob Agents Chemother 1994; 38 (8): 1742–52

    PubMed  CAS  Google Scholar 

  55. Murakami S, Nakashima R, Yamashita E, et al. Crystal structures of a multidrug transporter reveal a functionally rotating mechanism. Nature 2006; 443(7108): 173–9

    PubMed  CAS  Google Scholar 

  56. Seeger MA, Schiefner A, Eicher T, et al. Structural asymmetry of AcrB trimer suggests a peristaltic pump mechanism. Science 2006; 313 (5791): 1295–8

    PubMed  CAS  Google Scholar 

  57. Sennhauser G, Amstutz P, Briand C, et al. Drug export pathway of multidrug exporter AcrB revealed by DARPin inhibitors. PLoS Biol 2007; 5 (1): e7

    PubMed  Google Scholar 

  58. Mikolosko J, Bobyk K, Zgurskaya HI, et al. Conformational flexibility in the multidrug efflux system protein AcrA. Structure 2006; 14 (3): 577–87

    PubMed  CAS  Google Scholar 

  59. Bavro VN, Pietras Z, Furnham N, et al. Assembly and channel opening in a bacterial drug efflux machine. Mol Cell 2008; 30 (1): 114–21

    PubMed  CAS  Google Scholar 

  60. Yin Y, He X, Szewczyk P, et al. Structure of the multidrug transporter EmrD from Escherichia coli. Science 2006; 312 (5774): 741–4

    PubMed  CAS  Google Scholar 

  61. Symmons MF, Bokma E, Koronakis E, et al. The assembled structure of a complete tripartite bacterial multidrug efflux pump. Proc Natl Acad Sci U S A 2009; 106 (17): 7173–8

    PubMed  CAS  Google Scholar 

  62. Sennhauser G, Bukowska MA, Briand C, et al. Crystal structure of the multidrug exporter MexB from Pseudomonas aeruginosa. J Mol Biol 2009; 389 (1): 134–45

    PubMed  CAS  Google Scholar 

  63. Takatsuka Y, Nikaido H. Site-directed disulfide crosslinking shows that cleft flexibility in the periplasmic domain is needed for the multidrug efflux pump AcrB of Escherichia coli. J Bacteriol 2007; 189 (23): 8677–84

    PubMed  CAS  Google Scholar 

  64. Seeger MA, von Ballmoos C, Eicher T, et al. Engineered disulfide bonds support the functional rotation mechanism of multidrug efflux pump AcrB. Nat Struct Mol Biol 2008; 15 (2): 199–205

    PubMed  CAS  Google Scholar 

  65. Takatsuka Y, Nikaido H. Covalently linked trimer of the AcrB multidrug efflux pump provides support for the functional rotating mechanism. J Bacteriol 2009; 191 (6): 1729–37

    PubMed  CAS  Google Scholar 

  66. Zgurskaya HI. Covalently linked AcrB giant offers a new powerful tool for mechanistic analysis of multidrug efflux in bacteria. J Bacteriol 2009; 191 (6): 1727–8

    PubMed  CAS  Google Scholar 

  67. Su CC, Yu EW. Ligand-transporter interaction in the AcrB multidrug efflux pump determined by fluorescence polarization assay. FEBS Lett 2007; 581 (25): 4972–6

    PubMed  CAS  Google Scholar 

  68. Nagano K, Nikaido H. Kinetic behavior of the major multidrug efflux pump AcrB of Escherichia coli. Proc Natl Acad Sci U S A 2009; 106 (14): 5854–8

    PubMed  CAS  Google Scholar 

  69. Alguel Y, Meng C, Teran W, et al. Crystal structures of multidrug binding protein TtgR in complex with antibiotics and plant antimicrobials. JMol Biol 2007; 369 (3): 829–40

    CAS  Google Scholar 

  70. Li M, Gu R, Su CC, et al. Crystal structure of the transcriptional regulator AcrR from Escherichia coli. J Mol Biol 2007; 374 (3): 591–603

    PubMed  CAS  Google Scholar 

  71. Lee A, Mao W, Warren MS, et al. Interplay between efflux pumps may provide either additive or multiplicative effects on drug resistance. J Bacteriol 2000; 182 (11): 3142–50

    PubMed  CAS  Google Scholar 

  72. Abramson J, Smirnova I, Kasho V, et al. Structure and mechanism of the lactose permease of Escherichia coli. Science 2003; 301 (5633): 610–5

    PubMed  CAS  Google Scholar 

  73. Huang Y, Lemieux MJ, Song J, et al. Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli. Science 2003; 301 (5633): 616–20

    PubMed  CAS  Google Scholar 

  74. Law CJ, Maloney PC, Wang DN. Ins and outs of major facilitator superfamily antiporters. Annu Rev Microbiol 2008; 62: 289–305

    PubMed  CAS  Google Scholar 

  75. Nishino K, Yamaguchi A. Analysis of a complete library of putative drug transporter genes in Escherichia coli. J Bacteriol 2001; 183 (20): 5803–12

    PubMed  CAS  Google Scholar 

  76. Sigal N, Lewinson O, Wolf SG, et al. E. coli multidrug transporter MdfA is a monomer. Biochemistry 2007; 46 (17): 5200–8

    PubMed  CAS  Google Scholar 

  77. Fluman N, Bibi E. Bacterial multidrug transport through the lens of the major facilitator superfamily. Biochim Biophys Acta 2009; 1794 (5): 738–47

    PubMed  CAS  Google Scholar 

  78. Mazurkiewicz P, Poelarends GJ, Driessen AJ, et al. Facilitated drug influx by an energy-uncoupled secondary multidrug transporter. J Biol Chem 2004; 279 (1): 103–8

    PubMed  CAS  Google Scholar 

  79. Hassan KA, Souhani T, Skurray RA, et al. Analysis of tryptophan residues in the staphylococcal multidrug transporter QacA reveals long-distance functional associations of residues on opposite sides of the membrane. J Bacteriol 2008; 190 (7): 2441–9

    PubMed  CAS  Google Scholar 

  80. Tanabe M, Szakonyi G, Brown KA, et al. The multidrug resistance efflux complex, EmrAB from Escherichia coli forms a dimer in vitro. Biochem Biophys Res Commun 2009; 380 (2): 338–42

    PubMed  CAS  Google Scholar 

  81. Omote H, Hiasa M, Matsumoto T, et al. The MATE proteins as fundamental transporters of metabolic and xenobiotic organic cations. Trends Pharmacol Sci 2006; 27 (11): 587–93

    PubMed  CAS  Google Scholar 

  82. Otsuka M, Matsumoto T, Morimoto R, et al. A human transporter protein that mediates the final excretion step for toxic organic cations. Proc Natl Acad Sci U S A 2005; 102 (50): 17923–8

    PubMed  CAS  Google Scholar 

  83. Matsumoto T, Kanamoto T, Otsuka M, et al. Role of glutamate residues in substrate recognition by human MATE1 polyspecific H+/organic cation exporter. Am J Physiol Cell Physiol 2008; 294 (4): C1074–8

    PubMed  CAS  Google Scholar 

  84. Hiasa M, Matsumoto T, Komatsu T, et al. Functional characterization of testis-specific rodent multidrug and toxic compound extrusion 2, a class III MATE-type polyspecific H+/organic cation exporter. Am J Physiol Cell Physiol 2007; 293 (5): C1437–44

    PubMed  CAS  Google Scholar 

  85. Bay DC, Rommens KL, Turner RJ. Small multidrug resistance proteins: a multidrug transporter family that continues to grow. Biochim Biophys Acta 2008; 1778 (9): 1814–38

    PubMed  CAS  Google Scholar 

  86. Li X-Z, Poole K, Nikaido H. Contributions of MexABOprM and an EmrE homolog to intrinsic resistance of Pseudomonas aeruginosa to aminoglycosides and dyes. Antimicrob Agents Chemother 2003; 47 (1): 27–33

    PubMed  CAS  Google Scholar 

  87. Schuldiner S. EmrE: a model for studying evolution and mechanism of ion-coupled transporters. Biochim Biophys Acta 2009; 1794 (5): 748–62

    PubMed  CAS  Google Scholar 

  88. Tal N, Schuldiner S. A coordinated network of transporters with overlapping specificities provides a robust survival strategy. Proc Natl Acad Sci U S A 2009; 106 (22): 9051–6

    PubMed  CAS  Google Scholar 

  89. Schuldiner S. When biochemistry meets structural biology: the cautionary tale of EmrE. Trends Biochem Sci 2007; 32 (6): 252–8

    PubMed  CAS  Google Scholar 

  90. Fleishman SJ, Harrington SE, Enosh A, et al. Quasi-symmetry in the cryo-EM structure of EmrE provides the key to modeling its transmembrane domain. J Mol Biol 2006; 364 (1): 54–67

    PubMed  CAS  Google Scholar 

  91. Chen YJ, Pornillos O, Lieu S, et al. X-ray structure of EmrE supports dual topology model. Proc Natl Acad Sci U S A 2007; 104 (48): 18999–9004

    PubMed  CAS  Google Scholar 

  92. Rapp M, Seppala S, Granseth E, et al. Emulating membrane protein evolution by rational design. Science 2007; 315 (5816): 1282–4

    PubMed  CAS  Google Scholar 

  93. Kikukawa T, Nara T, Araiso T, et al. Two-component bacterial multidrug transporter, EbrAB: mutations making each component solely functional. Biochim Biophys Acta 2006; 1758 (5): 673–9

    PubMed  CAS  Google Scholar 

  94. Kikukawa T, Miyauchi S, Araiso T, et al. Anti-parallel membrane topology of two components of EbrAB, a multidrug transporter. Biochem Biophys Res Commun 2007; 358 (4): 1071–5

    PubMed  CAS  Google Scholar 

  95. Steiner-Mordoch S, Soskine M, Solomon D, et al. Parallel topology of genetically fused EmrE homodimers. EMBO J 2008; 27 (1): 17–26

    PubMed  CAS  Google Scholar 

  96. Korkhov VM, Tate CG. An emerging consensus for the structure of EmrE. Acta Crystallogr D Biol Crystallogr 2009; 65 (2): 186–92

    PubMed  CAS  Google Scholar 

  97. Poulsen BE, Rath A, Deber CM. The assembly motif of a bacterial small multidrug resistance protein. J Biol Chem 2009; 284 (15): 9870–5

    PubMed  CAS  Google Scholar 

  98. Dawson RJP, Locher KP. Structure of a bacterial multidrug ABC transporter. Nature 2006; 443 (7108): 180–5

    PubMed  CAS  Google Scholar 

  99. Davidson AL, Chen J. ATP-binding cassette transporters in bacteria. Annu Rev Biochem 2004; 73: 241–68

    PubMed  CAS  Google Scholar 

  100. Hollenstein K, Dawson RJ, Locher KP. Structure and mechanism of ABC transporter proteins. Curr Opin Struct Biol 2007; 17 (4): 412–8

    PubMed  CAS  Google Scholar 

  101. Schuldiner S. Structural biology: the ins and outs of drug transport. Nature 2006; 443 (7108): 156–7

    PubMed  CAS  Google Scholar 

  102. Kim SH, Chang AB, Saier Jr MH. Sequence similarity between multidrug resistance efflux pumps of the ABC and RND superfamilies. Microbiology 2004; 150 (Pt 8): 2493–5

    PubMed  CAS  Google Scholar 

  103. Ward A, Reyes CL, Yu J, et al. Flexibility in the ABC transporter MsbA: alternating access with a twist. Proc Natl Acad Sci U S A 2007; 104 (48): 19005–10

    PubMed  CAS  Google Scholar 

  104. Velamakanni S, Yao Y, Gutmann DA, et al. Multidrug transport by the ABC transporter Sav1866 from Staphylococcus aureus. Biochemistry 2008; 47 (35): 9300–8

    PubMed  CAS  Google Scholar 

  105. Venter H, Shilling RA, Velamakanni S, et al. An ABC transporter with a secondary-active multidrug translocator domain. Nature 2003; 426 (6968): 866–70

    PubMed  CAS  Google Scholar 

  106. Venter H, Velamakanni S, Balakrishnan L, et al. On the energy-dependence of Hoechst 33342 transport by the ABC transporter LmrA. Biochem Pharmacol 2008; 75 (4): 866–74

    PubMed  CAS  Google Scholar 

  107. Zgurskaya HI, Yamada Y, Tikhonova EB, et al. Structural and functional diversity of bacterial membrane fusion proteins. Biochim Biophys Acta 2009; 1794 (5): 794–807

    PubMed  CAS  Google Scholar 

  108. Akama H, Matsuura T, Kashiwagi S, et al. Crystal structure of the membrane fusion protein, MexA, of the multidrug transporter in Pseudomonas aeruginosa. J Biol Chem 2004; 279 (25): 25939–42

    PubMed  CAS  Google Scholar 

  109. Higgins MK, Bokma E, Koronakis E, et al. Structure of the periplasmic component of a bacterial drug efflux pump. Proc Natl Acad Sci U S A 2004; 101 (27): 9994–9

    PubMed  CAS  Google Scholar 

  110. Ge Q, Yamada Y, Zgurskaya H. The C-terminal domain of AcrA is essential for the assembly and function of the multidrug efflux pump AcrAB-TolC. J Bacteriol 2009; 191 (13): 4365–71

    PubMed  CAS  Google Scholar 

  111. Yum S, Xu Y, Piao S, et al. Crystal structure of the periplasmic component of a tripartite macrolide-specific efflux pump. J Mol Biol 2009; 387 (5): 1286–97

    PubMed  CAS  Google Scholar 

  112. Ip H, Stratton K, Zgurskaya H, et al. pH-induced conformational changes of AcrA, the membrane fusion protein of Escherichia coli multidrug efflux system. J Biol Chem 2003; 278 (50): 50474–82

    PubMed  CAS  Google Scholar 

  113. Vaccaro L, Koronakis V, Sansom MS. Flexibility in a drug transport accessory protein: molecular dynamics simulations of MexA. Biophys J 2006; 91 (2): 558–64

    PubMed  CAS  Google Scholar 

  114. Touze T, Eswaran J, Bokma E, et al. Interactions underlying assembly of the Escherichia coli AcrAB-TolC multidrug efflux system. Mol Microbiol 2004; 53 (2): 697–706

    PubMed  CAS  Google Scholar 

  115. Mokhonov VV, Mokhonova EI, Akama H, et al. Role of the membrane fusion protein in the assembly of resistance-nodulation-cell division multidrug efflux pump in Pseudomonas aeruginosa. Biochem Biophys Res Commun 2004; 322 (2): 483–9

    PubMed  CAS  Google Scholar 

  116. Nehme D, Li X-Z, Elliot R, et al. Assembly of theMexAB-OprM multidrug efflux system of Pseudomonas aeruginosa: identification and characterization of mutations in mexA compromising MexA multimerization and interaction with MexB. J Bacteriol 2004; 186 (10): 2973–83

    PubMed  CAS  Google Scholar 

  117. Eda S, Maseda H, Yoshihara E, et al. Assignment of the outer-membrane-subunit-selective domain of the membrane fusion protein in the tripartite xenobiotic efflux pump of Pseudomonas aeruginosa. FEMS Microbiol Lett 2006; 254 (1): 101–7

    PubMed  CAS  Google Scholar 

  118. Stegmeier JF, Polleichtner G, Brandes N, et al. Importance of the adaptor (membrane fusion) protein hairpin domain for the functionality of multidrug efflux pumps. Biochemistry 2006; 45 (34): 10303–12

    PubMed  CAS  Google Scholar 

  119. Nehme D, Poole K. Assembly of the MexAB-OprM multidrug pump of Pseudomonas aeruginosa: component interactions defined by the study of pump mutant suppressors. J Bacteriol 2007; 189 (17): 6118–27

    PubMed  CAS  Google Scholar 

  120. Elkins CA, Nikaido H. Chimeric analysis of AcrA function reveals the importance of its C-terminal domain in its interaction with the AcrB multidrug efflux pump. J Bacteriol 2003; 185 (18): 5349–56

    PubMed  CAS  Google Scholar 

  121. Nehme D, Poole K. Interaction of the MexA and MexB components of the MexAB-OprM multidrug efflux system of Pseudomonas aeruginosa: identification of MexA extragenic suppressors of a T578I mutation in MexB. Antimicrob Agents Chemother 2005; 49 (10): 4375–8

    PubMed  CAS  Google Scholar 

  122. Krishnamoorthy G, Tikhonova EB, Zgurskaya HI. Fitting periplasmic membrane fusion proteins to inner membrane transporters: mutations that enable Escherichia coli AcrA to function with Pseudomonas aeruginosa MexB. J Bacteriol 2008; 190 (2): 691–8

    PubMed  CAS  Google Scholar 

  123. Mima T, Joshi S, Gomez-Escalada M, et al. Identification and characterization of TriABC-OpmH, a triclosan efflux pump of Pseudomonas aeruginosa requiring two membrane fusion proteins. J Bacteriol 2007; 189 (21): 7600–9

    PubMed  CAS  Google Scholar 

  124. Zgurskaya HI, Nikaido H. Bypassing the periplasm: reconstitution of the AcrAB multidrug efflux pump of Escherichia coli. Proc Natl Acad Sci U S A 1999; 96 (13): 7190–5

    PubMed  CAS  Google Scholar 

  125. Nikaido H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev 2003; 67 (4): 593–656

    PubMed  CAS  Google Scholar 

  126. Tatsumi R, Wachi M. TolC-dependent exclusion of porphyrins in Escherichia coli. J Bacteriol 2008; 190 (18): 6228–33

    PubMed  CAS  Google Scholar 

  127. Akama H, Kanemaki M, Yoshimura M, et al. Crystal structure of the drug discharge outer membrane protein, OprM, of Pseudomonas aeruginosa: dual modes of membrane anchoring and occluded cavity end. J Biol Chem 2004; 279 (51): 52816–9

    PubMed  CAS  Google Scholar 

  128. Federici L, Du D, Walas F, et al. The crystal structure of the outer membrane protein VceC from the bacterial pathogen Vibrio cholerae at 1.8 Å resolution. J Biol Chem 2005; 280 (15): 15307–14

    PubMed  CAS  Google Scholar 

  129. Li X-Z, Poole K. Mutational analysis of the OprM outer membrane component of the MexA-MexB-OprM multidrug efflux system of Pseudomonas aeruginosa. J Bacteriol 2001; 183 (1): 12–27

    PubMed  CAS  Google Scholar 

  130. Yoshihara E, Eda S. Diversity in the oligomeric channel structure of the multidrug efflux pumps in Pseudomonas aeruginosa. Microbiol Immunol 2007; 51 (1): 47–52

    PubMed  CAS  Google Scholar 

  131. Gerken H, Misra R. Genetic evidence for functional interactions between TolC and AcrA proteins of a major antibiotic efflux pump of Escherichia coli. Mol Microbiol 2004; 54 (3): 620–31

    PubMed  CAS  Google Scholar 

  132. Husain F, Humbard M, Misra R. Interaction between the TolC and AcrA proteins of a multidrug efflux system of Escherichia coli. J Bacteriol 2004; 186 (24): 8533–6

    PubMed  CAS  Google Scholar 

  133. Lobedanz S, Bokma E, Symmons MF, et al. A periplasmic coiled-coil interface underlying TolC recruitment and the assembly of bacterial drug efflux pumps. Proc Natl Acad Sci U S A 2007; 104 (11): 4612–7

    PubMed  CAS  Google Scholar 

  134. Tikhonova EB, Zgurskaya HI. AcrA, AcrB, and TolC of Escherichia coli form a stable intermembrane multidrug efflux complex. J Biol Chem 2004; 279 (31): 32116–24

    PubMed  CAS  Google Scholar 

  135. Tamura N, Murakami S, Oyama Y, et al. Direct interaction of multidrug efflux transporter AcrB and outer membrane channel TolC detected via site-directed disulfide crosslinking. Biochemistry 2005; 44 (33): 11115–21

    PubMed  CAS  Google Scholar 

  136. Eswaran J, Koronakis E, Higgins MK, et al. Three’s company: component structures bring a closer view of tripartite drug efflux pumps. Curr Opin Struct Biol 2004; 14 (6): 741–7

    PubMed  CAS  Google Scholar 

  137. Misra R, Bavro VN. Assembly and transportmechanismof tripartite drug efflux systems. Biochim Biophys Acta 2009; 1794 (5): 817–25

    PubMed  CAS  Google Scholar 

  138. Reffay M, Gambin Y, Benabdelhak H, et al. Tracking membrane protein association in model membranes. PLoS ONE 2009; 4 (4): e5035

    PubMed  Google Scholar 

  139. Bokma E, Koronakis E, Lobedanz S, et al. Directed evolution of a bacterial efflux pump: adaptation of the E. coli TolC exit duct to the Pseudomonas MexAB translocase. FEBS Lett 2006; 580 (22): 5339–43

    PubMed  CAS  Google Scholar 

  140. Vediyappan G, Borisova T, Fralick JA. Isolation and characterization of VceC gain-of-function mutants that can function with the AcrAB multiple-drug-resistant efflux pump of Escherichia coli. J Bacteriol 2006; 188 (11): 3757–62

    PubMed  CAS  Google Scholar 

  141. Polleichtner G, Andersen C. The channel-tunnel HI1462 of Haemophilus influenzae reveals differences to Escherichia coli TolC. Microbiology 2006; 152 (Pt 6): 1639–47

    PubMed  CAS  Google Scholar 

  142. Damier-Piolle L, Magnet S, Bremont S, et al. AdeIJK, a resistance-nodulation-cell division pump effluxing multiple antibiotics in Acinetobacter baumannii. Antimicrob Agents Chemother 2008; 52 (2): 557–62

    PubMed  CAS  Google Scholar 

  143. Lin L, Ling BD, Li X-Z. Distribution of the multidrug efflux pump genes, adeABC, adeDE and adeIJK, and class 1 integron genes in multiple-antimicrobial-resistant clinical isolates of Acinetobacter baumannii-Acinetobacter calcoaceticus complex. Int J Antimicrob Agents 2009; 33 (1): 27–32

    PubMed  CAS  Google Scholar 

  144. Chau SL, Chu YW, Houang ET. Novel resistance-nodulation-cell division efflux system AdeDE in Acinetobacter genomic DNA group 3. Antimicrob Agents Chemother 2004; 48 (10): 4054–5

    PubMed  CAS  Google Scholar 

  145. Chu YW, Chau SL, Houang ET. Presence of active efflux systems AdeABC, AdeDE and AdeXYZ in different Acinetobacter genomic DNA groups. J Med Microbiol 2006; 55 (Pt 4): 477–8

    PubMed  CAS  Google Scholar 

  146. Espinal PA, Marti S, Sanchez-Cespedes J, et al. First detection of adeC component of the efflux pump AdeABC in an Acinetobacter genospecies 13TU [abstract no. C1- 1049]. 48th ICAAC/IDSA 46th Annual Meeting; 2008 Oct 25–28; Washington, DC

    Google Scholar 

  147. Hernould M, Gagne S, Fournier M, et al. Role of the AheABC efflux pump in Aeromonas hydrophila intrinsic multidrug resistance. Antimicrob Agents Chemother 2008; 52 (4): 1559–63

    PubMed  CAS  Google Scholar 

  148. Wexler HM. Bacteroides: the good, the bad, and the nittygritty. Clin Microbiol Rev 2007; 20 (4): 593–621

    PubMed  CAS  Google Scholar 

  149. Ueda O, Wexler HM, Hirai K, et al. Sixteen homologs of the mex-type multidrug resistance efflux pump in Bacteroides fragilis. Antimicrob Agents Chemother 2005; 49 (7): 2807–15

    PubMed  CAS  Google Scholar 

  150. Pumbwe L, Chang A, Smith RL, et al. BmeRABC5 is a multidrug efflux system that can confer metronidazole resistance in Bacteroides fragilis. Microb Drug Resist 2007; 13 (2): 96–101

    PubMed  CAS  Google Scholar 

  151. Posadas DM, Martin FA, Sabio y Garcia JV, et al. The TolC homologue of Brucella suis is involved in resistance to antimicrobial compounds and virulence. Infect Immun 2007; 75 (1): 379–89

    PubMed  CAS  Google Scholar 

  152. Martin FA, Posadas DM, Carrica MC, et al. Interplay between two RND systems mediating antimicrobial resistance in Brucella suis. J Bacteriol 2009; 191 (8): 2530–40

    PubMed  CAS  Google Scholar 

  153. Nair BM, Cheung Jr KJ, Griffith A, et al. Salicylate induces an antibiotic efflux pump in Burkholderia cepacia complex genomovar III (B. cenocepacia). J Clin Invest 2004; 113 (3): 464–73

    Google Scholar 

  154. Guglierame P, Pasca MR, De Rossi E, et al. Efflux pump genes of the resistance-nodulation-division family in Burkholderia cenocepacia genome. BMC Microbiol 2006; 6: 66

    PubMed  Google Scholar 

  155. Kim J, Kim JG, Kang Y, et al. Quorum sensing and the LysR-type transcriptional activator ToxR regulate toxoflavin biosynthesis and transport in Burkholderia glumae. Mol Microbiol 2004; 54 (4): 921–34

    PubMed  CAS  Google Scholar 

  156. Chan YY, Tan TM, Ong YM, et al. BpeAB-OprB, a multidrug efflux pump in Burkholderia pseudomallei. Antimicrob Agents Chemother 2004; 48 (4): 1128–35

    PubMed  CAS  Google Scholar 

  157. Chan YY, Chua KL. The Burkholderia pseudomallei BpeAB-OprB efflux pump: expression and impact on quorum sensing and virulence. J Bacteriol 2005; 187 (14): 4707–19

    PubMed  CAS  Google Scholar 

  158. Kumar A, Chua KL, Schweizer HP. Method for regulated expression of single-copy efflux pump genes in a surrogate Pseudomonas aeruginosa strain: identification of the BpeEF-OprC chloramphenicol and trimethoprim efflux pump of Burkholderia pseudomallei 1026b. Antimicrob Agents Chemother 2006; 50 (10): 3460–3

    PubMed  CAS  Google Scholar 

  159. Akiba M, Lin J, Barton YW, et al. Interaction of CmeABC and CmeDEF in conferring antimicrobial resistance and maintaining cell viability in Campylobacter jejuni. J Antimicrob Chemother 2006; 57 (1): 52–60

    PubMed  CAS  Google Scholar 

  160. Pumbwe L, Randall LP, Woodward MJ, et al. Evidence for multiple-antibiotic resistance in Campylobacter jejuni not mediated by CmeB or CmeF. Antimicrob Agents Chemother 2005; 49 (4): 1289–93

    PubMed  CAS  Google Scholar 

  161. Tokunaga H, Mitsuo K, Ichinose S, et al. Salt-inducible multidrug efflux pump protein in the moderately halophilic bacterium Chromohalobacter sp. Appl Environ Microbiol 2004; 70 (8): 4424–31

    PubMed  CAS  Google Scholar 

  162. Masi M, Pages JM, Villard C, et al. The eef ABC multidrug efflux pump operon is repressed by H-NS in Enterobacter aerogenes. J Bacteriol 2005; 187 (11): 3894–7

    PubMed  CAS  Google Scholar 

  163. Masi M, Saint N, Molle G, et al. The Enterobacter aerogenes outer membrane efflux proteins TolC and EefC have different channel properties. Biochim Biophys Acta 2007; 1768 (10): 2559–67

    PubMed  CAS  Google Scholar 

  164. Perez A, Canle D, Latasa C, et al. Cloning, nucleotide sequencing, and analysis of the AcrAB-TolC efflux pump of Enterobacter cloacae and determination of its involvement in antibiotic resistance in a clinical isolate. Antimicrob Agents Chemother 2007; 51 (9): 3247–53

    PubMed  CAS  Google Scholar 

  165. Burse A, Weingart H, Ullrich MS. The phytoalexin-inducible multidrug efflux pump AcrAB contributes to virulence in the fire blight pathogen, Erwinia amylovora. Mol Plant Microbe Interact 2004; 17 (1): 43–54

    PubMed  CAS  Google Scholar 

  166. Hansen LH, Johannesen E, Burmolle M, et al. Plasmid-encoded multidrug efflux pump conferring resistance to olaquindox in Escherichia coli. Antimicrob Agents Chemother 2004; 48 (9): 3332–7

    Google Scholar 

  167. Hansen LH, Sorensen SJ, Jorgensen HS, et al. The prevalence of the OqxAB multidrug efflux pump amongst olaquindox-resistant Escherichia coli in pigs. Microb Drug Resist 2005; 11 (4): 378–82

    PubMed  CAS  Google Scholar 

  168. Hansen LH, Jensen LB, Sorensen HI, et al. Substrate specificity of the OqxAB multidrug resistance pump in Escherichia coli and selected enteric bacteria. J Antimicrob Chemother 2007; 60 (1): 145–7

    PubMed  CAS  Google Scholar 

  169. Kaczmarek FS, Gootz TD, Dib-Hajj F, et al. Genetic and molecular characterization of β-lactamase-negative ampicillin-resistant Haemophilus influenzae with unusually high resistance to ampicillin. Antimicrob Agents Chemother 2004; 48 (5): 1630–9

    PubMed  CAS  Google Scholar 

  170. Cerquetti M, Giufre M, Cardines R, et al. First characterization of heterogeneous resistance to imipenem in invasive nontypeable Haemophilus influenzae isolates. Antimicrob Agents Chemother 2007; 51 (9): 3155–61

    PubMed  CAS  Google Scholar 

  171. Stahler FN, Odenbreit S, Haas R, et al. The novel Helicobacter pylori CznABC metal efflux pump is required for cadmium, zinc, and nickel resistance, urease modulation, and gastric colonization. Infect Immun 2006; 74 (7): 3845–52

    PubMed  Google Scholar 

  172. Bina JE, Alm RA, Uria-Nickelsen M, et al. Helicobacter pylori uptake and efflux: basis for intrinsic susceptibility to antibiotics in vitro. Antimicrob Agents Chemother 2000; 44 (2): 248–54

    PubMed  CAS  Google Scholar 

  173. Liu ZQ, Zheng PY, Yang PC. Efflux pump gene hefA of Helicobacter pylori plays an important role in multidrug resistance. World J Gastroenterol 2008; 14 (33): 5217–22

    PubMed  CAS  Google Scholar 

  174. Kutschke A, de Jonge BL. Compound efflux in Helicobacter pylori. Antimicrob Agents Chemother 2005; 49 (7): 3009–10

    PubMed  CAS  Google Scholar 

  175. Schneiders T, Amyes SG, Levy SB. Role of AcrR and RamA in fluoroquinolone resistance in clinical Klebsiella pneumoniae isolates from Singapore. Antimicrob Agents Chemother 2003; 47 (9): 2831–7

    PubMed  CAS  Google Scholar 

  176. Ruzin A, Visalli MA, Keeney D, et al. Influence of transcriptional activator RamA on expression of multidrug efflux pump AcrAB and tigecycline susceptibility in Klebsiella pneumoniae. Antimicrob Agents Chemother 2005; 49 (3): 1017–22

    PubMed  CAS  Google Scholar 

  177. Mazzariol A, Zuliani J, Cornaglia G, et al. AcrAB efflux system: expression and contribution to fluoroquinolone resistance in Klebsiella spp. Antimicrob Agents Chemother 2002; 46 (12): 3984–6

    PubMed  CAS  Google Scholar 

  178. Coudeyras S, Nakusi L, Charbonnel N, et al. A tripartite efflux pump involved in gastrointestinal colonization by Klebsiella pneumoniae confers a tolerance response to inorganic acid. Infect Immun 2008; 76 (10): 4633–41

    PubMed  CAS  Google Scholar 

  179. Ruzin A, Keeney D, Bradford PA. AcrAB efflux pump plays a role in decreased susceptibility to tigecycline in Morganella morganii. Antimicrob Agents Chemother 2005; 49 (2): 791–3

    PubMed  CAS  Google Scholar 

  180. Pasca MR, Guglierame P, De Rossi E, et al. mmpL7 gene of Mycobacterium tuberculosis is responsible for isoniazid efflux in Mycobacterium smegmatis. Antimicrob Agents Chemother 2005; 49 (11): 4775–7

    PubMed  CAS  Google Scholar 

  181. Lee EH, Hill SA, Napier R, et al. Integration host factor is required for FarAB-repression of the farAB-encoded efflux pump of Neisseria gonorrhoeae. Mol Microbiol 2006; 60 (6): 1381–400

    PubMed  CAS  Google Scholar 

  182. Hatfaludi T, Al-Hasani K, Dunstone M, et al. Characterization of TolC efflux pump proteins from Pasteurella multocida. Antimicrob Agents Chemother 2008; 52 (11): 4166–71

    PubMed  CAS  Google Scholar 

  183. Visalli MA, Murphy E, Projan SJ, et al. AcrAB multidrug efflux pump is associated with reduced levels of susceptibility to tigecycline (GAR-936) in Proteus mirabilis. Antimicrob Agents Chemother 2003; 47 (2): 665–9

    PubMed  CAS  Google Scholar 

  184. Li X-Z, Nikaido H, Poole K. Role of MexA-MexB-OprM in antibiotic efflux in Pseudomonas aeruginosa. Antimicrob Agents Chemother 1995; 39 (9): 1948–53

    PubMed  CAS  Google Scholar 

  185. Daigle DM, Cao L, Fraud S, et al. Protein modulator of multidrug efflux gene expression in Pseudomonas aeruginosa. J Bacteriol 2007; 189 (15): 5441–51

    PubMed  CAS  Google Scholar 

  186. Cao L, Srikumar R, Poole K. MexAB-OprM hyperexpression in NalC-type multidrug-resistant Pseudomonas aeruginosa: identification and characterization of the nalC gene encoding a repressor of PA3720-PA3719. Mol Microbiol 2004; 53 (5): 1423–36

    PubMed  CAS  Google Scholar 

  187. Sobel ML, Hocquet D, Cao L, et al. Mutations in PA3574 (nalD) lead to increased MexAB-OprM expression and multidrug resistance in laboratory and clinical isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother 2005; 49 (5): 1782–6

    PubMed  CAS  Google Scholar 

  188. Mima T, Sekiya H, Mizushima T, et al. Gene cloning and properties of the RND-type multidrug efflux pumps MexPQ-OpmE and MexMN-OprM from Pseudomonas aeruginosa. Microbiol Immunol 2005; 49 (11): 999–1002

    PubMed  CAS  Google Scholar 

  189. Li Y, Mima T, Komori Y, et al. A new member of the tripartite multidrug efflux pumps, MexVW-OprM, in Pseudomonas aeruginosa. J Antimicrob Chemother 2003; 52 (4): 572–5

    PubMed  CAS  Google Scholar 

  190. Hearn EM, Dennis JJ, Gray MR, et al. Identification and characterization of the emh ABC efflux system for polycyclic aromatic hydrocarbons in Pseudomonas fluorescens cLP6a. J Bacteriol 2003; 185(21):6233–40

    PubMed  CAS  Google Scholar 

  191. Hearn EM, Gray MR, Foght JM. Mutations in the central cavity and periplasmic domain affect efflux activity of the resistance-nodulation-division pump EmhB from Pseudomonas fluorescens cLP6a. J Bacteriol 2006; 188 (1): 115–23

    PubMed  CAS  Google Scholar 

  192. Jude F, Arpin C, Brachet-Castang C, et al. TbtABM, a multidrug efflux pump associated with tributyltin resistance in Pseudomonas stutzeri. FEMS Microbiol Lett 2004; 232 (1): 7–14

    PubMed  CAS  Google Scholar 

  193. Stoitsova SO, Braun Y, Ullrich MS, et al. Characterization of the RND-type multidrug efflux pump MexAB-OprM of the plant pathogen Pseudomonas syringae. Appl Environ Microbiol 2008; 74 (11): 3387–93

    PubMed  CAS  Google Scholar 

  194. Kang H, Gross DC. Characterization of a resistance-nodulation-cell division transporter system associated with the syr-syp genomic island of Pseudomonas syringae pv. syringae. Appl Environ Microbiol 2005; 71 (9): 5056–65

    PubMed  CAS  Google Scholar 

  195. Brown DG, Swanson JK, Allen C. Two host-induced Ralstonia solanacearum genes, acrA and dinF, encode multidrug efflux pumps and contribute to bacterial wilt virulence. Appl Environ Microbiol 2007; 73 (9): 2777–86

    PubMed  CAS  Google Scholar 

  196. Nishino K, Latifi T, Groisman EA. Virulence and drug resistance roles of multidrug efflux systems of Salmonella enterica serovar Typhimurium. Mol Microbiol 2006; 59 (1): 126–41

    PubMed  CAS  Google Scholar 

  197. Kumar A, Worobec EA. Cloning sequencing, and characterization of the SdeAB multidrug efflux pump of Serratia marcescens. Antimicrob Agents Chemother 2005; 49 (4): 1495–1

    PubMed  CAS  Google Scholar 

  198. Begic S, Worobec EA. The role of the Serratia marcescens SdeAB multidrug efflux pump and TolC homologue in fluoroquinolone resistance studied via gene-knockout mutagenesis. Microbiology 2008; 154 (Pt 2): 454–61

    PubMed  CAS  Google Scholar 

  199. Begic S, Worobec EA. Characterization of the Serratia marcescens SdeCDE multidrug efflux pump studied via gene knockout mutagenesis. Can J Microbiol 2008; 54 (5): 411–6

    PubMed  CAS  Google Scholar 

  200. Chen J, Kuroda T, Huda MN, et al. An RND-type multidrug efflux pump SdeXY from Serratia marcescens. J Antimicrob Chemother 2003; 52 (2): 176-9

    Google Scholar 

  201. Gristwood T, Fineran PC, Everson L, et al. PigZ, a TetR/AcrR family repressor, modulates secondary metabolism via the expression of a putative four-component resistance-nodulation-cell-division efflux pump, ZrpADBC, in Serratia sp. ATCC 39006. Mol Microbiol 2008; 69 (2): 418–35

    PubMed  CAS  Google Scholar 

  202. Crossman LC, Gould VC, Dow JM, et al. The complete genome, comparative and functional analysis of Stenotrophomonas maltophilia reveals an organism heavily shielded by drug resistance determinants. Genome Biol 2008; 9 (4): R74

    PubMed  Google Scholar 

  203. Bina JE, Provenzano D, Wang C, et al. Characterization of the Vibrio cholerae vexAB and vexCD efflux systems. Arch Microbiol 2006; 186 (3): 171–81

    PubMed  CAS  Google Scholar 

  204. Cerda FA, Ringelberg CS, Taylor RK. The bile response repressor, BreR, regulates expression of the Vibrio cholerae breAB efflux system operon. J Bacteriol 2008; 190 (22): 7441–52

    Google Scholar 

  205. Rahman MM, Matsuo T, Ogawa W, et al. Molecular cloning and characterization of all RND-type efflux transporters in Vibrio cholerae non-O1. Microbiol Immunol 2007; 51 (11): 1061–70

    PubMed  CAS  Google Scholar 

  206. Matsuo T, Hayashi K, Morita Y, et al. VmeAB, an RND-type multidrug efflux transporter in Vibrio parahaemolyticus. Microbiology 2007; 153 (Pt 12): 4129–37

    PubMed  CAS  Google Scholar 

  207. Gebreyes W, Srinivasan V, Rajamohan G, et al. Novel secondary active transporters conferring antimicrobial resistance in Acinetobacter baumannii with broad substrate specificity [abstract no. C1-1048]. 48th ICAAC/IDSA 46th Annual Meeting; 2008 Oct 25–28;Washington, DC

    Google Scholar 

  208. Ohki R, Tateno K. Increased stability of bmr3 mRNA results in a multidrug-resistant phenotype in Bacillus subtilis. J Bacteriol 2004; 186 (21): 7450–5

    Google Scholar 

  209. Ohki R, Murata M. bmr3, a third multidrug transporter gene of Bacillus subtilis. J Bacteriol 1997; 179 (4): 1423–7

    PubMed  CAS  Google Scholar 

  210. Murata M, Ohno S, Kumano M, et al. Multidrug resistant phenotype of Bacillus subtilis spontaneous mutants isolated in the presence of puromycin and lincomycin. Can J Microbiol 2003; 49 (2): 71–7

    PubMed  CAS  Google Scholar 

  211. Yoshida K, Ohki YH, Murata M, et al. Bacillus subtilis LmrA is a repressor of the lmrAB and yxaGH operons: identification of its binding site and functional analysis of lmrB and yxaGH. J Bacteriol 2004; 186 (17): 5640–8

    PubMed  CAS  Google Scholar 

  212. Kim J-Y, Inaoka T, Hirooka K, et al. Identification and characterization of a novel multidrug resistance operon mdtRP (yusOP) of Bacillus subtilis. J Bacteriol 2009; 191 (10): 3273–81

    PubMed  CAS  Google Scholar 

  213. Kadlec K, Kehrenberg C, Schwarz S. Efflux-mediated resistance to florfenicol and/or chloramphenicol in Bordetella bronchiseptica: identification of a novel chloramphenicol exporter. J Antimicrob Chemother 2007; 59 (2): 191–6

    PubMed  CAS  Google Scholar 

  214. Lebel S, Bouttier S, Lambert T. The cme gene of Clostridium difficile confers multidrug resistance in Enterococcus faecalis. FEMS Microbiol Lett 2004; 238 (1): 93–100

    PubMed  CAS  Google Scholar 

  215. Kazimierczak KA, Rincon MT, Patterson AJ, et al. A new tetracycline efflux gene, tet(40), is located in tandem with tet(O/32/O) in a human gut firmicute bacterium and in metagenomic library clones. Antimicrob Agents Chemother 2008; 52 (11): 4001–9

    PubMed  CAS  Google Scholar 

  216. Park YJ, Yu JK, Kim SI, et al. Accumulation of plasmid-mediated fluoroquinolone resistance genes, qepA and qnrS1, in enterobacter aerogenes co-producing RmtB and class A β-lactamase LAP-1. Ann Clin Lab Sci 2009; 39(1): 55–9

    PubMed  CAS  Google Scholar 

  217. Nishioka T, Ogawa W, Kuroda T, et al. Gene cloning and characterization of EfmA, a multidrug efflux pump, from Enterococcus faecium. Biol Pharm Bull 2009; 32 (3): 483–8

    PubMed  CAS  Google Scholar 

  218. Liu J, Keelan P, Bennett PM, et al. Characterization of a novel macrolide efflux gene, mef(B), found linked to sul3 in porcine Escherichia coli. J Antimicrob Chemother 2009; 63 (3): 423–6

    PubMed  CAS  Google Scholar 

  219. Cattoir V, Poirel L, Nordmann P. Plasmid-mediated quinolone resistance pump QepA2 in an Escherichia coli isolate from France. Antimicrob Agents Chemother 2008; 52 (10): 3801–4

    Google Scholar 

  220. Baudry PJ, Nichol K, DeCorby M, et al. Mechanisms of resistance and mobility among multidrug-resistant CTXM-producing Escherichia coli from Canadian intensive care units: the 1st report of QepA in North America. Diagn Microbiol Infect Dis 2009; 63 (3): 319–26

    PubMed  CAS  Google Scholar 

  221. Morrison S, Ward A, Hoyle CJ, et al. Cloning, expression, purification and properties of a putative multidrug resistance efflux protein from Helicobacter pylori. Int J Antimicrob Agents 2003; 22 (3): 242–9

    PubMed  CAS  Google Scholar 

  222. Ogawa W, Koterasawa M, Kuroda T, et al. KmrA multidrug efflux pump from Klebsiella pneumoniae. Biol Pharm Bull 2006; 29 (3): 550–3

    PubMed  CAS  Google Scholar 

  223. Romanova NA, Wolffs PF, Brovko LY, et al. Role of efflux pumps in adaptation and resistance of Listeria monocytogenes to benzalkonium chloride. Appl Environ Microbiol 2006; 72 (5): 3498–503

    PubMed  CAS  Google Scholar 

  224. Godreuil S, Galimand M, Gerbaud G, et al. Efflux pump Lde is associated with fluoroquinolone resistance in Listeria monocytogenes. Antimicrob Agents Chemother 2003; 47 (2): 704–8

    PubMed  CAS  Google Scholar 

  225. Lismond A, Tulkens PM, Mingeot-Leclercq MP, et al. Cooperation between prokaryotic (Lde) and eukaryotic (MRP) efflux transporters in J774 macrophages infected with Listeria monocytogenes: studies with ciprofloxacin and moxifloxacin. Antimicrob Agents Chemother 2008; 52 (9): 3040–6

    PubMed  CAS  Google Scholar 

  226. Huillet E, Velge P, Vallaeys T, et al. LadR, a new PadR-related transcriptional regulator from Listeria monocytogenes, negatively regulates the expression of the multidrug efflux pump MdrL. FEMS Microbiol Lett 2006; 254 (1): 87–94

    PubMed  CAS  Google Scholar 

  227. Crimmins GT, Herskovits AA, Rehder K, et al. Listeria monocytogenes multidrug resistance transporters activate a cytosolic surveillance pathway of innate immunity. Proc Natl Acad Sci U S A 2008; 105 (29): 10191–6

    PubMed  CAS  Google Scholar 

  228. Li X-Z, Zhang L, Nikaido H. Efflux pump-mediated intrinsic drug resistance in Mycobacterium smegmatis. Antimicrob Agents Chemother 2004; 48 (7): 2415–23

    PubMed  CAS  Google Scholar 

  229. Buroni S, Manina G, Guglierame P, et al. LfrR is a repressor that regulates expression of the efflux pump LfrA in Mycobacterium smegmatis. Antimicrob Agents Chemother 2006; 50 (12): 4044–52

    PubMed  CAS  Google Scholar 

  230. Gil F, Ipinza F, Fuentes J, et al. The ompW (porin) gene mediates methyl viologen (paraquat) efflux in Salmonella enterica serovar Typhimurium. Res Microbiol 2007; 158 (6): 529–36

    PubMed  CAS  Google Scholar 

  231. Shahcheraghi F, Minato Y, Chen J, et al. Molecular cloning and characterization of a multidrug efflux pump, SmfY, from Serratia marcescens. Biol Pharm Bull 2007; 30 (4): 798–800

    PubMed  CAS  Google Scholar 

  232. Huang J, O’Toole PW, Shen W, et al. Novel chromosomally encoded multidrug efflux transporter MdeA in Staphylococcus aureus. Antimicrob Agents Chemother 2004; 48 (3): 909–17

    PubMed  CAS  Google Scholar 

  233. Yamada Y, Shiota S, Mizushima T, et al. Functional gene cloning and characterization of MdeA, a multidrug efflux pump from Staphylococcus aureus. Biol Pharm Bull 2006; 29 (4): 801–4

    PubMed  CAS  Google Scholar 

  234. Truong-Bolduc QC, Strahilevitz J, Hooper DC. NorC, a new efflux pump regulated by MgrA of Staphylococcus aureus. Antimicrob Agents Chemother 2006; 50 (3): 1104–7

    PubMed  CAS  Google Scholar 

  235. Truong-Bolduc QC, Dunman PM, Strahilevitz J, et al. MgrA is a multiple regulator of two new efflux pumps in Staphylococcus aureus. J Bacteriol 2005; 187 (7): 2395–405

    PubMed  CAS  Google Scholar 

  236. Truong-Bolduc QC, Hooper DC. The transcriptional regulators NorG and MgrA modulate resistance to both quinolones and b-lactams in Staphylococcus aureus. J Bacteriol 2007; 189 (8): 2996–3005

    PubMed  CAS  Google Scholar 

  237. Ding Y, Onodera Y, Lee JC, et al. NorB, an efflux pump in Staphylococcus aureus MW2, contributes to bacterial fitness in abscesses. J Bacteriol 2008; 190 (21): 7123–9

    PubMed  CAS  Google Scholar 

  238. Overton TW, Justino MC, Li Y, et al. Widespread distribution in pathogenic bacteria of di-iron proteins that repair oxidative and nitrosative damage to iron-sulfur centers. J Bacteriol 2008; 190 (6): 2004–13

    PubMed  CAS  Google Scholar 

  239. Yamada Y, Hideka K, Shiota S, et al. Gene cloning and characterization of SdrM, a chromosomally-encoded multidrug efflux pump, from Staphylococcus aureus. Biol Pharm Bull 2006; 29 (3): 554–6

    PubMed  CAS  Google Scholar 

  240. Kehrenberg C, Schwarz S. fexA, a novel Staphylococcus lentus gene encoding resistance to florfenicol and chloramphenicol. Antimicrob Agents Chemother 2004; 48 (2): 615–8

    PubMed  CAS  Google Scholar 

  241. Cai Y, Kong F, Gilbert GL. Three new macrolide efflux (mef) gene variants in Streptococcus agalactiae. J Clin Microbiol 2007; 45 (8): 2754–5

    PubMed  CAS  Google Scholar 

  242. Brown MG, Mitchell EH, Balkwill DL. Tet 42, a novel tetracycline resistance determinant isolated from deep terrestrial subsurface bacteria. Antimicrob Agents Chemother 2008; 52 (12): 4518–21

    PubMed  CAS  Google Scholar 

  243. Escudero JA, San Millan A, Hidalgo L, et al. Identification and characterisation of SmrA, a novel fluoroquinolone efflux pump in Streptococcus suis [abstract no. C1-1945]. 48th ICAAC/IDSA 46th Annual Meeting; 2008 Oct 25–28; Washington, DC

    Google Scholar 

  244. Woolley RC, Vediyappan G, Anderson M, et al. Characterization of the Vibrio cholerae vceCAB multiple-drug resistance efflux operon in Escherichia coli. J Bacteriol 2005; 187 (15): 5500–3

    PubMed  CAS  Google Scholar 

  245. Bostock JM, Huang G, Hashimi SM, et al. A DHA14 drug efflux gene from Xanthomonas albilineans confers high-level albicidin antibiotic resistance in Escherichia coli. J Appl Microbiol 2006; 101 (1): 151–60

    PubMed  CAS  Google Scholar 

  246. Su XZ, Chen J, Mizushima T, et al. AbeM, an H+-coupled Acinetobacter baumannii multidrug efflux pump belonging to the MATE family of transporters. Antimicrob Agents Chemother 2005; 49 (10): 4362–4

    PubMed  CAS  Google Scholar 

  247. Braibant M, Guilloteau L, Zygmunt MS. Functional characterization of Brucella melitensis NorMI, an efflux pump belonging to the multidrug and toxic compound extrusion family. Antimicrob Agents Chemother 2002; 46 (9): 3050–3

    PubMed  CAS  Google Scholar 

  248. Dridi L, Tankovic J, Petit JC. CdeA of Clostridium difficile, a new multidrug efflux transporter of the MATE family. Microb Drug Resist 2004; 10 (3): 191–6

    PubMed  CAS  Google Scholar 

  249. Burse A, Weingart H, Ullrich MS. NorM, an Erwinia amylovora multidrug efflux pump involved in in vitro competition with other epiphytic bacteria. Appl Environ Microbiol 2004; 70 (2): 693–703

    PubMed  CAS  Google Scholar 

  250. Xu XJ, Su XZ, Morita Y, et al. Molecular cloning and characterization of the HmrM multidrug efflux pump from Haemophilus influenzae Rd. Microbiol Immunol 2003; 47 (12): 937–43

    PubMed  CAS  Google Scholar 

  251. Rouquette-Loughlin C, Dunham SA, Kuhn M, et al. The NorM efflux pump of Neisseria gonorrhoeae and Neisseria meningitidis recognizes antimicrobial cationic compounds. J Bacteriol 2003; 185 (3): 1101–6

    PubMed  CAS  Google Scholar 

  252. He GX, Kuroda T, Mima T, et al. An H+-coupled multidrug efflux pump, PmpM, a member of the MATE family of transporters, from Pseudomonas aeruginosa. J Bacteriol 2004; 186 (1): 262–5

    PubMed  CAS  Google Scholar 

  253. Kaatz GW, McAleese F, Seo SM. Multidrug resistance in Staphylococcus aureus due to overexpression of a novel multidrug and toxin extrusion (MATE) transport protein. Antimicrob Agents Chemother 2005; 49 (5): 1857–64

    PubMed  CAS  Google Scholar 

  254. McAleese F, Petersen P, Ruzin A, et al. A novel MATE family efflux pump contributes to the reduced susceptibility of laboratory-derived Staphylococcus aureus mutants to tigecycline. Antimicrob Agents Chemother 2005; 49 (5): 1865–71

    PubMed  CAS  Google Scholar 

  255. Kaatz GW, DeMarco CE, Seo SM. MepR, a repressor of the Staphylococcus aureus MATE family multidrug efflux pumpMepA, is a substrate-responsive regulatory protein. Antimicrob Agents Chemother 2006; 50 (4): 1276–8

    PubMed  CAS  Google Scholar 

  256. Singh AK, Haldar R, Mandal D, et al. Analysis of the topology of Vibrio cholerae NorM and identification of amino acid residues involved in norfloxacin resistance. Antimicrob Agents Chemother 2006; 50 (11): 3717–23

    PubMed  CAS  Google Scholar 

  257. Begum A, Rahman MM, Ogawa W, et al. Gene cloning and characterization of four MATE family multidrug efflux pumps from Vibrio cholerae non-O1. Microbiol Immunol 2005; 49 (11): 949–57

    PubMed  CAS  Google Scholar 

  258. Huda MN, Chen J, Morita Y, et al. Gene cloning and characterization of VcrM, a Na+-coupled multidrug efflux pump, from Vibrio cholerae non-O1. Microbiol Immunol 2003; 47 (6): 419–27

    PubMed  CAS  Google Scholar 

  259. Chen J, Morita Y, Huda MN, et al. VmrA, a member of a novel class of Na+-coupled multidrug efflux pumps from Vibrio parahaemolyticus. J Bacteriol 2002; 184 (2): 572–6

    PubMed  CAS  Google Scholar 

  260. Higashi K, Ishigure H, Demizu R, et al. Identification of a spermidine excretion protein complex (MdtJI) in Escherichia coli. J Bacteriol 2008; 190 (3): 872–8

    PubMed  CAS  Google Scholar 

  261. Minato Y, Shahcheraghi F, Ogawa W, et al. Functional gene cloning and characterization of the SsmE multidrug efflux pump from Serratia marcescens. Biol Pharm Bull 2008; 31 (3): 516–9

    PubMed  CAS  Google Scholar 

  262. Narui K, Noguchi N, Wakasugi K, et al. Cloning and characterization of a novel chromosomal drug efflux gene in Staphylococcus aureus. Biol Pharm Bull 2002; 25 (12): 1533–6

    PubMed  CAS  Google Scholar 

  263. Bernard R, Joseph P, Guiseppi A, et al. YtsCD and YwoA, two independent systems that confer bacitracin resistance to Bacillus subtilis. FEMS Microbiol Lett 2003; 228 (1): 93–7

    PubMed  CAS  Google Scholar 

  264. Steinfels E, Orelle C, Fantino JR, et al. Characterization of YvcC (BmrA), a multidrug ABC transporter constitutively expressed in Bacillus subtilis. Biochemistry 2004; 43 (23): 7491–502

    PubMed  CAS  Google Scholar 

  265. Margolles A, Florez AB, Moreno JA, et al. Two membrane proteins from Bifidobacterium breve UCC2003 constitute an ABC-type multidrug transporter. Microbiology 2006; 152 (Pt 12): 3497–505

    PubMed  CAS  Google Scholar 

  266. Lee EW, Huda MN, Kuroda T, et al. EfrAB, an ABC multidrug efflux pump in Enterococcus faecalis. Antimicrob Agents Chemother 2003; 47(12): 3733–8

    PubMed  CAS  Google Scholar 

  267. Singh KV, Malathum K, Murray BE. Disruption of an Enterococcus faecium species-specific gene, a homologue of acquired macrolide resistance genes of staphylococci, is associated with an increase in macrolide susceptibility. Antimicrob Agents Chemother 2001; 45 (1): 263–6

    PubMed  CAS  Google Scholar 

  268. Reynolds E, Cove JH. Enhanced resistance to erythromycin is conferred by the enterococcal msrC determinant in Staphylococcus aureus. J Antimicrob Chemother 2005; 55 (2): 260–4

    PubMed  CAS  Google Scholar 

  269. Delgado MA, Vincent PA, Farias RN, et al. YojI of Escherichia coli functions as a microcin J25 efflux pump. J Bacteriol 2005; 187 (10): 3465–70

    PubMed  CAS  Google Scholar 

  270. Socias SB, Vincent PA, Salomon RA. The leucine-responsive regulatory protein, Lrp, modulates microcin J25 intrinsic resistance in Escherichia coli by regulating expression of the YojI microcin exporter. J Bacteriol 2009; 191 (4): 1343–8

    PubMed  CAS  Google Scholar 

  271. Lubelski J, de Jong A, van Merkerk R, et al. LmrCD is a major multidrug resistance transporter in Lactococcus lactis. Mol Microbiol 2006; 61 (3): 771–81

    PubMed  CAS  Google Scholar 

  272. Lubelski J, Mazurkiewicz P, van Merkerk R, et al. ydaG and ydbA of Lactococcus lactis encode a heterodimeric ATP-binding cassette-type multidrug transporter. J Biol Chem 2004; 279 (33): 34449–55

    PubMed  CAS  Google Scholar 

  273. Zaidi AH, Bakkes PJ, Lubelski J, et al. The ABC-type multidrug resistance transporter LmrCD is responsible for an extrusion-based mechanism of bile acid resistance in Lactococcus lactis. J Bacteriol 2008; 190 (22): 7357–66

    PubMed  CAS  Google Scholar 

  274. Agustiandari H, Lubelski J, van den Berg van Saparoea HB, et al. LmrR is a transcriptional repressor of expression of the multidrug ABC transporter LmrCD in Lactococcus lactis. J Bacteriol 2008; 190 (2): 759–63

    PubMed  CAS  Google Scholar 

  275. Danilchanka O, Mailaender C, Niederweis M. Identification of a novel multidrug efflux pump of Mycobacterium tuberculosis. Antimicrob Agents Chemother 2008; 52 (7): 2503–11

    PubMed  CAS  Google Scholar 

  276. Siddiqi N, Das R, Pathak N, et al. Mycobacterium tuberculosis isolate with a distinct genomic identity overexpresses a Tap-like efflux pump. Infection 2004; 32 (2): 109–11

    PubMed  CAS  Google Scholar 

  277. Pasca MR, Guglierame P, Arcesi F, et al. Rv2686c-Rv2687c-Rv2688c, an ABC fluoroquinolone efflux pump in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2004; 48 (8): 3175–8

    PubMed  CAS  Google Scholar 

  278. Rouquette-Loughlin CE, Balthazar JT, Shafer WM. Characterization of the MacA-MacB efflux system in Neisseria gonorrhoeae. J Antimicrob Chemother 2005; 56 (5): 856–60

    PubMed  CAS  Google Scholar 

  279. Bourdineaud JP, Nehme B, Tesse S, et al. A bacterial gene homologous to ABC transporters protect Oenococcus oeni from ethanol and other stress factors in wine. Int J Food Microbiol 2004; 92 (1): 1–14

    PubMed  CAS  Google Scholar 

  280. Achard-Joris M, van den Berg van Saparoea HB, Driessen AJ, et al. Heterologously expressed bacterial and human multidrug resistance proteins confer cadmium resistance to Escherichia coli. Biochemistry 2005; 44 (15): 5916–22

    PubMed  CAS  Google Scholar 

  281. Matsuo T, Chen J, Minato Y, et al. SmdAB, a heterodimeric ABC-Type multidrug efflux pump, in Serratia marcescens. J Bacteriol 2008; 190 (2): 648–54

    PubMed  CAS  Google Scholar 

  282. Schrader-Fischer G, Berger-Bachi B. The AbcA transporter of Staphylococcus aureus affects cell autolysis. Antimicrob Agents Chemother 2001; 45 (2): 407–12

    PubMed  CAS  Google Scholar 

  283. Marrer E, Satoh AT, Johnson MM, et al. Global transcriptome analysis of the responses of a fluoroquinolone-resistant Streptococcus pneumoniae mutant and its parent to ciprofloxacin. Antimicrob Agents Chemother 2006; 50 (1): 269–78

    PubMed  CAS  Google Scholar 

  284. Marrer E, Schad K, Satoh AT, et al. Involvement of the putative ATP-dependent efflux proteins PatA and PatB in fluoroquinolone resistance of a multidrug-resistant mutant of Streptococcus pneumoniae. Antimicrob Agents Chemother 2006; 50 (2): 685–93

    Google Scholar 

  285. Garvey MI, Piddock LJ. The efflux pump inhibitor reserpine selectsmultidrug-resistant Streptococcus pneumoniae strains that overexpress the ABC transporters PatA and PatB. Antimicrob Agents Chemother 2008; 52 (5): 1677–85

    PubMed  CAS  Google Scholar 

  286. Avrain L, Garvey M, Mesaros N, et al. Selection of quinolone resistance in Streptococcus pneumoniae exposed in vitro to subinhibitory drug concentrations. J Antimicrob Chemother 2007; 60 (5): 965–72

    PubMed  CAS  Google Scholar 

  287. Robertson GT, Doyle TB, Lynch AS. Use of an efflux-deficient Streptococcus pneumoniae strain panel to identify ABC-class multidrug transporters involved in intrinsic resistance to antimicrobial agents. Antimicrob Agents Chemother 2005; 49 (11): 4781–3

    PubMed  CAS  Google Scholar 

  288. Becker P, Hakenbeck R, Henrich B. An ABC transporter of Streptococcus pneumoniae involved in susceptibility to vancoresmycin and bacitracin. Antimicrob Agents Chemother 2009; 53 (5): 2034–41

    PubMed  CAS  Google Scholar 

  289. Huda N, Lee EW, Chen J, et al. Molecular cloning and characterization of an ABC multidrug efflux pump, VcaM, in non-O1 Vibrio cholerae. Antimicrob Agents Chemother 2003; 47 (8): 2413–7

    PubMed  CAS  Google Scholar 

  290. Garrity GM. Bergey’s manual of systematic bacteriology. 2nd ed. Appendix 2: taxonomic outline of the archaea and bacteria. New York: Springer, 2005

    Google Scholar 

  291. Kallman O, Fendukly F, Karlsson I, et al. Contribution of efflux to cefuroxime resistance in clinical isolates of Escherichia coli. Scand J Infect Dis 2003; 35 (8): 464–70

    PubMed  CAS  Google Scholar 

  292. Lautenbach E, Metlay JP, Weiner MG, et al. Gastrointestinal tract colonization with fluoroquinolone-resistant Escherichia coli in hospitalized patients: changes over time in risk factors for resistance. Infect Control Hosp Epidemiol 2009; 30 (1): 18–24

    PubMed  Google Scholar 

  293. Stubbings W, Bostock J, Ingham E, et al. Deletion of the multiple-drug efflux pump AcrAB in Escherichia coli prolongs the postantibiotic effect. Antimicrob Agents Chemother 2005; 49 (3): 1206–8

    PubMed  CAS  Google Scholar 

  294. Hirata T, Saito A, Nishino K, et al. Effects of efflux transporter genes on susceptibility of Escherichia coli to tigecycline (GAR-936). Antimicrob Agents Chemother 2004; 48 (6): 2179–84

    PubMed  CAS  Google Scholar 

  295. Keeney D, Ruzin A, McAleese F, et al. MarA-mediated overexpression of the AcrAB efflux pump results in decreased susceptibility to tigecycline in Escherichia coli. J Antimicrob Chemother 2008; 61 (1): 46–53

    PubMed  CAS  Google Scholar 

  296. Gotoh N, Murata T, Ozaki T, et al. Intrinsic resistance of Escherichia coli to mureidomycin A and C due to expression of the multidrug efflux system AcrAB-TolC: comparison with the efflux systems of mureidomycin-susceptible Pseudomonas aeruginosa. J Infect Chemother 2003; 9 (1): 101–3

    PubMed  Google Scholar 

  297. Oppegard LM, Hamann BL, Streck KR, et al. In vivo and in vitro patterns of the activity of simocyclinone D8, an angucyclinone antibiotic from Streptomyces antibioticus. Antimicrob Agents Chemother 2009; 53 (5): 2110–9

    PubMed  CAS  Google Scholar 

  298. Wu B, Xia C, Du X, et al. Influence of anti-FloR antibody on florfenicol accumulation in florfenicol-resistant Escherichia coli and enzyme-linked immunosorbent assay for detection of florfenicol-resistant E. coli isolates. J Clin Microbiol 2006; 44 (2): 378–82

    PubMed  CAS  Google Scholar 

  299. Yamane K, Wachino J, Suzuki S, et al. Plasmid-mediated qepA gene among Escherichia coli clinical isolates from Japan. Antimicrob Agents Chemother 2008; 52 (4): 1564–6

    PubMed  CAS  Google Scholar 

  300. Ma J, Zeng Z, Chen Z, et al. High prevalence of plasmid-mediated quinolone resistance determinants Qnr, AAC(6′)-Ib-cr and qepA among ceftiofur-resistant Enterobacteriaceae isolates from companion and food-producing animals. Antimicrob Agents Chemother 2008; 53 (2): 519–24

    PubMed  Google Scholar 

  301. Liu JH, Deng YT, Zeng ZL, et al. Coprevalence of plasmid-mediated quinolone resistance determinants QepA, Qnr, and AAC(60)-Ib-cr among 16S rRNA methylase RmtB-producing Escherichia coli isolates from pigs. Antimicrob Agents Chemother 2008; 52 (8): 2992–3

    PubMed  CAS  Google Scholar 

  302. Quinn T, O’Mahony R, Baird AW, et al. Multi-drug resistance in Salmonella enterica: efflux mechanisms and their relationships with the development of chromosomal resistance gene clusters. Curr Drug Targets 2006; 7 (7): 849–60

    PubMed  CAS  Google Scholar 

  303. Piddock LJ, White DG, Gensberg K, et al. Evidence for an efflux pump mediating multiple antibiotic resistance in Salmonella enterica serovar Typhimurium. Antimicrob Agents Chemother 2000; 44 (11): 3118–21

    PubMed  CAS  Google Scholar 

  304. Randall LP, Cooles SW, Sayers AR, et al. Association between cyclohexane resistance in Salmonella of different serovars and increased resistance to multiple antibiotics, disinfectants and dyes. J Med Microbiol 2001; 50 (10): 919–24

    PubMed  CAS  Google Scholar 

  305. Chen S, Cui S, McDermott PF, et al. Contribution of target gene mutations and efflux to decreased susceptibility of Salmonella enterica serovar Typhimurium to fluoroquinolones and other antimicrobials. Antimicrob Agents Chemother 2007; 51 (2): 535–42

    PubMed  CAS  Google Scholar 

  306. Ricci V, Tzakas P, Buckley A, et al. Ciprofloxacin-resistant Salmonella enterica serovar Typhimurium strains are difficult to select in the absence of AcrB and TolC. Antimicrob Agents Chemother 2006; 50 (1): 38–42

    PubMed  CAS  Google Scholar 

  307. Olliver A, Valle M, Chaslus-Dancla E, et al. Overexpression of the multidrug efflux operon acrEF by insertional activation with IS1 or IS10 elements in Salmonella enterica serovar typhimurium DT204 acrB mutants selected with fluoroquinolones. Antimicrob Agents Chemother 2005; 49 (1): 289–301

    PubMed  CAS  Google Scholar 

  308. Nishino K, Nikaido E, Yamaguchi A. Regulation of multidrug efflux systems involved in multidrug and metal resistance of Salmonella enterica serovar Typhimurium. J Bacteriol 2007; 189 (24): 9066–75

    Google Scholar 

  309. Braoudaki M, Hilton AC. Mechanisms of resistance in Salmonella enterica adapted to erythromycin, benzalkonium chloride and triclosan. Int J Antimicrob Agents 2005; 25 (1): 31–7

    PubMed  CAS  Google Scholar 

  310. Murata T, Tseng W, Guina T, et al. PhoPQ-mediated regulation produces a more robust permeability barrier in the outer membrane of Salmonella enterica serovar Typhimurium. J Bacteriol 2007; 189 (20): 7213–22

    PubMed  CAS  Google Scholar 

  311. Baucheron S, Mouline C, Praud K, et al. TolC but not AcrB is essential for multidrug-resistant Salmonella enterica serotype Typhimurium colonization of chicks. J Antimicrob Chemother 2005; 55 (5): 707–12

    PubMed  CAS  Google Scholar 

  312. Buckley AM, Webber MA, Cooles S, et al. The AcrABTolC efflux system of serovar Typhimurium plays a role in pathogenesis. Cell Microbiol 2006; 8 (5): 847–56

    PubMed  CAS  Google Scholar 

  313. Webber MA, Bailey AM, Blair JM, et al. The global consequence of disruption of the AcrAB-TolC efflux pump in Salmonella enterica includes reduced expression of SPI-1 and other attributes required to infect the host. J Bacteriol 2009; 191 (13): 4276–85

    PubMed  CAS  Google Scholar 

  314. Gayet S, Chollet R, Molle G, et al. Modification of outer membrane protein profile and evidence suggesting an active drug pump in Enterobacter aerogenes clinical strains. Antimicrob Agents Chemother 2003; 47 (5): 1555–9

    PubMed  CAS  Google Scholar 

  315. Chollet R, Chevalier J, Bryskier A, et al. The AcrAB-TolC pump is involved in macrolide resistance but not in telithromycin efflux in Enterobacter aerogenes and Escherichia coli. Antimicrob Agents Chemother 2004; 48 (9): 3621–4

    PubMed  CAS  Google Scholar 

  316. Bornet C, Chollet R, Mallea M, et al. Imipenem and expression of multidrug efflux pump in Enterobacter aerogenes. Biochem Biophys Res Commun 2003; 301 (4): 985–90

    PubMed  CAS  Google Scholar 

  317. Ghisalberti D, Masi M, Pages JM, et al. Chloramphenicol and expression of multidrug efflux pump in Enterobacter aerogenes. Biochem Biophys Res Commun 2005; 328 (4): 1113–8

    PubMed  CAS  Google Scholar 

  318. Keeney D, Ruzin A, Bradford PA. RamA, a transcriptional regulator, and AcrAB, an RND-type efflux pump, are associated with decreased susceptibility to tigecycline in Enterobacter cloacae. Microb Drug Resist 2007; 13 (1): 1–6

    PubMed  CAS  Google Scholar 

  319. Chollet R, Chevalier J, Bollet C, et al. RamA is an alternate activator of the multidrug resistance cascade in Enterobacter aerogenes. Antimicrob Agents Chemother 2004; 48 (7): 2518–23

    PubMed  CAS  Google Scholar 

  320. Ghisalberti D, Mahamoud A, Chevalier J, et al. Chloroquinolines block antibiotic efflux pumps in antibioticresistant Enterobacter aerogenes isolates. Int J Antimicrob Agents 2006; 27 (6): 565–9

    PubMed  CAS  Google Scholar 

  321. Masi M, Pages J-M, Pradel E. Production of the cryptic EefABC efflux pump in Enterobacter aerogenes chloramphenicol- resistant mutants. J Antimicrob Chemother 2006; 57 (6): 1223–6

    PubMed  CAS  Google Scholar 

  322. Szabo D, Silveira F, Hujer AM, et al. Outer membrane protein changes and efflux pump expression together may confer resistance to ertapenem in Enterobacter cloacae. Antimicrob Agents Chemother 2006; 50 (8): 2833–5

    PubMed  CAS  Google Scholar 

  323. Davin-Regli A, Chollet R, Bredin J, et al. Enterobacter gergoviae and the prevalence of efflux in parabens resistance. J Antimicrob Chemother 2006; 57 (4): 757–60

    PubMed  CAS  Google Scholar 

  324. Pages JM, Lavigne JP, Leflon-Guibout V, et al. Efflux pump, the masked side of b-lactam resistance in Klebsiella pneumoniae clinical isolates. PLoS ONE 2009; 4 (3): e4817

    PubMed  Google Scholar 

  325. Chevalier J, Bredin J, Mahamoud A, et al. Inhibitors of antibiotic efflux in resistant Enterobacter aerogenes and Klebsiella pneumoniae strains. Antimicrob Agents Chemother 2004; 48 (3): 1043–6

    PubMed  CAS  Google Scholar 

  326. Ogawa W, Li DW, Yu P, et al. Multidrug resistance in Klebsiella pneumoniae MGH78578 and cloning of genes responsible for the resistance. Biol Pharm Bull 2005; 28 (8): 1505–8

    PubMed  CAS  Google Scholar 

  327. Rodriguez-Martinez JM, Pichardo C, Garcia I, et al. Activity of ciprofloxacin and levofloxacin in experimental pneumonia caused by Klebsiella pneumoniae deficient in porins, expressing active efflux and producing QnrA1. Clin Microbiol Infect 2008; 14 (7): 691–7

    PubMed  CAS  Google Scholar 

  328. Fenosa A, Fuste E, Ruiz L, et al. Role of TolC in Klebsiella oxytoca resistance to antibiotics. J Antimicrob Chemother 2009; 63 (4): 668–74

    PubMed  CAS  Google Scholar 

  329. Stock I, Grueger T, Wiedemann B. Natural antibiotic susceptibility of strains of Serratia marcescens and the S. liquefaciens complex: S. liquefaciens sensu stricto, S. proteamaculans and S. grimesii. Int J Antimicrob Agents 2003; 22 (1): 35–47

    PubMed  CAS  Google Scholar 

  330. Kumar A, Worobec EA. HasF, a TolC-homolog of Serratia marcescens, is involved in energy-dependent efflux. Can J Microbiol 2005; 51 (6): 497–500

    PubMed  CAS  Google Scholar 

  331. Begic S, Worobec EA. Fluoroquinolone resistance of Serratia marcescens: sucrose, salicylate, temperature, and pH induction of phenotypic resistance. Can J Microbiol 2007; 53 (11): 1239–45

    PubMed  CAS  Google Scholar 

  332. Thompson SA, Maani EV, Lindell AH, et al. Novel tetracycline resistance determinant isolated from an environmental strain of Serratia marcescens. Appl Environ Microbiol 2007; 73 (7): 2199–206

    PubMed  CAS  Google Scholar 

  333. Borges-Walmsley MI, Du D, McKeegan KS, et al. VceR regulates the vceCAB drug efflux pump operon of Vibrio cholerae by alternating between mutually exclusive conformations that bind either drugs or promoter DNA. J Mol Biol 2005; 349 (2): 387–400

    PubMed  CAS  Google Scholar 

  334. Alatoom AA, Aburto R, Hamood AN, et al. VceR negatively regulates the vceCAB MDR efflux operon and positively regulates its own synthesis in Vibrio cholerae 569B. Can J Microbiol 2007; 53 (7): 888–900

    PubMed  CAS  Google Scholar 

  335. Gupta AK, Chauhan DS, Srivastava K, et al. Estimation of efflux mediated multi-drug resistance and its correlation with expression levels of two major efflux pumps in mycobacteria. J Commun Dis 2006; 38 (3): 246–54

    PubMed  Google Scholar 

  336. Srinivasan VB, Virk RK, Kaundal A, et al. Mechanism of drug resistance in clonally related clinical isolates of Vibrio fluvialis isolated in Kolkata, India. Antimicrob Agents Chemother 2006; 50 (7): 2428–32

    PubMed  CAS  Google Scholar 

  337. Balotescu C, Israil A, Radu R, et al. Aspects of constitutive and acquired antibioresistance in Aeromonas hydrophila strains isolated from water sources. Roum Arch Microbiol Immunol 2003; 62 (3-4): 179–89

    PubMed  Google Scholar 

  338. Reith ME, Singh RK, Curtis B, et al. The genome of Aeromonas salmonicida subsp. salmonicida A449: insights into the evolution of a fish pathogen. BMC Genomics 2008; 9: 427

    PubMed  Google Scholar 

  339. Seshadri R, Joseph SW, Chopra AK, et al. Genome sequence of Aeromonas hydrophila ATCC 7966T: jack of all trades. J Bacteriol 2006; 188 (23): 8272–82

    PubMed  CAS  Google Scholar 

  340. Rangrez AY, Kulkarni G, Dhotre D, et al. Prevalence of RND type multidrug efflux pump in the genus Aeromonas. Icfai J Biotech 2008; 2 (1): 72–80

    Google Scholar 

  341. Marshall B, Morrissey S, Flynn P, et al. A new tetracyclineresistance determinant, class E, isolated from Enterobacteriaceae. Gene 1986; 50 (1-3): 111–7

    PubMed  CAS  Google Scholar 

  342. Agersø Y, Bruun MS, Dalsgaard I, et al. The tetracycline resistance gene tet(E) is frequently occurring and present on large horizontally transferable plasmids in Aeromonas spp. from fish farms. Aquaculture 2007; 266 (1-4): 47–52

    Google Scholar 

  343. Giraud E, Blanc G, Bouju-Albert A, et al. Mechanisms of quinolone resistance and clonal relationship among Aeromonas salmonicida strains isolated from reared fish with furunculosis. J Med Microbiol 2004; 53 (Pt 9): 895–901

    PubMed  CAS  Google Scholar 

  344. Sugawara E, Nestorovich EM, Bezrukov SM, et al. Pseudomonas aeruginosa porin OprF exists in two different conformations. J Biol Chem 2006; 281 (24): 16220–9

    PubMed  CAS  Google Scholar 

  345. Deplano A, Denis O, Poirel L, et al. Molecular characterization of an epidemic clone of panantibiotic-resistant Pseudomonas aeruginosa. J Clin Microbiol 2005; 43 (3): 1198–204

    PubMed  CAS  Google Scholar 

  346. Kriengkauykiat J, Porter E, Lomovskaya O, et al. Use of an efflux pump inhibitor to determine the prevalence of efflux pump-mediated fluoroquinolone resistance and multidrug resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2005; 49 (2): 565–70

    PubMed  CAS  Google Scholar 

  347. Pournaras S, Maniati M, Spanakis N, et al. Spread of efflux pump-overexpressing, non-metallo-b-lactamase-producing, meropenem-resistant but ceftazidime-susceptible Pseudomonas aeruginosa in a region with bla VIM endemicity. J Antimicrob Chemother 2005; 56(4):761–4

    PubMed  CAS  Google Scholar 

  348. Dumas JL, van Delden C, Perron K, et al. Analysis of antibiotic resistance gene expression in Pseudomonas aeruginosa by quantitative real-time-PCR. FEMS Microbiol Lett 2006; 254 (2): 217–25

    PubMed  CAS  Google Scholar 

  349. Quale J, Bratu S, Gupta J, et al. Interplay of efflux system, ampC, and oprD expression in carbapenem resistance of Pseudomonas aeruginosa clinical isolates. Antimicrob Agents Chemother 2006; 50 (5): 1633–41

    PubMed  CAS  Google Scholar 

  350. Driscoll JA, Brody SL, Kollef MH. The epidemiology, pathogenesis and treatment of Pseudomonas aeruginosa infections. Drugs 2007; 67 (3):351–68

    PubMed  CAS  Google Scholar 

  351. Burgess DS. Use of pharmacokinetics and pharmacodynamics to optimize antimicrobial treatment of Pseudomonas aeruginosa infections. Clin Infect Dis 2005; 40 Suppl. 2: S99–104

    PubMed  CAS  Google Scholar 

  352. Rossolini GM, Mantengoli E. Treatment and control of severe infections caused by multiresistant Pseudomonas aeruginosa. Clin Microbiol Infect 2005; 11 Suppl. 4: 17–32

    PubMed  CAS  Google Scholar 

  353. Boutoille D, Jacqueline C, Le Mabecque V, et al. In vivo impact of the MexAB-OprM efflux system on β-lactam efficacy in an experimental model of Pseudomonas aeruginosa infection. Int J Antimicrob Agents 2009; 33 (5): 417–20

    PubMed  CAS  Google Scholar 

  354. Mesaros N, Glupczynski Y, Avrain L, et al. A combined phenotypic and genotypic method for the detection of Mex efflux pumps in Pseudomonas aeruginosa. J Antimicrob Chemother 2007; 59 (3): 378–86

    PubMed  CAS  Google Scholar 

  355. Hocquet D, Berthelot P, Roussel-Delvallez M, et al. Pseudomonas aeruginosa may accumulate drug resistance mechanisms without losing its ability to cause bloodstream infections. Antimicrob Agents Chemother 2007; 51 (10): 3531–6

    PubMed  CAS  Google Scholar 

  356. Llanes C, Hocquet D, Vogne C, et al. Clinical strains of Pseudomonas aeruginosa overproducing MexAB-OprM and MexXY efflux pumps simultaneously. Antimicrob Agents Chemother 2004; 48 (5): 1797–802

    PubMed  CAS  Google Scholar 

  357. Strateva T, Ouzounova-Raykova V, Markova B, et al. Problematic clinical isolates of Pseudomonas aeruginosa from the university hospitals in Sofia, Bulgaria: current status of antimicrobial resistance and prevailing resistance mechanisms. J Med Microbiol 2007; 56 (Pt 7): 956–63

    PubMed  CAS  Google Scholar 

  358. Livermore DM, Mushtaq S, Warner M. Selectivity of ertapenem for Pseudomonas aeruginosa mutants crossresistant to other carbapenems. J Antimicrob Chemother 2005; 55 (3): 306–11

    PubMed  CAS  Google Scholar 

  359. Mikuniya T, Kato Y, Kariyama R, et al. Synergistic effect of fosfomycin and fluoroquinolones against Pseudomonas aeruginosa growing in a biofilm. Acta Med Okayama 2005; 59 (5): 209–16

    PubMed  CAS  Google Scholar 

  360. Longbottom CJ, Carson CF, Hammer KA, et al. Tolerance of Pseudomonas aeruginosa to Melaleuca alternifolia (tea tree) oil is associated with the outer membrane and energy-dependent cellular processes. J Antimicrob Chemother 2004; 54 (2): 386–92

    PubMed  CAS  Google Scholar 

  361. Hocquet D, Vogne C, El Garch F, et al. MexXY-OprM efflux pump is necessary for a adaptive resistance of Pseudomonas aeruginosa to aminoglycosides. Antimicrob Agents Chemother 2003; 47 (4): 1371–5

    PubMed  CAS  Google Scholar 

  362. Sobel ML, McKay GA, Poole K. Contribution of the MexXY multidrug transporter to aminoglycoside resistance in Pseudomonas aeruginosa clinical isolates. Antimicrob Agents Chemother 2003; 47 (10): 3202–7

    PubMed  CAS  Google Scholar 

  363. Islam S, Jalal S, Wretlind B. Expression of the MexXY efflux pump in amikacin-resistant isolates of Pseudomonas aeruginosa. Clin Microbiol Infect 2004; 10 (10): 877–83

    PubMed  CAS  Google Scholar 

  364. Vogne C, Aires JR, Bailly C, et al. Role of the multidrug efflux system MexXY in the emergence of moderate resistance to aminoglycosides among Pseudomonas aeruginosa isolates from patients with cystic fibrosis. Antimicrob Agents Chemother 2004; 48 (5): 1676–80

    PubMed  CAS  Google Scholar 

  365. Wolter DJ, Smith-Moland E, Goering RV, et al. Multidrug resistance associated with mexXY expression in clinical isolates of Pseudomonas aeruginosa from a Texas hospital. Diagn Microbiol Infect Dis 2004; 50 (1): 43–50

    PubMed  CAS  Google Scholar 

  366. Llanes C, Neuwirth C, El Garch F, et al. Genetic analysis of a multiresistant strain of Pseudomonas aeruginosa producing PER-1 b-lactamase. Clin Microbiol Infect 2006; 12 (3): 270–8

    PubMed  CAS  Google Scholar 

  367. Hocquet D, Nordmann P, El Garch F, et al. Involvement of the MexXY-OprM efflux system in emergence of cefepime resistance in clinical strains of Pseudomonas aeruginosa. Antimicrob Agents Chemother 2006; 50 (4): 1347–51

    PubMed  CAS  Google Scholar 

  368. Vettoretti L, Plesiat P, Muller C, et al. Efflux unbalance in cystic fibrosis isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother 2009; 53 (5): 1987–97

    PubMed  CAS  Google Scholar 

  369. El’Garch F, Jeannot K, Hocquet D, et al. Cumulative effects of several nonenzymatic mechanisms on the resistance of Pseudomonas aeruginosa to aminoglycosides. Antimicrob Agents Chemother 2007; 51 (3): 1016–21

    PubMed  Google Scholar 

  370. Jo JT, Brinkman FS, Hancock RE. Aminoglycoside efflux in Pseudomonas aeruginosa: involvement of novel outer membrane proteins. Antimicrob Agents Chemother 2003; 47 (3): 1101–11

    PubMed  CAS  Google Scholar 

  371. Dupont P, Hocquet D, Jeannot K, et al.. Bacteriostatic and bactericidal activities of eight fluoroquinolones against MexAB-OprM-overproducing clinical strains of Pseudomonas aeruginosa. J Antimicrob Chemother 2005; 55 (4): 518–22

    PubMed  CAS  Google Scholar 

  372. Griffith DC, Corcoran E, Lofland D, et al. Pharmacodynamics of levofloxacin against Pseudomonas aeruginosa with reduced susceptibility due to different efflux pumps: do elevated MICs always predict reduced in vivo efficacy? Antimicrob Agents Chemother 2006; 50 (5): 1628–32

    PubMed  CAS  Google Scholar 

  373. Martha B, Croisier D, Durand D, et al. In-vivo impact of the MexXY efflux system on aminoglycoside efficacy in an experimental model of Pseudomonas aeruginosa pneumonia treated with tobramycin. Clin Microbiol Infect 2006; 12 (5): 426–32

    PubMed  CAS  Google Scholar 

  374. Ong CT, Tessier PR, Li C, et al. Comparative in vivo efficacy of meropenem, imipenem, and cefepime against Pseudomonas aeruginosa expressing MexA-MexB-OprM efflux pumps. Diagn Microbiol Infect Dis 2007; 57 (2): 153–61

    PubMed  CAS  Google Scholar 

  375. Lister PD, Wolter DJ, Wickman PA, et al. Levofloxacin/ imipenem prevents the emergence of high-level resistance among Pseudomonas aeruginosa strains already lacking susceptibility to one or both drugs. J Antimicrob Chemother 2006; 57 (5): 999–1003

    PubMed  CAS  Google Scholar 

  376. Chuanchuen R, Karkhoff-Schweizer RR, Schweizer HP. High-level triclosan resistance in Pseudomonas aeruginosa is solely a result of efflux. Am J Infect Control 2003; 31 (2): 124–7

    PubMed  Google Scholar 

  377. Chuanchuen R, Murata T, Gotoh N, et al. Substrate-dependent utilization of OprM or OpmH by the Pseudomonas aeruginosa MexJK efflux pump. Antimicrob Agents Chemother 2005; 49 (5): 2133–6

    PubMed  Google Scholar 

  378. Zhou J, Hao D, Wang X, et al. An important role of a “probable ATP-binding component of ABC transporter” during the process of Pseudomonas aeruginosa resistance to fluoroquinolone. Proteomics 2006; 6 (8): 2495–503

    PubMed  CAS  Google Scholar 

  379. Dean CR, Visalli MA, Projan SJ, et al. Efflux-mediated resistance to tigecycline (GAR-936) in Pseudomonas aeruginosa PAO1. Antimicrob Agents Chemother 2003; 47 (3): 972–8

    PubMed  CAS  Google Scholar 

  380. Mushtaq S, Ge Y, Livermore DM. Doripenem versus Pseudomonas aeruginosa in vitro: activity against characterized isolates, mutants, and transconjugants and resistance selection potential. Antimicrob Agents Chemother 2004; 48 (8): 3086–92

    PubMed  CAS  Google Scholar 

  381. Baum EZ, Crespo-Carbone SM, Morrow B, et al. Effect of MexXY overexpression on ceftobiprole susceptibility in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2009; 53 (7): 2785–90

    PubMed  CAS  Google Scholar 

  382. Robertson GT, Doyle TB, Du Q, et al. A novel indole compound that inhibits Pseudomonas aeruginosa growth by targeting MreB is a substrate for MexAB-OprM. J Bacteriol 2007; 189 (19): 6870–81

    PubMed  CAS  Google Scholar 

  383. Vaara M. Agents that increase the permeability of the outer membrane. Microbiol Rev 1992; 56 (3): 395–411

    PubMed  CAS  Google Scholar 

  384. Ellison ML, Roberts AL, Champlin FR. Susceptibility of compound 48/80-sensitized Pseudomonas aeruginosa to the hydrophobic biocide triclosan. FEMS Microbiol Lett 2007; 269 (2): 295–300

    PubMed  CAS  Google Scholar 

  385. Teran W, Felipe A, Segura A, et al. Antibiotic-dependent induction of Pseudomonas putida DOT-T1E TtgABC efflux pump is mediated by the drug binding repressor TtgR. Antimicrob Agents Chemother 2003; 47 (10): 3067–72

    PubMed  CAS  Google Scholar 

  386. Nagai K, Murata T, Ohta S, et al. Two different mechanisms are involved in the extremely high-level benzalkonium chloride resistance of a Pseudomonas fluorescens strain. Microbiol Immunol 2003; 47 (10): 709–15

    PubMed  CAS  Google Scholar 

  387. Huang X, Yan A, Zhang X, et al. Identification and characterization of a putative ABC transporter PltHIJKN required for pyoluteorin production in Pseudomonas sp. M18. Gene 2006; 376 (1): 68–78

    PubMed  CAS  Google Scholar 

  388. Bergogne-Berezin E, Towner KJ. Acinetobacter spp. as nosocomial pathogens: microbiological, clinical, and epidemiological features. Clin Microbiol Rev 1996; 9 (2): 148–65

    PubMed  CAS  Google Scholar 

  389. Peleg AY, Paterson DL. Multidrug-resistant Acinetobacter: a threat to the antibiotic era. InternMed J 2006; 36 (8): 479–82

    CAS  Google Scholar 

  390. Gilad J, Carmeli Y. Treatment options for multidrugresistant Acinetobacter species. Drugs 2008; 68 (2): 165–89

    PubMed  CAS  Google Scholar 

  391. Sato K, Nakae T. Outer membrane permeability of Acinetobacter calcoaceticus and its implication in antibiotic resistance. J Antimicrob Chemother 1991; 28 (1): 35–45

    PubMed  CAS  Google Scholar 

  392. Yun SH, Choi CW, Park SH, et al. Proteomic analysis of outer membrane proteins from Acinetobacter baumannii DU202 in tetracycline stress condition. J Microbiol 2008; 46 (6): 720–7

    PubMed  CAS  Google Scholar 

  393. Vila J, Marti S, Sanchez-Cespedes J. Porins, efflux pumps and multidrug resistance in Acinetobacter baumannii. J Antimicrob Chemother 2007; 59 (6): 1210–5

    PubMed  CAS  Google Scholar 

  394. Marchand I, Damier-Piolle L, Courvalin P, et al. Expression of the RND-type efflux pump AdeABC in Acinetobacter baumannii is regulated by the AdeRS twocomponent system. Antimicrob Agents Chemother 2004; 48 (9): 3298–304

    PubMed  CAS  Google Scholar 

  395. Nemec A, Maixnerova M, van der Reijden TJ, et al. Relationship between the AdeABC efflux system gene content, netilmicin susceptibility and multidrug resistance in a genotypically diverse collection of Acinetobacter baumannii strains. J Antimicrob Chemother 2007; 60 (3): 483–9

    PubMed  CAS  Google Scholar 

  396. Ruzin A, Keeney D, Bradford PA. AdeABC multidrug efflux pump is associated with decreased susceptibility to tigecycline in Acinetobacter calcoaceticus-Acinetobacter baumannii complex. J Antimicrob Chemother 2007; 59 (5): 1001–4

    PubMed  CAS  Google Scholar 

  397. Peleg AY, Adams J, Paterson DL. Tigecycline efflux as a mechanism for nonsusceptibility in Acinetobacter baumannii. Antimicrob Agents Chemother 2007; 51 (6): 2065–9

    PubMed  CAS  Google Scholar 

  398. Huys G, Cnockaert M, Nemec A, et al. Sequence-based typing of adeB as a potential tool to identify intraspecific groups among clinical strains of multidrug-resistant Acinetobacter baumannii. J Clin Microbiol 2005; 43 (10): 5327–31

    PubMed  CAS  Google Scholar 

  399. Higgins PG, Wisplinghoff H, Stefanik D, et al. Selection of topoisomerase mutations and overexpression of adeB mRNA transcripts during an outbreak of Acinetobacter baumannii. J Antimicrob Chemother 2004; 54 (4): 821–3

    PubMed  CAS  Google Scholar 

  400. Peleg AY, Potoski BA, Rea R, et al. Acinetobacter baumannii bloodstream infection while receiving tigecycline: a cautionary report. J Antimicrob Chemother 2007; 59 (1): 128–31

    PubMed  CAS  Google Scholar 

  401. Siroy A, Cosette P, Seyer D, et al. Global comparison of the membrane subproteomes between a multidrug-resistant Acinetobacter baumannii strain and a reference strain. J Proteome Res 2006; 5 (12): 3385–98

    PubMed  CAS  Google Scholar 

  402. Gomez MJ, Neyfakh AA. Identification of genes involved in intrinsic antibiotic resistance of Acinetobacter baylyi. Antimicrob Agents Chemother 2006; 50 (11): 3562–7

    PubMed  CAS  Google Scholar 

  403. Guardabassi L, Dijkshoorn L, Collard JM, et al. Distribution and in-vitro transfer of tetracycline resistance determinants in clinical and aquatic Acinetobacter strains. J Med Microbiol 2000; 49 (10): 929–36

    PubMed  CAS  Google Scholar 

  404. Huys G, Cnockaert M, Vaneechoutte M, et al. Distribution of tetracycline resistance genes in genotypically related and unrelated multiresistant Acinetobacter baumannii strains from different European hospitals. Res Microbiol 2005; 156 (3): 348–55

    PubMed  CAS  Google Scholar 

  405. Ribera A, Ruiz J, Vila J. Presence of the TetMdeterminant in a clinical isolate of Acinetobacter baumannii. Antimicrob Agents Chemother 2003; 47 (7): 2310–2

    PubMed  CAS  Google Scholar 

  406. Nicodemo AC, Paez JI. Antimicrobial therapy for Stenotrophomonas maltophilia infections. Eur J Clin Microbiol Infect Dis 2007; 26 (4): 229–37

    PubMed  CAS  Google Scholar 

  407. Rahmati-Bahram A, Magee JT, Jackson SK. Temperaturedependent aminoglycoside resistance in Stenotrophomonas (Xanthomonas) maltophilia; alterations in protein and lipopolysaccharide with growth temperature. J Antimicrob Chemother 1996; 37 (4): 665–76

    PubMed  CAS  Google Scholar 

  408. Li X-Z, Zhang L, Poole K. SmeC, an outer membrane multidrug efflux protein of Stenotrophomonas maltophilia. Antimicrob Agents Chemother 2002; 46 (2): 333–43

    PubMed  CAS  Google Scholar 

  409. Chang LL, Chen HF, Chang CY, et al. Contribution of integrons, and SmeABC and SmeDEF efflux pumps to multidrug resistance in clinical isolates of Stenotrophomonas maltophilia. J Antimicrob Chemother 2004; 53 (3): 518–21

    PubMed  CAS  Google Scholar 

  410. Sanchez P, Moreno E, Martinez JL. The biocide triclosan selects Stenotrophomonas maltophilia mutants that overproduce the SmeDEF multidrug efflux pump. Antimicrob Agents Chemother 2005; 49 (2): 781–2

    PubMed  CAS  Google Scholar 

  411. Gould VC, Okazaki A, Howe RA, et al. Analysis of sequence variation among smeDEF multi drug efflux pump genes and flanking DNA from defined 16S rRNA subgroups of clinical Stenotrophomonas maltophilia isolates. J Antimicrob Chemother 2004; 54 (2): 348–53

    PubMed  CAS  Google Scholar 

  412. Gould VC, Avison MB. SmeDEF-mediated antimicrobial drug resistance in Stenotrophomonas maltophilia clinical isolates having defined phylogenetic relationships. J Antimicrob Chemother 2006; 57 (6): 1070–6

    PubMed  CAS  Google Scholar 

  413. Sanchez P, Le U, Martinez JL. The efflux pump inhibitor Phe-Arg-b-naphthylamide does not abolish the activity of the Stenotrophomonas maltophilia SmeDEF multidrug efflux pump. J Antimicrob Chemother 2003; 51 (4): 1042–5

    PubMed  CAS  Google Scholar 

  414. Valdezate S, Vindel A, Saez-Nieto JA, et al. Preservation of topoisomerase genetic sequences during in vivo and in vitro development of high-level resistance to ciprofloxacin in isogenic Stenotrophomonas maltophilia strains. J Antimicrob Chemother 2005; 56 (1): 220–3

    PubMed  CAS  Google Scholar 

  415. Peric M, Bozdogan B, Jacobs MR, et al. Effects of an efflux mechanism and ribosomal mutations on macrolide susceptibility of Haemophilus influenzae clinical isolates. Antimicrob Agents Chemother 2003; 47 (3): 1017–22

    PubMed  CAS  Google Scholar 

  416. Bogdanovich T, Bozdogan B, Appelbaum PC. Effect of efflux on telithromycin and macrolide susceptibility in Haemophilus influenzae. Antimicrob Agents Chemother 2006; 50 (3): 893–8

    PubMed  CAS  Google Scholar 

  417. Peric M, Bozdogan B, Galderisi C, et al. Inability of L22 ribosomal protein alteration to increase macrolide MICs in the absence of efflux mechanism in Haemophilus influenzae HMC-S. J Antimicrob Chemother 2004; 54 (2): 393–400

    PubMed  CAS  Google Scholar 

  418. Perez-Vazquez M, Roman F, Garcia-Cobos S, et al. Fluoroquinolone resistance in Haemophilus influenzae is associated with hypermutability. Antimicrob Agents Chemother 2007; 51 (4): 1566–9

    PubMed  CAS  Google Scholar 

  419. Trepod CM, Mott JE. Identification of the Haemophilus influenzae tolC gene by susceptibility profiles of insertionally inactivated efflux pump mutants. Antimicrob Agents Chemother 2004; 48 (4): 1416–8

    PubMed  CAS  Google Scholar 

  420. Dean CR, Narayan S, Daigle DM, et al. Role of the AcrAB- TolC efflux pump in determining susceptibility of Haemophilus influenzae to the novel peptide deformylase inhibitor LBM415. Antimicrob Agents Chemother 2005; 49 (8): 3129–35

    PubMed  CAS  Google Scholar 

  421. Bogdanovich T, Smith KA, Clark C, et al. Activity of LBM415 compared to those of 11 other agents against Haemophilus species. Antimicrob Agents Chemother 2006; 50 (7): 2323–9

    PubMed  CAS  Google Scholar 

  422. Siritapetawee J, Prinz H, Krittanai C, et al. Expression and refolding of Omp38 from Burkholderia pseudomallei and Burkholderia thailandensis, and its function as a diffusion porin. Biochem J 2004; 384 (Pt 3): 609–17

    PubMed  CAS  Google Scholar 

  423. Nair BM, Joachimiak LA, Chattopadhyay S, et al. Conservation of a novel protein associated with an antibiotic efflux operon in Burkholderia cenocepacia. FEMS Microbiol Lett 2005; 245 (2): 337–44

    PubMed  CAS  Google Scholar 

  424. Kumar A, Mayo M, Trunck LA, et al. Expression of resistance-nodulation-cell-division efflux pumps in commonly used Burkholderia pseudomallei strains and clinical isolates from northern Australia. Trans R Soc Trop Med Hyg 2008; 102 Suppl. 1: S145–51

    PubMed  Google Scholar 

  425. Young JD, Blake M, Mauro A, et al. Properties of the major outer membrane protein from Neisseria gonorrhoeae incorporated into model lipid membranes. Proc Natl Acad Sci U S A 1983; 80 (12): 3831–5

    PubMed  CAS  Google Scholar 

  426. Tzeng YL, Ambrose KD, Zughaier S, et al. Cationic antimicrobial peptide resistance in Neisseria meningitidis. J Bacteriol 2005; 187 (15): 5387–96

    PubMed  CAS  Google Scholar 

  427. Warner DM, Folster JP, Shafer WM, et al. Regulation of theMtrC-MtrD-MtrE efflux-pump system modulates the in vivo fitness of Neisseria gonorrhoeae. J Infect Dis 2007; 196 (12): 1804–12

    PubMed  CAS  Google Scholar 

  428. Olesky M, Zhao S, Rosenberg RL, et al. Porin-mediated antibiotic resistance in Neisseria gonorrhoeae: ion, solute, and antibiotic permeation through PIB proteins with penB mutations. J Bacteriol 2006; 188 (7): 2300–8

    PubMed  CAS  Google Scholar 

  429. Shafer WM, Folster JP. Towards an understanding of chromosomally mediated penicillin resistance in Neisseria gonorrhoeae: evidence for a porin-efflux pump collaboration. J Bacteriol 2006; 188 (7): 2297–9

    PubMed  CAS  Google Scholar 

  430. Tanaka M, Nakayama H, Huruya K, et al. Analysis of mutations within multiple genes associated with resistance in a clinical isolate of Neisseria gonorrhoeae with reduced ceftriaxone susceptibility that shows a multidrug-resistant phenotype. Int J Antimicrob Agents 2006; 27 (1): 20–6

    PubMed  CAS  Google Scholar 

  431. Dewi BE, Akira S, Hayashi H, et al. High occurrence of simultaneous mutations in target enzymes and MtrRCDE efflux system in quinolone-resistant Neisseria gonorrhoeae. Sex Transm Dis 2004; 31 (6): 353–9

    PubMed  CAS  Google Scholar 

  432. Crawford SA, Fiebelkorn KR, Patterson JE, et al. International clone of Neisseria meningitidis serogroup A with tetracycline resistance due to tet(B). Antimicrob Agents Chemother 2005; 49 (3): 1198–200

    PubMed  CAS  Google Scholar 

  433. Jorgensen JH, Crawford SA, Fiebelkorn KR. Susceptibility of Neisseria meningitidis to 16 antimicrobial agents and characterization of resistance mechanisms affecting some agents. J Clin Microbiol 2005; 43 (7): 3162–71

    PubMed  CAS  Google Scholar 

  434. Ruiz J, Ribera A, Jurado A, et al. Evidence for a reserpineaffected mechanism of resistance to tetracycline in Neisseria gonorrhoeae. APMIS 2005; 113 (10): 670–4

    PubMed  CAS  Google Scholar 

  435. Kamal N, Rouquette-Loughlin C, Shafer WM. The TolClike protein of Neisseria meningitidis is required for extracellular production of the repeats-in-toxin toxin FrpC but not for resistance to antimicrobials recognized by the Mtr efflux pump system. Infect Immun 2007; 75 (12): 6008–12

    PubMed  CAS  Google Scholar 

  436. Pappas G, Papadimitriou P, Christou L, et al. Future trends in human brucellosis treatment. Expert Opin Investig Drugs 2006; 15 (10): 1141–9

    PubMed  CAS  Google Scholar 

  437. Douglas JT, Rosenberg EY, Nikaido H, et al. Porins of Brucella species. Infect Immun 1984; 44 (1): 16–21

    PubMed  CAS  Google Scholar 

  438. DelVecchio VG, Kapatral V, Elzer P, et al. The genome of Brucella melitensis. Vet Microbiol 2002; 90 (1-4): 587–92

    PubMed  CAS  Google Scholar 

  439. Paulsen IT, Seshadri R, Nelson KE, et al. The Brucella suis genome reveals fundamental similarities between animal and plant pathogens and symbionts. Proc Natl Acad Sci U S A 2002; 99 (20): 13148–53

    PubMed  CAS  Google Scholar 

  440. Halling SM, Jensen AE. Intrinsic and selected resistance to antibiotics binding the ribosome: analyses of Brucella 23S rrn, L4, L22, EF-Tu1, EF-Tu2, efflux and phylogenetic implications. BMC Microbiol 2006; 6: 84

    PubMed  Google Scholar 

  441. Ravanel N, Gestin B, Maurin M. In vitro selection of fluoroquinolone resistance in Brucella melitensis. Int J Antimicrob Agents 2009; 34 (1): 76–81

    PubMed  CAS  Google Scholar 

  442. Labesse G, Garnotel E, Bonnel S, et al. MOMP, a divergent porin from Campylobacter: cloning and primary structural characterization. Biochem Biophys Res Commun 2001; 280 (1): 380–7

    PubMed  CAS  Google Scholar 

  443. Page WJ, Huyer G, Huyer M, et al. Characterization of the porins of Campylobacter jejuni and Campylobacter coli and implications for antibiotic susceptibility. Antimicrob Agents Chemother 1989; 33 (3): 297–303

    PubMed  CAS  Google Scholar 

  444. Luo N, Sahin O, Lin J, et al. In vivo selection of Campylobacter isolates with high levels of fluoroquinolone resistance associated with gyrA mutations and the function of the CmeABC efflux pump. Antimicrob Agents Chemother 2003; 47 (1): 390–4

    PubMed  CAS  Google Scholar 

  445. Mamelli L, Amoros JP, Pages JM, et al. A phenylalaninearginine β-naphthylamide sensitive multidrug efflux pump involved in intrinsic and acquired resistance of Campylobacter to macrolides. Int J Antimicrob Agents 2003; 22 (3): 237–41

    PubMed  CAS  Google Scholar 

  446. Zhang Q, Plummer P. Mechanisms of antibiotic resistance in Campylobacter. In: Nachamkin I, Szymanski C, Blaser M, editors. Campylobacter.Washington, DC: ASM Press, 2008: 263–76

    Google Scholar 

  447. Corcoran D, Quinn T, Cotter L, et al. Characterization of a cmeABC operon in a quinolone-resistant Campylobacter coli isolate of Irish origin. Microb Drug Resist 2005; 11 (4): 303–8

    PubMed  CAS  Google Scholar 

  448. Ge B, McDermott PF, White DG, et al. Role of efflux pumps and topoisomerase mutations in fluoroquinolone resistance in Campylobacter jejuni and Campylobacter coli. Antimicrob Agents Chemother 2005; 49 (8): 3347–54

    PubMed  CAS  Google Scholar 

  449. Olah PA, Doetkott C, Fakhr MK, et al. Prevalence of the Campylobacter multi-drug efflux pump (CmeABC) in Campylobacter spp. isolated from freshly processed turkeys. Food Microbiol 2006; 23 (5): 453–60

    PubMed  CAS  Google Scholar 

  450. Yan M, Sahin O, Lin J, et al. Role of the CmeABC efflux pump in the emergence of fluoroquinolone-resistant Campylobacter under selection pressure. J Antimicrob Chemother 2006; 58 (6): 1154–9

    PubMed  CAS  Google Scholar 

  451. Gibreel A, Wetsch NM, Taylor DE. Contribution of the CmeABC efflux pump to macrolide and tetracycline resistance in Campylobacter jejuni. Antimicrob Agents Chemother 2007; 51 (9): 3212–6

    PubMed  CAS  Google Scholar 

  452. Caldwell DB, Wang Y, Lin J. Development, stability, and molecular mechanisms of macrolide resistance in Campylobacter jejuni. Antimicrob Agents Chemother 2008; 52 (11): 3947–54

    PubMed  CAS  Google Scholar 

  453. Hanninen ML, Hannula M. Spontaneous mutation frequency and emergence of ciprofloxacin resistance in Campylobacter jejuni and Campylobacter coli. J Antimicrob Chemother 2007; 60 (6): 1251–7

    PubMed  Google Scholar 

  454. Piddock LJ, Griggs D, Johnson MM, et al. Persistence of Campylobacter species, strain types, antibiotic resistance and mechanisms of tetracycline resistance in poultry flocks treated with chlortetracycline. J Antimicrob Chemother 2008; 62 (2): 303–15

    PubMed  CAS  Google Scholar 

  455. Cagliero C, Cloix L, Cloeckaert A, et al. High genetic variation in the multidrug transporter cmeB gene in Campylobacter jejuni and Campylobacter coli. J Antimicrob Chemother 2006; 58 (1): 168–72

    PubMed  CAS  Google Scholar 

  456. Lin J, Yan M, Sahin O, et al. Effect of macrolide usage on emergence of erythromycin-resistant Campylobacter isolates in chickens. Antimicrob Agents Chemother 2007; 51 (5): 1678–86

    PubMed  CAS  Google Scholar 

  457. Mamelli L, Prouzet-Mauleon V, Pages J-M, et al. Molecular basis of macrolide resistance in Campylobacter: role of efflux pumps and target mutations. J Antimicrob Chemother 2005; 56 (3): 491–7

    PubMed  CAS  Google Scholar 

  458. Mamelli L, Demoulin E, Prouzet-Mauleon V, et al. Prevalence of efflux activity in low-level macrolide-resistant Campylobacter species. J Antimicrob Chemother 2007; 59 (2): 327–8

    PubMed  CAS  Google Scholar 

  459. Jeon B, Zhang Q. Sensitization of Campylobacter jejuni to fluoroquinolone and macrolide antibiotics by antisense inhibition of the CmeABC multidrug efflux transporter. J Antimicrob Chemother 2009; 63 (5): 946–8

    PubMed  CAS  Google Scholar 

  460. Pumbwe L, Randall LP, Woodward MJ, et al. Expression of the efflux pump genes cmeB, cmeF and the porin gene porA in multiple-antibiotic-resistant Campylobacter jejuni. J Antimicrob Chemother 2004; 54 (2): 341–7

    PubMed  CAS  Google Scholar 

  461. Cagliero C, Mouline C, Cloeckaert A, et al. Synergy between efflux pump CmeABC and modifications in ribosomal proteins L4 and L22 in conferring macrolide resistance in Campylobacter jejuni and Campylobacter coli. Antimicrob Agents Chemother 2006; 50 (11): 3893–6

    PubMed  CAS  Google Scholar 

  462. Fange D, Nilsson K, Tenson T, et al. Drug efflux pump deficiency and drug target resistance masking in growing bacteria. Proc Natl Acad Sci U S A 2009; 106 (20): 8215–20

    PubMed  Google Scholar 

  463. Doig P, Exner MM, Hancock RE, et al. Isolation and characterization of a conserved porin protein from Helicobacter pylori. J Bacteriol 1995; 177 (19): 5447–52

    PubMed  CAS  Google Scholar 

  464. Megraud F, Lehours P. Helicobacter pylori detection and antimicrobial susceptibility testing. Clin Microbiol Rev 2007; 20 (2): 280–322

    PubMed  CAS  Google Scholar 

  465. DeLoney CR, Schiller NL. Characterization of an in vitroselected amoxicillin-resistant strain of Helicobacter pylori. Antimicrob Agents Chemother 2000; 44 (12): 3368–73

    PubMed  CAS  Google Scholar 

  466. van Amsterdam K, Bart A, van der Ende A. A Helicobacter pylori TolC efflux pump confers resistance to metronidazole. Antimicrob Agents Chemother 2005; 49 (4): 1477–82

    PubMed  Google Scholar 

  467. Pumbwe L, Skilbeck CA, Wexler HM. The Bacteroides fragilis cell envelope: quarterback, linebacker, coach-or all three? Anaerobe 2006; 12 (5-6): 211–20

    PubMed  CAS  Google Scholar 

  468. Kanazawa K, Kobayashi Y, Nakano M, et al. Identification of three porins in the outer membrane of Bacteroides fragilis. FEMS Microbiol Lett 1995; 127 (3): 181–6

    CAS  Google Scholar 

  469. Hecht DW. Prevalence of antibiotic resistance in anaerobic bacteria: worrisome developments. Clin Infect Dis 2004; 39 (1): 92–7

    PubMed  Google Scholar 

  470. Salyers A, Shoemaker NB. Reservoirs of antibiotic resistance genes. Anim Biotechnol 2006; 17 (2): 137–46

    PubMed  Google Scholar 

  471. Ricci V, Peterson ML, Rotschafer JC, et al. Role of topoisomerase mutations and efflux in fluoroquinolone resistance of Bacteroides fragilis clinical isolates and laboratory mutants. Antimicrob Agents Chemother 2004; 48 (4): 1344–6

    PubMed  CAS  Google Scholar 

  472. Pumbwe L, Glass D, Wexler HM. Efflux pump overexpression in multiple-antibiotic-resistant mutants of Bacteroides fragilis. Antimicrob Agents Chemother 2006; 50 (9): 3150–3

    PubMed  CAS  Google Scholar 

  473. Pumbwe L, Chang A, Smith RL, et al. Clinical significance of overexpression of multiple RND-family efflux pumps in Bacteroides fragilis isolates. J Antimicrob Chemother 2006; 58 (3): 543–8

    PubMed  CAS  Google Scholar 

  474. Pumbwe L, Wareham DW, Aduse-Opoku J, et al. Genetic analysis of mechanisms of multidrug resistance in a clinical isolate of Bacteroides fragilis. Clin Microbiol Infect 2007; 13 (2): 183–9

    PubMed  CAS  Google Scholar 

  475. Wang Y, Wang GR, Shelby A, et al. A newly discovered Bacteroides conjugative transposon, CTnGERM1, contains genes also found in Gram-positive bacteria. Appl Environ Microbiol 2003; 69 (8): 4595–603

    PubMed  CAS  Google Scholar 

  476. Owens Jr RC, Donskey CJ, Gaynes RP, et al. Antimicrobial- associated risk factors for Clostridium difficile infection. Clin Infect Dis 2008; 46 Suppl. 1: S19–31

    PubMed  Google Scholar 

  477. Drudy D, Quinn T, O’Mahony R, et al. High-level resistance to moxifloxacin and gatifloxacin associated with a novel mutation in gyrB in toxin-A-negative, toxin- B-positive Clostridium difficile. J Antimicrob Chemother 2006; 58 (6): 1264–7

    PubMed  CAS  Google Scholar 

  478. Sebaihia M, Wren BW, Mullany P, et al. The multidrugresistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nat Genet 2006; 38 (7): 779–86

    PubMed  Google Scholar 

  479. Rafii F, Park M, Wynne R. Evidence for active drug efflux in fluoroquinolone resistance in Clostridium hathewayi. Chemotherapy 2005; 51 (5): 256–62

    PubMed  CAS  Google Scholar 

  480. Bannam TL, Johanesen PA, Salvado CL, et al. The Clostridium perfringens TetA(P) efflux protein contains a functional variant of the Motif A region found in major facilitator superfamily transport proteins. Microbiology 2004; 150 (Pt 1): 127–34

    PubMed  CAS  Google Scholar 

  481. Kumano M, Fujita M, Nakamura K, et al. Lincomycin resistance mutations in two regions immediately downstream of the -10 region of lmr promoter cause overexpression of a putative multidrug efflux pump in Bacillus subtilis mutants. Antimicrob Agents Chemother 2003; 47 (1): 432–5

    PubMed  CAS  Google Scholar 

  482. Safferling M, Griffith H, Jin J, et al. TetL tetracycline efflux protein from Bacillus subtilis is a dimer in the membrane and in detergent solution. Biochemistry 2003; 42 (47): 13969–76

    PubMed  CAS  Google Scholar 

  483. Price LB, Vogler A, Pearson T, et al. In vitro selection and characterization of Bacillus anthracis mutants with highlevel resistance to ciprofloxacin. Antimicrob Agents Chemother 2003; 47 (7): 2362–5

    PubMed  CAS  Google Scholar 

  484. Grohs P, Podglajen I, Gutmann L. Activities of different fluoroquinolones against Bacillus anthracis mutants selected in vitro and harboring topoisomerase mutations. Antimicrob Agents Chemother 2004; 48 (8): 3024–7

    PubMed  CAS  Google Scholar 

  485. Bast DJ, Athamna A, Duncan CL, et al. Type II topoisomerase mutations in Bacillus anthracis associated with high-level fluoroquinolone resistance. J Antimicrob Chemother 2004; 54 (1): 90–4

    PubMed  CAS  Google Scholar 

  486. Ramaswamy V, Cresence VM, Rejitha JS, et al. Listeria: review of epidemiology and pathogenesis. J Microbiol Immunol Infect 2007; 40 (1): 4–13

    PubMed  CAS  Google Scholar 

  487. Marco F, Almela M, Nolla-Salas J, et al., on behalf of The Collaborative Study Group of Listeriosis of Barcelona. In vitro activities of 22 antimicrobial agents against Listeria monocytogenes strains isolated in Barcelona, Spain. Diagn Microbiol Infect Dis 2000; 38 (4): 259–61

    PubMed  CAS  Google Scholar 

  488. Hof H. Listeriosis: therapeutic options. FEMS Immunol Med Microbiol 2003; 35 (3): 203–5

    PubMed  CAS  Google Scholar 

  489. Lyon SA, Berrang ME, Fedorka-Cray PJ, et al. Antimicrobial resistance of Listeria monocytogenes isolated from a poultry further processing plant. Foodborne Pathog Dis 2008; 5 (3): 253–9

    PubMed  CAS  Google Scholar 

  490. Li Q, Sherwood JS, Logue CM. Antimicrobial resistance of Listeria spp. recovered from processed bison. Lett Appl Microbiol 2007; 44 (1): 86–91

    PubMed  CAS  Google Scholar 

  491. Srinivasan V, Nam HM, Nguyen LT, et al. Prevalence of antimicrobial resistance genes in Listeria monocytogenes isolated from dairy farms. Foodborne Pathog Dis 2005; 2 (3): 201–11

    PubMed  CAS  Google Scholar 

  492. Mullapudi S, Siletzky RM, Kathariou S. Heavy-metal and benzalkonium chloride resistance of Listeria monocytogenes isolates from the environment of turkeyprocessing plants. Appl Environ Microbiol 2008; 74 (5): 1464–8

    PubMed  CAS  Google Scholar 

  493. Soumet C, Ragimbeau C, Maris P. Screening of benzalkonium chloride resistance in Listeria monocytogenes strains isolated during cold smoked fish production. Lett Appl Microbiol 2005; 41 (3): 291–6

    PubMed  CAS  Google Scholar 

  494. Scortti M, Lacharme-Lora L, Wagner M, et al. Coexpression of virulence and fosfomycin susceptibility in Listeria: molecular basis of an antimicrobial in vitro-in vivo paradox. Nat Med 2006; 12 (5): 515–7

    PubMed  CAS  Google Scholar 

  495. Hassan KA, Skurray RA, Brown MH. Active export proteins mediating drug resistance in staphylococci. J Mol Microbiol Biotechnol 2007; 12 (3-4): 180–96

    PubMed  CAS  Google Scholar 

  496. Matsuoka M, Inoue M, Endo Y, et al. Characteristic expression of three genes, msr(A),mph(C) and erm(Y), that confer resistance to macrolide antibiotics on Staphylococcus aureus. FEMSMicrobiol Lett 2003; 220 (2): 287–93

    CAS  Google Scholar 

  497. DeMarco CE, Cushing LA, Frempong-Manso E, et al. Efflux-related resistance to norfloxacin, dyes, and biocides in bloodstream isolates of Staphylococcus aureus. Antimicrob Agents Chemother 2007; 51 (9): 3235–9

    PubMed  CAS  Google Scholar 

  498. Perez-Vazquez M, Vindel A, Marcos C, et al. Spread of invasive Spanish Staphylococcus aureus spa-type t067 associated with a high prevalence of the aminoglycosidemodifying enzyme gene ant(4‵)-Ia and the efflux pump genes msrA/msrB. J Antimicrob Chemother 2009; 63 (1): 21–31

    PubMed  CAS  Google Scholar 

  499. Kaatz GW, Seo SM. Effect of substrate exposure and other growth condition manipulations on norA expression. J Antimicrob Chemother 2004; 54 (2): 364–9

    PubMed  CAS  Google Scholar 

  500. Huet AA, Raygada JL, Mendiratta K, et al. Multidrug efflux pump overexpression in Staphylococcus aureus after single and multiple in vitro exposures to biocides and dyes. Microbiology 2008; 154 (Pt 10): 3144–53

    PubMed  CAS  Google Scholar 

  501. Bhateja P, Purnapatre K, Dube S, et al. Characterisation of laboratory-generated vancomycin intermediate resistant Staphylococcus aureus strains. Int J Antimicrob Agents 2006; 27(3): 201–11

    PubMed  CAS  Google Scholar 

  502. Stepanovic S, Martel A, Dakic I, et al. Resistance to macrolides, lincosamides, streptogramins, and linezolid among members of the Staphylococcus sciuri group. Microb Drug Resist 2006; 12(2): 115–20

    PubMed  CAS  Google Scholar 

  503. Alam MM, Kobayashi N, Uehara N, et al. Analysis on distribution and genomic diversity of high-level antiseptic resistance genes qacA and qacB in human clinical isolates of Staphylococcus aureus. Microb Drug Resist 2003; 9(2): 109–21

    PubMed  CAS  Google Scholar 

  504. Alam MM, Ishino M, Kobayashi N. Analysis of genomic diversity and evolution of the low-level antiseptic resistance gene smr in Staphylococcus aureus. Microb Drug Resist 2003; 9 Suppl. 1: S1–7

    PubMed  CAS  Google Scholar 

  505. Bayer AS, Kupferwasser LI, Brown MH, et al. Low-level resistance of Staphylococcus aureus to thrombin-induced platelet microbicidal protein 1 in vitro associated with qacA gene carriage is independent of multidrug efflux pump activity. Antimicrob Agents Chemother 2006; 50(7): 2448–54

    PubMed  CAS  Google Scholar 

  506. Jones CH, Tuckman M, Howe AY, et al. Diagnostic PCR analysis of the occurrence of methicillin and tetracycline resistance genes among Staphylococcus aureus isolates from phase 3 clinical trials of tigecycline for complicated skin and skin structure infections. Antimicrob Agents Chemother 2006; 50(2): 505–10

    PubMed  CAS  Google Scholar 

  507. Strahilevitz J, Truong-Bolduc QC, Hooper DC. DX-619, a novel des-fluoro(6) quinolone manifesting low frequency of selection of resistant Staphylococcus aureus mutants: quinolone resistance beyond modification of type II topoisomerases. Antimicrob Agents Chemother 2005; 49(12): 5051–7

    PubMed  CAS  Google Scholar 

  508. Correa JE, De Paulis A, Predari S, et al. First report of qacG, qacH and qacJ genes in Staphylococcus haemolyticus human clinical isolates. J Antimicrob Chemother 2008; 62(5): 956–60

    PubMed  CAS  Google Scholar 

  509. Walther C, Rossano A, Thomann A, et al. Antibiotic resistance in Lactococcus species from bovine milk: presence of a mutated multidrug transporter mdt(A) gene in susceptible Lactococcus garvieae strains. Vet Microbiol 2008; 131(3–4): 348–57

    PubMed  CAS  Google Scholar 

  510. Sakamoto K, Margolles A, van Veen HW, et al. Hop resistance in the beer spoilage bacterium Lactobacillus brevis is mediated by the ATP-binding cassette multidrug transporter HorA. J Bacteriol 2001; 183(18): 5371–5

    PubMed  CAS  Google Scholar 

  511. Suzuki K, Sami M, Kadokura H, et al. Biochemical characterization of horA-independent hop resistance mechanism in Lactobacillus brevis. Int J Food Microbiol 2002; 76(3): 223–30

    PubMed  CAS  Google Scholar 

  512. Cauwerts K, Pasmans F, Devriese LA, et al. Cloacal Lactobacillus isolates from broilers often display resistance toward tetracycline antibiotics. Microb Drug Resist 2006; 12(4): 284–8

    PubMed  CAS  Google Scholar 

  513. Roberts MC. Update on acquired tetracycline resistance genes. FEMS Microbiol Lett 2005; 245(2): 195–203

    PubMed  CAS  Google Scholar 

  514. Ammor MS, Gueimonde M, Danielsen M, et al. Two different tetracycline resistance mechanisms, plasmid -carried tet(L) and chromosomally located transposon-associated tet(M), coexist in Lactobacillus sakei Rits 9. Appl Environ Microbiol 2008; 74(5): 1394–401

    PubMed  CAS  Google Scholar 

  515. Elkins CA, Mullis LB. Bile-mediated aminoglycoside sensitivity in Lactobacillus species likely results from increased membrane permeability attributable to cholic acid. Appl Environ Microbiol 2004; 70(12): 7200–9

    PubMed  CAS  Google Scholar 

  516. Sheehan VM, Sleator RD, Fitzgerald GF, et al. Heterologous expression of BetL, a betaine uptake system, enhances the stress tolerance of Lactobacillus salivarius UCC118. Appl Environ Microbiol 2006; 72(3): 2170–7

    PubMed  CAS  Google Scholar 

  517. Dina J, Malbruny B, Leclercq R. Nonsense mutations in the lsa-like gene in Enterococcus faecalis isolates susceptible to lincosamides and streptogramins A. Antimicrob Agents Chemother 2003; 47(7): 2307–9

    PubMed  CAS  Google Scholar 

  518. Aslangul E, Massias L, Meulemans A, et al. Acquired gentamicin resistance by permeability impairment in Enterococcus faecalis. Antimicrob Agents Chemother 2006; 50(11): 3615–21

    PubMed  CAS  Google Scholar 

  519. Oyamada Y, Ito H, Inoue M, et al. Topoisomerase mutations and efflux are associated with fluoroquinolone resistance in Enterococcus faecalis. J Med Microbiol 2006; 55 (Pt 10): 1395–401

    PubMed  CAS  Google Scholar 

  520. Werner G, Hildebrandt B, Witte W. The newly described msrC gene is not equally distributed among all isolates of Enterococcus faecium. Antimicrob Agents Chemother 2001; 45(12): 3672–3

    PubMed  CAS  Google Scholar 

  521. Jumbe NL, Louie A, Miller MH, et al. Quinolone efflux pumps play a central role in emergence of fluoroquinolone resistance in Streptococcus pneumoniae. Antimicrob Agents Chemother 2006; 50(1): 310–7

    PubMed  CAS  Google Scholar 

  522. Sevillano D, Aguilar L, Alou L, et al. Effects of antimicrobials on the competitive growth of Streptococcus pneumoniae: a pharmacodynamic in vitro model approach to selection of resistant populations. J Antimicrob Chemother 2006; 58(4): 794–801

    PubMed  CAS  Google Scholar 

  523. Felmingham D, Canton R, Jenkins SG. Regional trends in β-lactam, macrolide, fluoroquinolone and telithromycin resistance among Streptococcus pneumoniae isolates 2001–2004. J Infect 2007; 55(2): 111–8

    PubMed  Google Scholar 

  524. Wierzbowski AK, Swedlo D, Boyd D, et al. Molecular epidemiology and prevalence of macrolide efflux genes mef(A) and mef(E) in Streptococcus pneumoniae obtained in Canada from 1997 to 2002. Antimicrob Agents Chemother 2005; 49(3): 1257–61

    PubMed  CAS  Google Scholar 

  525. Song JH, Chang HH, Suh JY, et al. Macrolide resistance and genotypic characterization of Streptococcus pneumoniae in Asian countries: a study of the Asian Network for Surveillance of Resistant Pathogens (ANSORP). J Antimicrob Chemother 2004; 53(3): 457–63

    PubMed  CAS  Google Scholar 

  526. Farrell DJ, Morrissey I, Bakker S, et al. Molecular epidemiology of multiresistant Streptococcus pneumoniae with both erm(B)- and mef(A)-mediated macrolide resistance. J Clin Microbiol 2004; 42(2): 764–8

    PubMed  CAS  Google Scholar 

  527. Bacciaglia A, Brenciani A, Varaldo PE, et al. SmaI type-ability and tetracycline susceptibility and resistance in Streptococcus pyogenes isolates with efflux-mediated erythromycin resistance. Antimicrob Agents Chemother 2007; 51(8): 3042–3

    PubMed  CAS  Google Scholar 

  528. Brenwald NP, Appelbaum P, Davies T, et al. Evidence for efflux pumps, other than PmrA, associated with fluoroquinolone resistance in Streptococcus pneumoniae. Clin Microbiol Infect 2003; 9(2): 140–3

    PubMed  CAS  Google Scholar 

  529. Martinez-Garriga B, Vinuesa T, Hernandez-Borrell J, et al. The contribution of efflux pumps to quinolone resistance in Streptococcus pneumoniae clinical isolates. Int J Med Microbiol 2007; 297(3): 187–95

    PubMed  CAS  Google Scholar 

  530. Schurek KN, Adam HJ, Siemens CG, et al. Are fluoroquinolone-susceptible isolates of Streptococcus pneumoniae really susceptible? A comparison of resistance mechanisms in Canadian isolates from 1997 and 2003. J Antimicrob Chemother 2005; 56(4): 769–72

    PubMed  CAS  Google Scholar 

  531. Canton R, Mazzariol A, Morosini M-I, et al. Telithromycin activity is reduced by efflux in Streptococcus pyogenes. J Antimicrob Chemother 2005; 55(4): 489–95

    PubMed  CAS  Google Scholar 

  532. Hisanaga T, Hoban DJ, Zhanel GG. Mechanisms of resistance to telithromycin in Streptococcus pneumoniae. J Antimicrob Chemother 2005; 56(3): 447–50

    PubMed  CAS  Google Scholar 

  533. Brenciani A, Ojo KK, Monachetti A, et al. Distribution and molecular analysis of mef(A)-containing elements in tetracycline-susceptible and -resistant Streptococcus pyogenes clinical isolates with efflux-mediated erythromycin resistance. J Antimicrob Chemother 2004; 54(6): 991–8

    PubMed  CAS  Google Scholar 

  534. D’Ercole S, Petrelli D, Prenna M, et al. Distribution of mef(A)-containing genetic elements in erythromycin-resistant isolates of Streptococcus pyogenes from Italy. Clin Microbiol Infect 2005; 11(11): 927–30

    PubMed  Google Scholar 

  535. Santagati M, Iannelli F, Cascone C, et al. The novel conjugative transposon tn1207.3 carries the macrolide efflux gene mef(A) in Streptococcus pyogenes. Microb Drug Resist 2003; 9(3): 243–7

    PubMed  CAS  Google Scholar 

  536. Figueiredo TA, Aguiar SI, Melo-Cristino J, et al. DNA methylase activity as a marker for the presence of a family of phage-like elements conferring efflux-mediated macrolide resistance in streptococci. Antimicrob Agents Chemother 2006; 50(11): 3689–94

    PubMed  CAS  Google Scholar 

  537. Giovanetti E, Brenciani A, Vecchi M, et al. Prophage association of mef(A) elements encoding efflux-mediated erythromycin resistance in Streptococcus pyogenes. J Antimicrob Chemother 2005; 55(4): 445–51

    PubMed  CAS  Google Scholar 

  538. Jonsson M, Swedberg G. Macrolide resistance can be transferred by conjugation from viridans streptococci to Streptococcus pyogenes. Int J Antimicrob Agents 2006; 28(2): 101–3

    PubMed  Google Scholar 

  539. Marimon JM, Valiente A, Ercibengoa M, et al. Erythromycin resistance and genetic elements carrying macrolide efflux genes in Streptococcus agalactiae. Antimicrob Agents Chemother 2005; 49(12): 5069–74

    PubMed  CAS  Google Scholar 

  540. Cousin Jr SL, Whittington WL, Roberts MC, et al. Acquired macrolide resistance genes and the 1 bp deletion in the mtrR promoter in Neisseria gonorrhoeae. J Antimicrob Chemother 2003; 51(1): 131–3

    PubMed  CAS  Google Scholar 

  541. Ojo KK, Ulep C, Van Kirk N, et al. The mef(A) gene predominates among seven macrolide resistance genes identified in Gram-negative strains representing 13 genera, isolated from healthy Portuguese children. Antimicrob Agents Chemother 2004; 48(9): 3451–6

    PubMed  CAS  Google Scholar 

  542. Daly MM, Doktor S, Flamm R, et al. Characterization and prevalence of MefA, MefE, and the associated msr(D) gene in Streptococcus pneumoniae clinical isolates. J Clin Microbiol 2004; 42(8): 3570–4

    PubMed  CAS  Google Scholar 

  543. Ambrose KD, Nisbet R, Stephens DS. Macrolide efflux in Streptococcus pneumoniae is mediated by a dual efflux pump (mel and mef) and is erythromycin inducible. Antimicrob Agents Chemother 2005; 49(10): 4203–9

    PubMed  CAS  Google Scholar 

  544. Del Grosso M, Scotto d’Abusco A, Iannelli F, et al. Tn2009, a Tn916-like element containing mef(E) in Streptococcus pneumoniae. Antimicrob Agents Chemother 2004; 48(6): 2037–42

    PubMed  Google Scholar 

  545. Del Grosso M, Camilli R, Iannelli F, et al. The mef(E)- carrying genetic element (MEGA) of Streptococcus pneumoniae: insertion sites and association with other genetic elements. Antimicrob Agents Chemother 2006; 50(10): 3361–6

    PubMed  Google Scholar 

  546. Cochetti I, Vecchi M, Mingoia M, et al. Molecular characterization of pneumococci with efflux-mediated erythromycin resistance and identification of a novel mef gene subclass, mef(I). Antimicrob Agents Chemother 2005; 49(12): 4999–5006

    PubMed  CAS  Google Scholar 

  547. Mingoia M, Vecchi M, Cochetti I, et al. Composite structure of Streptococcus pneumoniae containing the erythromycin efflux resistance gene mefI and the chloramphenicol resistance gene catQ. Antimicrob Agents Chemother 2007; 51(11): 3983–7

    PubMed  CAS  Google Scholar 

  548. Price CE, Reid SJ, Driessen AJ, et al. The Bifidobacterium longum NCIMB 702259T ctr gene codes for a novel cholate transporter. Appl Environ Microbiol 2006; 72(1): 923–6

    PubMed  CAS  Google Scholar 

  549. De Dea Lindner J, Canchaya C, Zhang Z, et al. Exploiting Bifidobacterium genomes: the molecular basis of stress response. Int J Food Microbiol 2007; 120(1–2): 13–24

    PubMed  Google Scholar 

  550. Margolles A, Moreno JA, van Sinderen D, et al. Macrolide resistance mediated by a Bifidobacterium breve membrane protein. Antimicrob Agents Chemother 2005; 49(10): 4379–81

    PubMed  CAS  Google Scholar 

  551. Ruiz L, Coute Y, Sanchez B, et al. The cell-envelope proteome of Bifidobacterium longum in an in vitro bile environment. Microbiology 2009; 155 (Pt 3): 957–67

    PubMed  CAS  Google Scholar 

  552. Viveiros M, Leandro C, Amaral L. Mycobacterial efflux pumps and chemotherapeutic implications. Int J Antimicrob Agents 2003; 22 (3): 274–8

    Google Scholar 

  553. De Rossi E, Ainsa JA, Riccardi G. Role of mycobacterial efflux transporters in drug resistance: an unresolved question. FEMS Microbiol Rev 2006; 30(1): 36–52

    PubMed  Google Scholar 

  554. Nguyen L, Thompson CJ. Foundations of antibiotic resistance in bacterial physiology: the mycobacterial paradigm. Trends Microbiol 2006; 14(7): 304–12

    PubMed  CAS  Google Scholar 

  555. Louw GE, Warren RM, Gey van Pittius NC, et al. A balancing act: efflux/influx in mycobacterial drug resistance. Antimicrob Agents Chemother 2009; 53(8): 3181–9

    PubMed  CAS  Google Scholar 

  556. Cole ST, Brosch R, Parkhill J, et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 1998; 393(6685): 537–44

    PubMed  CAS  Google Scholar 

  557. Escribano I, Rodriguez JC, Llorca B, et al. Importance of the efflux pump systems in the resistance of Mycobacterium tuberculosis to fluoroquinolones and linezolid. Chemotherapy 2007; 53(6): 397–401

    PubMed  CAS  Google Scholar 

  558. Amaral L, Martins M, Viveiros M. Enhanced killing of intracellular multidrug-resistant Mycobacterium tuberculosis by compounds that affect the activity of efflux pumps. J Antimicrob Chemother 2007; 59(6): 1237–46

    PubMed  CAS  Google Scholar 

  559. Domenech P, Reed MB, Barry 3rd CE. Contribution of the Mycobacterium tuberculosis MmpL protein family to virulence and drug resistance. Infect Immun 2005; 73(6): 3492–501

    PubMed  CAS  Google Scholar 

  560. Domenech P, Reed MB, Dowd CS, et al. The role of MmpL8 in sulfatide biogenesis and virulence of Mycobacterium tuberculosis. J Biol Chem 2004; 279(20): 21257–65

    PubMed  CAS  Google Scholar 

  561. Braibant M, Gilot P, Content J. The ATP binding cassette (ABC) transport systems of Mycobacterium tuberculosis. FEMS Microbiol Rev 2000; 24(4): 449–67

    PubMed  CAS  Google Scholar 

  562. De Rossi E, Arrigo P, Bellinzoni M, et al. The multidrug transporters belonging to major facilitator superfamily in Mycobacterium tuberculosis. Mol Med 2002; 8(11): 714–24

    PubMed  Google Scholar 

  563. Ramon-Garcia S, Martin C, De Rossi E, et al. Contribution of the Rv2333c efflux pump (the Stp protein) from Mycobacterium tuberculosis to intrinsic antibiotic resistance in Mycobacterium bovis BCG. J Antimicrob Chemother 2007; 59(3): 544–7

    PubMed  CAS  Google Scholar 

  564. Morris RP, Nguyen L, Gatfield J, et al. Ancestral antibiotic resistance in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 2005; 102(34): 12200–5

    PubMed  CAS  Google Scholar 

  565. Colangeli R, Helb D, Sridharan S, et al. The Mycobacterium tuberculosis iniA gene is essential for activity of an efflux pump that confers drug tolerance to both isoniazid and ethambutol. Mol Microbiol 2005; 55(6): 1829–40

    PubMed  CAS  Google Scholar 

  566. Sullivan TJ, Truglio JJ, Boyne ME, et al. High affinity InhA inhibitors with activity against drug-resistant strains of Mycobacterium tuberculosis. ACS Chem Biol 2006; 1(1): 43–53

    PubMed  CAS  Google Scholar 

  567. Aarestrup F. Antimicrobial resistance in bacteria of animal origin. Washington, DC: ASM Press, 2006

    Google Scholar 

  568. Prescott JF. Antimicrobial use in food and companion animals. Anim Health Res Rev 2008; 9(2): 127–33

    PubMed  Google Scholar 

  569. Teresa Tejedor M, Martin JL, Navia M, et al. Mechanisms of fluoroquinolone resistance in Pseudomonas aeruginosa isolates from canine infections. Vet Microbiol 2003; 94(4): 295–301

    PubMed  CAS  Google Scholar 

  570. Zhao S, Maurer JJ, Hubert S, et al. Antimicrobial susceptibility and molecular characterization of avian pathogenic Escherichia coli isolates. Vet Microbiol 2005; 107(3–4): 215–24

    PubMed  CAS  Google Scholar 

  571. Chuanchuen R, Wannaprasat W, Ajariyakhajorn K, et al. Role of the MexXY multidrug efflux pump in moderate aminoglycoside resistance in Pseudomonas aeruginosa isolates from Pseudomonas mastitis. Microbiol Immunol 2008; 52(8): 392–8

    PubMed  CAS  Google Scholar 

  572. White DG, Zhao S, McDermott PF, et al. Characterization of integron mediated antimicrobial resistance in Salmonella isolated from diseased swine. Can J Vet Res 2003; 67(1): 39–47

    PubMed  Google Scholar 

  573. Payot S, Avrain L, Magras C, et al. Relative contribution of target gene mutation and efflux to fluoroquinolone and erythromycin resistance, in French poultry and pig isolates of Campylobacter coli. Int J Antimicrob Agents 2004; 23(5): 468–72

    PubMed  CAS  Google Scholar 

  574. Du X, Xia C, Shen J, et al. Characterization of florfenicol resistance among calf pathogenic Escherichia coli. FEMS Microbiol Lett 2004; 236(2): 183–9

    PubMed  CAS  Google Scholar 

  575. Moreira MA, Oliveira JA, Teixeira LM, et al. Detection of a chloramphenicol efflux system in Escherichia coli isolated from poultry carcass. Vet Microbiol 2005; 109(1–2): 75–81

    PubMed  CAS  Google Scholar 

  576. Thorrold CA, Letsoalo ME, Duse AG, et al. Efflux pump activity in fluoroquinolone and tetracycline resistant Salmonella and E. coli implicated in reduced susceptibility to household antimicrobial cleaning agents. Int J Food Microbiol 2007; 113(3): 315–20

    PubMed  CAS  Google Scholar 

  577. Sawant AA, Gillespie BE, Oliver SP. Antimicrobial susceptibility of coagulase-negative Staphylococcus species isolated from bovine milk. Vet Microbiol 2009; 134(1–2): 73–81

    PubMed  CAS  Google Scholar 

  578. Miles TD, McLaughlin W, Brown PD. Antimicrobial resistance of Escherichia coli isolates from broiler chickens and humans. BMC Vet Res 2006; 2: 7

    PubMed  Google Scholar 

  579. Kehrenberg C, Schwarz S. Plasmid-borne florfenicol resistance in Pasteurella multocida. J Antimicrob Chemother 2005; 55(5): 773–5

    PubMed  CAS  Google Scholar 

  580. Kehrenberg C, Catry B, Haesebrouck F, et al. tet(L)- mediated tetracycline resistance in bovine Mannheimia and Pasteurella isolates. J Antimicrob Chemother 2005; 56(2): 403–6

    PubMed  CAS  Google Scholar 

  581. Blanco M, Gutierrez-Martin CB, Rodriguez-Ferri EF, et al. Distribution of tetracycline resistance genes in Actinobacillus pleuropneumoniae isolates from Spain. Antimicrob Agents Chemother 2006; 50(2): 702–8

    PubMed  CAS  Google Scholar 

  582. Gil H, Platz GJ, Forestal CA, et al. Deletion of TolC orthologs in Francisella tularensis identifies roles in multidrug resistance and virulence. Proc Natl Acad Sci U S A 2006; 103(34): 12897–902

    PubMed  CAS  Google Scholar 

  583. Udani RA, Levy SB. MarA-like regulator of multidrug resistance in Yersinia pestis. Antimicrob Agents Chemother 2006; 50(9): 2971–5

    PubMed  CAS  Google Scholar 

  584. Schluter A, Szczepanowski R, Kurz N, et al. Erythromycin resistance-conferring plasmid pRSB105, isolated from a sewage treatment plant, harbors a new macrolide resistance determinant, an integron-containing Tn402-like element, and a large region of unknown function. Appl Environ Microbiol 2007; 73(6): 1952–60

    PubMed  CAS  Google Scholar 

  585. Kim SH, Wei CI. Antibiotic resistance and Caco-2 cell invasion of Pseudomonas aeruginosa isolates from farm environments and retail products. Int J Food Microbiol 2007; 115(3): 356–63

    PubMed  CAS  Google Scholar 

  586. Gaze WH, Abdouslam N, Hawkey PM, et al. Incidence of class 1 integrons in a quaternary ammonium compound-polluted environment. Antimicrob Agents Chemother 2005; 49(5): 1802–7

    PubMed  CAS  Google Scholar 

  587. Michel C, Matte-Tailliez O, Kerouault B, et al. Resistance pattern and assessment of phenicol agents’ minimum inhibitory concentration in multiple drug resistant Chryseobacterium isolates from fish and aquatic habitats. J Appl Microbiol 2005; 99(2): 323–32

    PubMed  CAS  Google Scholar 

  588. Riesenfeld CS, Goodman RM, Handelsman J. Uncultured soil bacteria are a reservoir of new antibiotic resistance genes. Environ Microbiol 2004; 6(9): 981–9

    PubMed  CAS  Google Scholar 

  589. Fantinatti-Garboggini F, Almeida R, Portillo Vdo A, et al. Drug resistance in Chromobacterium violaceum. Genet Mol Res 2004; 3(1): 134–47

    PubMed  CAS  Google Scholar 

  590. Mah TF, Pitts B, Pellock B, et al. A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 2003; 426(6964): 306–10

    PubMed  CAS  Google Scholar 

  591. Lewis K. Persister cells, dormancy and infectious disease. Nat Rev Microbiol 2007; 5(1): 48–56

    PubMed  CAS  Google Scholar 

  592. Maira-Litran T, Allison DG, Gilbert P. An evaluation of the potential of the multiple antibiotic resistance operon (mar) and the multidrug efflux pump acrAB to moderate resistance towards ciprofloxacin in Escherichia coli biofilms. J Antimicrob Chemother 2000; 45(6): 789–95

    PubMed  CAS  Google Scholar 

  593. Brooun A, Liu S, Lewis K. A dose-response study of antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 2000; 44(3): 640–6

    PubMed  CAS  Google Scholar 

  594. De Kievit TR, Parkins MD, Gillis RJ, et al. Multidrug efflux pumps: expression patterns and contribution to antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 2001; 45(6): 1761–70

    PubMed  Google Scholar 

  595. Sanchez P, Linares JF, Ruiz-Diez B, et al. Fitness of in vitro selected Pseudomonas aeruginosa nalB and nfxB multidrug resistant mutants. J Antimicrob Chemother 2002; 50(5): 657–64

    PubMed  CAS  Google Scholar 

  596. Gillis RJ, White KG, Choi K-H, et al. Molecular basis of azithromycin-resistant Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 2005; 49(9): 3858–67

    PubMed  CAS  Google Scholar 

  597. Pamp SJ, Gjermansen M, Johansen HK, et al. Tolerance to the antimicrobial peptide colistin in Pseudomonas aeruginosa biofilms is linked to metabolically active cells, and depends on the pmr and mexAB-oprM genes. Mol Microbiol 2008; 68(1): 223–40

    PubMed  CAS  Google Scholar 

  598. Zhang L, Mah TF. Involvement of a novel efflux system in biofilm-specific resistance to antibiotics. J Bacteriol 2008; 190(13): 4447–52

    PubMed  CAS  Google Scholar 

  599. Lynch SV, Dixon L, Benoit MR, et al. Role of the rapA gene in controlling antibiotic resistance of Escherichia coli biofilms. Antimicrob Agents Chemother 2007; 51(10): 3650–8

    PubMed  CAS  Google Scholar 

  600. Tabak M, Scher K, Hartog E, et al. Effect of triclosan on Salmonella typhimurium at different growth stages and in biofilms. FEMS Microbiol Lett 2007; 267(2): 200–6

    PubMed  CAS  Google Scholar 

  601. Pumbwe L, Skilbeck CA, Nakano V, et al. Bile salts enhance bacterial co-aggregation, bacterial-intestinal epithelial cell adhesion, biofilm formation and antimicrobial resistance of Bacteroides fragilis. Microb Pathog 2007; 43(2–3): 78–87

    PubMed  CAS  Google Scholar 

  602. Weigel LM, Donlan RM, Shin DH, et al. High-level vancomycin- resistant Staphylococcus aureus isolates associated with a polymicrobial biofilm. Antimicrob Agents Chemother 2007; 51(1): 231–8

    PubMed  CAS  Google Scholar 

  603. Ma D, Cook DN, Alberti M, et al. Genes acrA and acrB encode a stress-induced efflux system of Escherichia coli. Mol Microbiol 1995; 16(1): 45–55

    PubMed  CAS  Google Scholar 

  604. Bina JE, Mekalanos JJ. Vibrio cholerae tolC is required for bile resistance and colonization. Infect Immun 2001; 69(7): 4681–5

    PubMed  CAS  Google Scholar 

  605. Jerse AE, Sharma ND, Simms AN, et al. A gonococcal efflux pump system enhances bacterial survival in a female mouse model of genital tract infection. Infect Immun 2003; 71(10): 5576–82

    PubMed  CAS  Google Scholar 

  606. Lin J, Cagliero C, Guo B, et al. Bile salts modulate expression of the CmeABC multidrug efflux pump in Campylobacter jejuni. J Bacteriol 2005; 187(21): 7417–24

    PubMed  CAS  Google Scholar 

  607. Lin J, Martinez AL. Effect of efflux pump inhibitors on bile resistance and in vivo colonization of Campylobacter jejuni. J Antimicrob Chemother 2006; 58(5): 966–72

    PubMed  CAS  Google Scholar 

  608. Elkins CA, Mullis LB. Mammalian steroid hormones are substrates for the major RND- and MFS-type tripartite multidrug efflux pumps of Escherichia coli. J Bacteriol 2006; 188(3): 1191–5

    PubMed  CAS  Google Scholar 

  609. Piddock LJ. Multidrug-resistance efflux pumps: not just for resistance. Nat Rev Microbiol 2006; 4(8): 629–36

    PubMed  CAS  Google Scholar 

  610. Poole K. Bacterial multidrug efflux pumps serve other functions. Microbe 2008; 3(4): 179–85

    Google Scholar 

  611. Nishino K, Nikaido E, Yamaguchi A. Regulation and physiological function of multidrug efflux pumps in Escherichia coli and Salmonella. Biochim Biophys Acta 2009; 1794(5): 834–43

    PubMed  CAS  Google Scholar 

  612. Krulwich TA, Lewinson O, Padan E, et al. Do physiological roles foster persistence of drug/multidrug-efflux transporters? A case study. Nat Rev Microbiol 2005; 3(7): 566–72

    PubMed  CAS  Google Scholar 

  613. Elkins CA, Mullis LB. Substrate competition studies using whole-cell accumulation assays with the major tripartite multidrug efflux pumps of Escherichia coli. Antimicrob Agents Chemother 2007; 51(3): 923–9

    PubMed  CAS  Google Scholar 

  614. Giuliodori AM, Gualerzi CO, Soto S, et al. Review on bacterial stress topics. Ann NY Acad Sci 2007; 1113: 95–104

    PubMed  CAS  Google Scholar 

  615. Jeannot K, Sobel ML, El Garch F, et al. Induction of the MexXY efflux pump in Pseudomonas aeruginosa is dependent on drug-ribosome interaction. J Bacteriol 2005; 187(15): 5341–6

    PubMed  CAS  Google Scholar 

  616. Morita Y, Sobel ML, Poole K. Antibiotic inducibility of the MexXY multidrug efflux system of Pseudomonas aeruginosa: involvement of the antibiotic-inducible PA5471 gene product. J Bacteriol 2006; 188(5): 1847–55

    PubMed  CAS  Google Scholar 

  617. Fraud S, Campigotto AJ, Chen Z, et al. MexCD-OprJ multidrug efflux system of Pseudomonas aeruginosa: involvement in chlorhexidine resistance and induction by membrane-damaging agents dependent upon the AlgU stress response sigma factor. Antimicrob Agents Chemother 2008; 52(12): 4478–82

    PubMed  CAS  Google Scholar 

  618. Folster JP, Johnson PJ, Jackson L, et al. MtrR modulates rpoH expression and levels of antimicrobial resistance in Neisseria gonorrhoeae. J Bacteriol 2009; 191(1): 287–97

    PubMed  CAS  Google Scholar 

  619. Bleuel C, Grosse C, Taudte N, et al. TolC is involved in enterobactin efflux across the outer membrane of Escherichia coli. J Bacteriol 2005; 187(19): 6701–7

    PubMed  CAS  Google Scholar 

  620. Helling RB, Janes BK, Kimball H, et al. Toxic waste disposal in Escherichia coli. J Bacteriol 2002; 184(13): 3699–703

    PubMed  CAS  Google Scholar 

  621. Hirakata Y, Srikumar R, Poole K, et al. Multidrug efflux systems play an important role in the invasiveness of Pseudomonas aeruginosa. J Exp Med 2002; 196(1): 109–18

    PubMed  CAS  Google Scholar 

  622. Bunikis I, Denker K, Ostberg Y, et al. An RND-type efflux system in Borrelia burgdorferi is involved in virulence and resistance to antimicrobial compounds. PLoS Pathog 2008; 4(2): e1000009

    PubMed  Google Scholar 

  623. Hocquet D, Bertrand X, Kohler T, et al. Genetic and phenotypic variations of a resistant Pseudomonas aeruginosa epidemic clone. Antimicrob Agents Chemother 2003; 47(6): 1887–94

    PubMed  CAS  Google Scholar 

  624. Salunkhe P, Smart CH, Morgan JA, et al. A cystic fibrosis epidemic strain of Pseudomonas aeruginosa displays enhanced virulence and antimicrobial resistance. J Bacteriol 2005; 187(14): 4908–20

    PubMed  CAS  Google Scholar 

  625. Linares JF, Lopez JA, Camafeita E, et al. Overexpression of the multidrug efflux pumps MexCD-OprJ and MexEF-OprN is associated with a reduction of type III secretion in Pseudomonas aeruginosa. J Bacteriol 2005; 187(4): 1384–91

    PubMed  CAS  Google Scholar 

  626. Jeannot K, Elsen S, Kohler T, et al. Resistance and virulence of Pseudomonas aeruginosa clinical strains overproducing the MexCD-OprJ efflux pump. Antimicrob Agents Chemother 2008; 52(7): 2455–62

    PubMed  CAS  Google Scholar 

  627. Alonso A, Morales G, Escalante R, et al. Overexpression of the multidrug efflux pump SmeDEF impairs Stenotrophomonas maltophilia physiology. J Antimicrob Chemother 2004; 53(3): 432–4

    PubMed  CAS  Google Scholar 

  628. Kugelberg E, Lofmark S, Wretlind B, et al. Reduction of the fitness burden of quinolone resistance in Pseudomonas aeruginosa. J Antimicrob Chemother 2005; 55(1): 22–30

    PubMed  CAS  Google Scholar 

  629. Komp Lindgren P, Marcusson LL, et al. Biological cost of single and multiple norfloxacin resistance mutations in Escherichia coli implicated in urinary tract infections. Antimicrob Agents Chemother 2005; 49(6): 2343–51

    PubMed  Google Scholar 

  630. Yamanaka H, Kobayashi H, Takahashi E, et al. MacAB is involved in the secretion of Escherichia coli heat-stable enterotoxin II. J Bacteriol 2008; 190(23): 7693–8

    PubMed  CAS  Google Scholar 

  631. Barabote RD, Johnson OL, Zetina E, et al. Erwinia chrysanthemi tolC is involved in resistance to antimicrobial plant chemicals and is essential for phytopathogenesis. J Bacteriol 2003; 185(19): 5772–8

    PubMed  CAS  Google Scholar 

  632. Reddy JD, Reddy SL, Hopkins DL, et al. TolC is required for pathogenicity of Xylella fastidiosa in Vitis vinifera grapevines. Mol Plant Microbe Interact 2007; 20(4): 403–10

    PubMed  CAS  Google Scholar 

  633. Crosby JA, Kachlany SC. TdeA, a TolC-like protein required for toxin and drug export in Aggregatibacter (Actinobacillus) actinomycetemcomitans. Gene 2007; 388(1–2): 83–92

    PubMed  CAS  Google Scholar 

  634. Camilli A, Bassler BL. Bacterial small-molecule signaling pathways. Science 2006; 311(5764): 1113–6

    PubMed  CAS  Google Scholar 

  635. Parsek MR, Greenberg EP. Acyl-homoserine lactone quorum sensing in Gram-negative bacteria: a signaling mechanism involved in associations with higher organisms. Proc Natl Acad Sci U S A 2000; 97(16): 8789–93

    PubMed  CAS  Google Scholar 

  636. Aendekerk S, Diggle SP, Song Z, et al. The MexGHI-OpmD multidrug efflux pump controls growth, antibiotic susceptibility and virulence in Pseudomonas aeruginosa via 4-quinolone-dependent cell-to-cell communication. Microbiology 2005; 151(4): 1113–25

    PubMed  CAS  Google Scholar 

  637. Chan YY, Bian HS, Tan TM, et al. Control of quorum sensing by a Burkholderia pseudomallei multidrug efflux pump. J Bacteriol 2007; 189(11): 4320–4

    PubMed  CAS  Google Scholar 

  638. Yang S, Lopez CR, Zechiedrich EL. Quorum sensing and multidrug transporters in Escherichia coli. ProcNatl Acad Sci U S A 2006; 103(7): 2386–91

    CAS  Google Scholar 

  639. Maseda H, Sawada I, Saito K, et al. Enhancement of the mexAB-oprM efflux pump expression by a quorum-sensing autoinducer and its cancellation by a regulator, MexT, of the mexEF-oprN efflux pump operon in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2004; 48(4): 1320–8

    PubMed  CAS  Google Scholar 

  640. Sawada I, Maseda H, Nakae T, et al. A quorum-sensing autoinducer enhances the mexAB-oprM efflux-pump expression without the MexR-mediated regulation in Pseudomonas aeruginosa. Microbiol Immunol 2004; 48(5): 435–9

    PubMed  CAS  Google Scholar 

  641. Sugimura M, Maseda H, Hanaki H, et al. Macrolide antibiotic- mediated downregulation of MexAB-OprM efflux pump expression in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2008; 52(11): 4141–4

    PubMed  CAS  Google Scholar 

  642. Dietrich LE, Price-Whelan A, Petersen A, et al. The phenazine pyocyanin is a terminal signalling factor in the quorum-sensing network of Pseudomonas aeruginosa. Mol Microbiol 2006; 61(5): 1308–21

    PubMed  CAS  Google Scholar 

  643. Pumbwe L, Skilbeck CA, Wexler HM. Presence of quorum-sensing systems associated with multidrug resistance and biofilm formation in Bacteroides fragilis. Microb Ecol 2008; 56(3): 412–9

    PubMed  CAS  Google Scholar 

  644. Lau SY, Zgurskaya HI. Cell division defects in Escherichia coli deficient in the multidrug efflux transporter AcrEF-TolC. J Bacteriol 2005; 187(22): 7815–25

    PubMed  CAS  Google Scholar 

  645. Ramos JL, Martinez-Bueno M, Molina-Henares AJ, et al. The TetR family of transcriptional repressors. Microbiol Mol Biol Rev 2005; 69(2): 326–56

    PubMed  CAS  Google Scholar 

  646. Gu R, Su CC, Shi F, et al. Crystal structure of the transcriptional regulator CmeR from Campylobacter jejuni. J Mol Biol 2007; 372(3): 583–93

    PubMed  CAS  Google Scholar 

  647. Eguchi Y, Oshima T, Mori H, et al. Transcriptional regulation of drug efflux genes by EvgAS, a two-component system in Escherichia coli. Microbiology 2003; 149 (Pt 10): 2819–28

    PubMed  CAS  Google Scholar 

  648. Nishino K, Honda T, Yamaguchi A. Genome-wide analyses of Escherichia coli gene expression responsive to the BaeSR two-component regulatory system. J Bacteriol 2005; 187(5): 1763–72

    PubMed  CAS  Google Scholar 

  649. Hirakawa H, Takumi-Kobayashi A, Theisen U, et al. AcrS/EnvR represses expression of the acrAB multidrug efflux genes in Escherichia coli. J Bacteriol 2008; 190(18): 6276–9

    PubMed  CAS  Google Scholar 

  650. Nishino K, Senda Y, Yamaguchi A. The AraC-family regulator GadX enhances multidrug resistance in Escherichia coli by activating expression of mdtEF multidrug efflux genes. J Infect Chemother 2008; 14(1): 23–9

    PubMed  CAS  Google Scholar 

  651. Nishino K, Senda Y, Hayashi-Nishino M, et al. Role of the AraC-XylS family regulator YdeO in multi-drug resistance of Escherichia coli. J Antibiot (Tokyo) 2009; 62(5): 251–7

    CAS  Google Scholar 

  652. Nishino K, Senda Y, Yamaguchi A. CRP regulator modulates multidrug resistance of Escherichia coli by repressing the mdtEF multidrug efflux genes. J Antibiot (Tokyo) 2008; 61(3): 120–7

    CAS  Google Scholar 

  653. Nishino K, Yamaguchi A. Role of histone-like protein H-NS in multidrug resistance of Escherichia coli. J Bacteriol 2004; 186(5): 1423–9

    PubMed  CAS  Google Scholar 

  654. Boutoille D, Corvec S, Caroff N, et al. Detection of an IS21 insertion sequence in the mexR gene of Pseudomonas aeruginosa increasing β-lactam resistance. FEMS Microbiol Lett 2004; 230(1): 143–6

    PubMed  CAS  Google Scholar 

  655. Chen H, Hu J, Chen PR, et al. The Pseudomonas aeruginosa multidrug efflux regulator MexR uses an oxidation-sensing mechanism. Proc Natl Acad Sci U S A 2008; 105(36): 13586–91

    PubMed  CAS  Google Scholar 

  656. Wilke MS, Heller M, Creagh AL, et al. The crystal structure of MexR from Pseudomonas aeruginosa in complex with its antirepressor ArmR. Proc Natl Acad Sci U S A 2008; 105(39): 14832–7

    PubMed  CAS  Google Scholar 

  657. Morita Y, Cao L, Gould G, et al. nalD encodes a second repressor of the mexAB-oprM multidrug efflux operon of Pseudomonas aeruginosa. J Bacteriol 2006; 188(24): 8649–54

    PubMed  CAS  Google Scholar 

  658. Li X-Z, Barre N, Poole K. Influence of the MexA-MexB-OprM multidrug efflux system on expression of the MexC-MexD-OprJ and MexE-MexF-OprN multidrug efflux systems in Pseudomonas aeruginosa. J Antimicrob Chemother 2000; 46(6): 885–93

    PubMed  CAS  Google Scholar 

  659. Sobel ML, Neshat S, Poole K. Mutations in PA2491 (mexS) promote MexT-dependent mexEF-oprN expression and multidrug resistance in a clinical strain of Pseudomonas aeruginosa. J Bacteriol 2005; 187(4): 1246–53

    PubMed  CAS  Google Scholar 

  660. Yoo J, Byeon J, Yoo J, et al. Role of PA2491 gene in multidrug resistant Pseudomonas aeruginosa [abstract no. C1-1055]. 48th ICAAC/IDSA 46th Annual Meeting; 2008 Oct 25–28; Washington, DC

    Google Scholar 

  661. Morita Y, Murata T, Mima T, et al. Induction of mexCD-oprJ operon for a multidrug efflux pump by disinfectants in wild-type Pseudomonas aeruginosa PAO1. J Antimicrob Chemother 2003; 51(4): 991–4

    PubMed  CAS  Google Scholar 

  662. Mandsberg LF, Ciofu O, Kirkby N, et al. Antibiotic resistance in Pseudomonas aeruginosa strains with increased mutation frequency due to inactivation of the DNA oxidative repair system. Antimicrob Agents Chemother 2009; 53(6): 2483–91

    PubMed  CAS  Google Scholar 

  663. Matsuo Y, Eda S, Gotoh N, et al. MexZ-mediated regulation of mexXY multidrug efflux pump expression in Pseudomonas aeruginosa by binding on the mexZ-mexX intergenic DNA. FEMS Microbiol Lett 2004; 238(1): 23–8

    PubMed  CAS  Google Scholar 

  664. Chuanchuen R, Gaynor JB, Karkhoff-Schweizer R, et al. Molecular characterization of MexL, the transcriptional repressor of the mexJK multidrug efflux operon in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2005; 49(5): 1844–51

    PubMed  CAS  Google Scholar 

  665. Rosenthal RS, Rodwell VW. Purification and characterization of the heteromeric transcriptional activator MvaT of the Pseudomonas mevalonii mvaAB operon. Protein Sci 1998; 7(1): 178–84

    PubMed  CAS  Google Scholar 

  666. Diggle SP, Winzer K, Lazdunski A, et al. Advancing the quorum in Pseudomonas aeruginosa: MvaT and the regulation of N-acylhomoserine lactone production and virulence gene expression. J Bacteriol 2002; 184(10): 2576–86

    PubMed  CAS  Google Scholar 

  667. Tendeng C, Soutourina OA, Danchin A, et al. MvaT proteins in Pseudomonas spp.: a novel class of H-NS-like proteins. Microbiology 2003; 149 (Pt 11): 3047–50

    PubMed  CAS  Google Scholar 

  668. Vallet-Gely I, Donovan KE, Fang R, et al. Repression of phase-variable cup gene expression by H-NS-like proteins in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 2005; 102(31): 11082–7

    PubMed  CAS  Google Scholar 

  669. Westfall LW, Carty NL, Layland N, et al. mvaT mutation modifies the expression of the Pseudomonas aeruginosa multidrug efflux operon mexEF-oprN. FEMS Microbiol Lett 2006; 255(2): 247–54

    PubMed  CAS  Google Scholar 

  670. Teran W, Felipe A, Fillet S, et al. Complexity in efflux pump control: cross-regulation by the paralogues TtgV and TtgT. Mol Microbiol 2007; 66(6): 1416–28

    PubMed  CAS  Google Scholar 

  671. Fillet S, Velez M, Lu D, et al. TtgV represses two different promoters by recognizing different sequences. J Bacteriol 2009; 191(6): 1901–9

    PubMed  CAS  Google Scholar 

  672. Lin J, Akiba M, Sahin O, et al. CmeR functions as a transcriptional repressor for the multidrug efflux pump CmeABC in Campylobacter jejuni. Antimicrob Agents Chemother 2005; 49(3): 1067–75

    PubMed  CAS  Google Scholar 

  673. Cagliero C, Maurel MC, Cloeckaert A, et al. Regulation of the expression of the CmeABC efflux pump in Campylobacter jejuni: identification of a point mutation abolishing the binding of the CmeR repressor in an in vitro-selected multidrug-resistant mutant. FEMS Microbiol Lett 2007; 267(1): 89–94

    PubMed  CAS  Google Scholar 

  674. O’Regan E, Quinn T, Pages JM, et al. Multiple regulatory pathways associated with high-level ciprofloxacin and multi-drug resistance in Salmonella enterica serovar Enteritidis: involvement of ramA and other global regulators. Antimicrob Agents Chemother 2009; 53(3): 1080–7

    PubMed  Google Scholar 

  675. Chiu CH, Tang P, Chu C, et al. The genome sequence of Salmonella enterica serovar Choleraesuis, a highly invasive and resistant zoonotic pathogen. Nucleic Acids Res 2005; 33(5): 1690–8

    PubMed  CAS  Google Scholar 

  676. Eaves DJ, Ricci V, Piddock LJ. Expression of acrB, acrF, acrD, marA, and soxS in Salmonella enterica serovar Typhimurium: role in multiple antibiotic resistance. Antimicrob Agents Chemother 2004; 48(4): 1145–50

    PubMed  CAS  Google Scholar 

  677. Tibbetts RJ, Lin TL, Wu CC. Insertional mutation of marA vitiates inducible multiple antimicrobial resistance in Salmonella enterica subsp. enterica serovar Choleraesuis. Vet Microbiol 2005; 109 (3–4): 267–74

    Google Scholar 

  678. Yassien MA, Ewis HE, Lu CD, et al. Molecular cloning and characterization of the Salmonella enterica serovar Paratyphi B rma gene, which confers multiple drug resistance in Escherichia coli. Antimicrob Agents Chemother 2002; 46(2): 360–6

    PubMed  CAS  Google Scholar 

  679. Van der Straaten T, Janssen R, Mevius DJ, et al. Salmonella gene rma (ramA) and multiple-drug-resistant Salmonella enterica serovar Typhimurium. Antimicrob Agents Chemother 2004; 48(6): 2292–4

    PubMed  Google Scholar 

  680. Feuerriegel S, Heisig P. Role of global regulator Rma for multidrug efflux-mediated fluoroquinolone resistance in Salmonella. Microb Drug Resist 2008; 14(4): 259–63

    PubMed  CAS  Google Scholar 

  681. Zheng J, Cui S, Meng J. Effect of transcriptional activators RamA and SoxS on expression of multidrug efflux pumps AcrAB and AcrEF in fluoroquinolone-resistant Salmonella typhimurium. J Antimicrob Chemother 2009; 63(1): 95–102

    PubMed  CAS  Google Scholar 

  682. Karatzas KAG, Webber MA, Jorgensen F, et al. Prolonged treatment of Salmonella enterica serovar Typhimurium with commercial disinfectants selects for multiple antibiotic resistance, increased efflux and reduced invasiveness. J Antimicrob Chemother 2007; 60(5): 947–55

    PubMed  CAS  Google Scholar 

  683. Rouquette C, Harmon JB, Shafer WM. Induction of the mtrCDE-encoded efflux pump system of Neisseria gonorrhoeae requires MtrA, an AraC-like protein. Mol Microbiol 1999; 33(3): 651–8

    PubMed  CAS  Google Scholar 

  684. Hoffmann KM, Williams D, Shafer WM, et al. Characterization of the multiple transferable resistance repressor, MtrR, from Neisseria gonorrhoeae. J Bacteriol 2005; 187(14): 5008–12

    PubMed  CAS  Google Scholar 

  685. Lee EH, Rouquette-Loughlin C, Folster JP, et al. FarR regulates the farAB-encoded efflux pump of Neisseria gonorrhoeae via an MtrR regulatory mechanism. J Bacteriol 2003; 185(24): 7145–52

    PubMed  CAS  Google Scholar 

  686. Rouquette-Loughlin CE, Balthazar JT, Hill SA, et al. Modulation of the mtrCDE-encoded efflux pump gene complex of Neisseria meningitidis due to a Correia element insertion sequence. Mol Microbiol 2004; 54(3): 731–41

    PubMed  CAS  Google Scholar 

  687. Veal WL, Shafer WM. Identification of a cell envelope protein (MtrF) involved in hydrophobic antimicrobial resistance in Neisseria gonorrhoeae. J Antimicrob Chemother 2003; 51(1): 27–37

    PubMed  CAS  Google Scholar 

  688. Folster JP, Shafer WM. Regulation of mtrF expression in Neisseria gonorrhoeae and its role in high-level antimicrobial resistance. J Bacteriol 2005; 187(11): 3713–20

    PubMed  CAS  Google Scholar 

  689. Luong TT, Newell SW, Lee CY. Mgr, a novel global regulator in Staphylococcus aureus. J Bacteriol 2003; 185(13): 3703–10

    PubMed  CAS  Google Scholar 

  690. Truong-Bolduc QC, Zhang X, Hooper DC. Characterization of NorR protein, a multifunctional regulator of norA expression in Staphylococcus aureus. J Bacteriol 2003; 185(10): 3127–38

    PubMed  CAS  Google Scholar 

  691. Ingavale SS, Van Wamel W, Cheung AL. Characterization of RAT, an autolysis regulator in Staphylococcus aureus. Mol Microbiol 2003; 48(6): 1451–66

    PubMed  CAS  Google Scholar 

  692. Kaatz GW, Thyagarajan RV, Seo SM. Effect of promoter region mutations and mgrA overexpression on transcription of norA, which encodes a Staphylococcus aureus multidrug efflux transporter. Antimicrob Agents Chemother 2005; 49(1): 161–9

    PubMed  CAS  Google Scholar 

  693. Trotonda MP, Tamber S, Memmi G, et al. MgrA represses biofilm formation in Staphylococcus aureus. Infect Immun 2008; 76(12): 5645–54

    PubMed  CAS  Google Scholar 

  694. Fournier B, Truong-Bolduc QC, Zhang X, et al. A mutation in the 5′ untranslated region increases stability of norA mRNA, encoding a multidrug resistance transporter of Staphylococcus aureus. J Bacteriol 2001; 183(7): 2367–71

    PubMed  CAS  Google Scholar 

  695. Cheung AL, Zhang G. Global regulation of virulence determinants in Staphylococcus aureus by the SarA protein family. Front Biosci 2002; 7: d1825–42

    PubMed  CAS  Google Scholar 

  696. Kumaraswami M, Schuman JT, Seo SM, et al. Structural and biochemical characterization of MepR, a multidrug binding transcription regulator of the Staphylococcus aureus multidrug efflux pump MepA. Nucleic Acids Res 2009; 37(4): 1211–24

    PubMed  CAS  Google Scholar 

  697. Pumbwe L, Skilbeck CA, Wexler HM. Induction of multiple antibiotic resistance in Bacteroides fragilis by benzene and benzene-derived active compounds of commonly used analgesics, antiseptics and cleaning agents. J Antimicrob Chemother 2007; 60(6): 1288–97

    PubMed  CAS  Google Scholar 

  698. Tavio MM, Vila J, Perilli M, et al. Enhanced active efflux, repression of porin synthesis and development of Mar phenotype by diazepam in two enterobacteria strains. J Med Microbiol 2004; 53 (Pt 11): 1119–22

    PubMed  CAS  Google Scholar 

  699. Rosenberg EY, Bertenthal D, Nilles ML, et al. Bile salts and fatty acids induce the expression of Escherichia coli AcrAB multidrug efflux pump through their interaction with Rob regulatory protein. Mol Microbiol 2003; 48(6): 1609–19

    PubMed  CAS  Google Scholar 

  700. Prouty AM, Brodsky IE, Falkow S, et al. Bile-salt-mediated induction of antimicrobial and bile resistance in Salmonella Typhimurium. Microbiology 2004; 150 (Pt 4): 775–83

    PubMed  CAS  Google Scholar 

  701. Nikaido E, Yamaguchi A, Nishino K. AcrAB multidrug efflux pump regulation in Salmonella enterica serovar Typhimurium by RamA in response to environmental signals. J Biol Chem 2008; 283(35): 24245–53

    PubMed  CAS  Google Scholar 

  702. Langsrud S, Sundheim G, Holck AL. Cross-resistance to antibiotics of Escherichia coli adapted to benzalkonium chloride or exposed to stress-inducers. J Appl Microbiol 2004; 96(1): 201–8

    PubMed  CAS  Google Scholar 

  703. Coldham NG, Randall LP, Piddock LJ, et al. Effect of fluoroquinolone exposure on the proteome of Salmonella enterica serovar Typhimurium. J Antimicrob Chemother 2006; 58(6): 1145–53

    PubMed  CAS  Google Scholar 

  704. Kobayashi A, Hirakawa H, Hirata T, et al. Growth phase-dependent expression of drug exporters in Escherichia coli and its contribution to drug tolerance. J Bacteriol 2006; 188(16): 5693–703

    PubMed  CAS  Google Scholar 

  705. Hirakawa H, Inazumi Y, Masaki T, et al. Indole induces the expression of multidrug exporter genes in Escherichia coli. Mol Microbiol 2005; 55(4): 1113–26

    PubMed  CAS  Google Scholar 

  706. Ravirala RS, Barabote RD, Wheeler DM, et al. Efflux pump gene expression in Erwinia chrysanthemi is induced by exposure to phenolic acids. Mol Plant Microbe Interact 2007; 20(3): 313–20

    PubMed  CAS  Google Scholar 

  707. Riordan JT, Muthaiyan A, Van Voorhies W, et al. Response of Staphylococcus aureus to salicylate challenge. J Bacteriol 2007; 189(1): 220–7

    PubMed  CAS  Google Scholar 

  708. Denkin S, Byrne S, Jie C, et al. Gene expression profiling analysis of Mycobacterium tuberculosis genes in response to salicylate. Arch Microbiol 2005; 184(3): 152–7

    PubMed  CAS  Google Scholar 

  709. Escribano I, Rodriguez JC, Pertegas V, et al. Relation between induction of the mar operon and cyclohexane tolerance and reduction in fluoroquinolone susceptibility in Salmonella spp. J Infect Chemother 2006; 12(4): 177–80

    PubMed  CAS  Google Scholar 

  710. Hannula M, Hanninen ML. Effect of putative efflux pump inhibitors and inducers on the antimicrobial susceptibility of Campylobacter jejuni and Campylobacter coli. J Med Microbiol 2008; 57 (Pt 7): 851–5

    PubMed  CAS  Google Scholar 

  711. Hood MI, Skaar EP. Sodium chloride exposure induces expression of antibiotic resistance in Acinetobacter baumannii [abstract no. C1-3726]. 48th ICAAC/IDSA 46th Annual Meeting; 2008 Oct 25–28; Washington, DC

    Google Scholar 

  712. Heldwein EE, Brennan RG. Crystal structure of the transcription activator BmrR bound to DNA and a drug. Nature 2001; 409(6818): 378–82

    PubMed  CAS  Google Scholar 

  713. Schumacher MA, Miller MC, Brennan RG. Structural mechanism of the simultaneous binding of two drugs to a multidrug-binding protein. EMBO J 2004; 23(15): 2923–30

    PubMed  CAS  Google Scholar 

  714. Murray DS, Schumacher MA, Brennan RG. Crystal structures of QacR-diamidine complexes reveal additional multidrug-binding modes and a novel mechanism of drug charge neutralization. J Biol Chem 2004; 279(14): 14365–71

    PubMed  CAS  Google Scholar 

  715. Muller JF, Stevens AM, Craig J, et al. Transcriptome analysis reveals that multidrug efflux genes are upregulated to protect Pseudomonas aeruginosa from pentachlorophenol stress. Appl Environ Microbiol 2007; 73(14): 4550–8

    PubMed  CAS  Google Scholar 

  716. Perron K, Caille O, Rossier C, et al. CzcR-CzcS, a twocomponent system involved in heavy metal and carbapenem resistance in Pseudomonas aeruginosa. J Biol Chem 2004; 279(10): 8761–8

    PubMed  CAS  Google Scholar 

  717. Pumbwe L, Skilbeck CA, Wexler HM. Impact of anatomic site on growth, efflux-pump expression, cell structure, and stress responsiveness of Bacteroides fragilis. Curr Microbiol 2007; 55(4): 362–5

    PubMed  CAS  Google Scholar 

  718. Domain F, Bina XR, Levy SB. Transketolase A, an enzyme in central metabolism, derepresses the marRAB multiple antibiotic resistance operon of Escherichia coli by interaction with MarR. Mol Microbiol 2007; 66(2): 383–94

    PubMed  CAS  Google Scholar 

  719. Dowd SE, Killinger-Mann K, Blanton J, et al. Positive adaptive state: microarray evaluation of gene expression in Salmonella enterica Typhimurium exposed to nalidixic acid. Foodborne Pathog Dis 2007; 4(2): 187–200

    PubMed  CAS  Google Scholar 

  720. Coban AY, Durupinar B. The effect of nitric oxide combined with fluoroquinolones against Salmonella enterica serovar Typhimurium in vitro. Mem Inst Oswaldo Cruz 2003; 98(3): 419–23

    PubMed  CAS  Google Scholar 

  721. Abouzeed YM, Baucheron S, Cloeckaert A. ramR mutations involved in efflux-mediated multidrug resistance in Salmonella enterica serovar Typhimurium. Antimicrob Agents Chemother 2008; 52(7): 2428–34

    PubMed  CAS  Google Scholar 

  722. Riordan JT, O’Leary JO, Gustafson JE. Contributions of sigB and sarA to distinct multiple antimicrobial resistance mechanisms of Staphylococcus aureus. Int J Antimicrob Agents 2006; 28(1): 54–61

    PubMed  CAS  Google Scholar 

  723. Evans K, Poole K. The MexA-MexB-OprM multidrug efflux system of Pseudomonas aeruginosa is growth-phase regulated. FEMS Microbiol Lett 1999; 173(1): 35–9

    PubMed  CAS  Google Scholar 

  724. Alonso A, Martinez JL. Cloning and characterization of SmeDEF, a novel multidrug efflux pump from Stenotrophomonas maltophilia. Antimicrob Agents Chemother 2000; 44(11): 3079–86

    PubMed  CAS  Google Scholar 

  725. Rand JD, Danby SG, Greenway DL, et al. Increased expression of the multidrug efflux genes acrAB occurs during slow growth of Escherichia coli. FEMS Microbiol Lett 2002; 207(1): 91–5

    PubMed  CAS  Google Scholar 

  726. Miller HI. Are we being outdone by bacteria? Novel antibioitcs and more cautious use of drugs needed to quelch drug-resistant bugs. Genet Eng News 2006; 26(10): 6–8

    Google Scholar 

  727. Wang J, Soisson SM, Young K, et al. Platensimycin is a selective FabF inhibitor with potent antibiotic properties. Nature 2006; 441(7091): 358–61

    PubMed  CAS  Google Scholar 

  728. Kaatz GW. Bacterial efflux pump inhibition. Curr Opin Investig Drugs 2005; 6(2): 191–8

    PubMed  CAS  Google Scholar 

  729. Marquez B. Bacterial efflux systems and efflux pumps inhibitors. Biochimie 2005; 87(12): 1137–47

    PubMed  CAS  Google Scholar 

  730. Pages JM, Masi M, Barbe J. Inhibitors of efflux pumps in Gram-negative bacteria. Trends Mol Med 2005; 11(8): 382–9

    PubMed  CAS  Google Scholar 

  731. Lynch AS. Efflux systems in bacterial pathogens: an opportunity for therapeutic intervention? An industry view. Biochem Pharmacol 2006; 71(7): 949–56

    PubMed  CAS  Google Scholar 

  732. Mahamoud A, Chevalier J, Davin-Regli A, et al. Quinoline derivatives as promising inhibitors of antibiotic efflux pump in multidrug resistant Enterobacter aerogenes isolates. Curr Drug Targets 2006; 7(7): 843–7

    PubMed  CAS  Google Scholar 

  733. Lomovskaya O, Bostian KA. Practical applications and feasibility of efflux pump inhibitors in the clinic: a vision for applied use. Biochem Pharmacol 2006; 71(7): 910–8

    PubMed  CAS  Google Scholar 

  734. Lomovskaya O, Zgurskaya HI, Totrov M, et al. Waltzing transporters and ‘the dance macabre’ between humans and bacteria. Nat Rev Drug Discov 2007; 6(1): 56–65

    PubMed  CAS  Google Scholar 

  735. Mahamoud A, Chevalier J, Alibert-Franco S, et al. Antibiotic efflux pumps in Gram-negative bacteria: the inhibitor response strategy. J Antimicrob Chemother 2007; 59(6): 1223–9

    PubMed  CAS  Google Scholar 

  736. Stavri M, Piddock LJV, Gibbons S. Bacterial efflux pump inhibitors from natural sources. J Antimicrob Chemother 2007; 59(6): 1247–60

    PubMed  CAS  Google Scholar 

  737. Gibbons S. Phytochemicals for bacterial resistance: strengths, weaknesses and opportunities. Planta Med 2008; 74(6): 594–602

    PubMed  CAS  Google Scholar 

  738. Martins M, Dastidar SG, Fanning S, et al. Potential role of non-antibiotics (helper compounds) in the treatment of multidrug-resistant Gram-negative infections: mechanisms for their direct and indirect activities. Int J Antimicrob Agents 2008; 31(3): 198–208

    PubMed  CAS  Google Scholar 

  739. McKeegan KS, Borges-Walmsley MI, Walmsley AR. Structural understanding of efflux-mediated drug resistance: potential routes to efflux inhibition. Curr Opin Pharmacol 2004; 4(5): 479–86

    PubMed  CAS  Google Scholar 

  740. McDevitt CA, Callaghan R. How can we best use structural information on P-glycoprotein to design inhibitors? Pharmacol Ther 2007; 113(2): 429–41

    PubMed  CAS  Google Scholar 

  741. Gibbons S. Plants as a source of bacterial resistance modulators and anti-infective agents. Phytochem Rev 2005; 4(1): 63–78

    CAS  Google Scholar 

  742. Nakayama K, Kawato H, Watanabe J, et al. MexAB-OprM specific efflux pump inhibitors in Pseudomonas aeruginosa. Part 3: optimization of potency in the pyridopyrimidine series through the application of a pharmacophore model. Bioorg Med Chem Lett 2004; 14(2): 475–9

    PubMed  CAS  Google Scholar 

  743. Nakayama K, Kuru N, Ohtsuka M, et al. MexAB-OprM specific efflux pump inhibitors in Pseudomonas aeruginosa. Part 4: addressing the problem of poor stability due to photoisomerization of an acrylic acid moiety. Bioorg Med Chem Lett 2004; 14(10): 2493–7

    PubMed  CAS  Google Scholar 

  744. Yoshida K, Nakayama K, Kuru N, et al. MexAB-OprM specific efflux pump inhibitors in Pseudomonas aeruginosa. Part 5: carbon-substituted analogues at the C-2 position. Bioorg Med Chem 2006; 14(6): 1993–2004

    PubMed  CAS  Google Scholar 

  745. Yoshida K, Nakayama K, Yokomizo Y, et al. MexAB-OprM specific efflux pump inhibitors in Pseudomonas aeruginosa. Part 6: exploration of aromatic substituents. Bioorg Med Chem 2006; 14(24): 8506–18

    PubMed  CAS  Google Scholar 

  746. Yoshida K, Nakayama K, Ohtsuka M, et al. MexAB-OprM specific efflux pump inhibitors in Pseudomonas aeruginosa. Part 7: highly soluble and in vivo active quaternary ammonium analogue D13-9001, a potential preclinical candidate. Bioorg Med Chem 2007; 15(22): 7087–97

    PubMed  CAS  Google Scholar 

  747. Bean DC, Wareham DW. Paradoxical effect of 1-(1-naphthylmethyl)-piperazine on resistance to tetracyclines in multidrug-resistant Acinetobacter baumannii. J Antimicrob Chemother 2009; 63(2): 349–52

    PubMed  CAS  Google Scholar 

  748. Bina XR, Philippart JA, Bina JE. Effect of the efflux inhibitors 1-(1-naphthylmethyl)-piperazine and phenylarginine- β-naphthylamide on antimicrobial susceptibility and virulence factor production in Vibrio cholerae. J Antimicrob Chemother 2009; 63(1): 103–8

    PubMed  CAS  Google Scholar 

  749. Bohnert JA, Kern WV. Selected arylpiperazines are capable of reversing multidrug resistance in Escherichia coli overexpressing RND efflux pumps. Antimicrob Agents Chemother 2005; 49(2): 849–52

    PubMed  CAS  Google Scholar 

  750. Schumacher A, Steinke P, Bohnert JA, et al. Effect of 1-(1-naphthylmethyl)-piperazine, a novel putative efflux pump inhibitor, on antimicrobial drug susceptibility in clinical isolates of Enterobacteriaceae other than Escherichia coli. J Antimicrob Chemother 2006; 57(2): 344–8

    PubMed  CAS  Google Scholar 

  751. Pannek S, Higgins PG, Steinke P, et al. Multidrug efflux inhibition in Acinetobacter baumannii: comparison between 1-(1-naphthylmethyl)-piperazine and phenylarginine-β-naphthylamide. J Antimicrob Chemother 2006; 57(5): 970–4

    PubMed  CAS  Google Scholar 

  752. Martinez A, Lin J. Effect of an efflux pump inhibitor on the function of the multidrug efflux pump CmeABC and antimicrobial resistance in Campylobacter. Foodborne Pathog Dis 2006; 3(4): 393–402

    PubMed  CAS  Google Scholar 

  753. Tegos GP, Masago K, Aziz F, et al. Inhibitors of bacterial multidrug efflux pumps potentiate antimicrobial photoinactivation. Antimicrob Agents Chemother 2008; 52(9): 3202–9

    PubMed  CAS  Google Scholar 

  754. Musumeci R, Speciale A, Costanzo R, et al. Berberis aetnensis C. Presl. extracts: antimicrobial properties and interaction with ciprofloxacin. Int J Antimicrob Agents 2003; 22(1): 48–53

    PubMed  CAS  Google Scholar 

  755. Gracio MA, Gracio AJ, Viveiros M, et al. Since phenothiazines alter antibiotic susceptibility of microorganisms by inhibiting efflux pumps, are these agents useful for evaluating similar pumps in phenothiazine-sensitive parasites? Int J Antimicrob Agents 2003; 22(3): 347–51

    PubMed  CAS  Google Scholar 

  756. Mallea M, Mahamoud A, Chevalier J, et al. Alkylaminoquinolines inhibit the bacterial antibiotic efflux pump in multidrug-resistant clinical isolates. Biochem J 2003; 376 (Pt 3): 801–5

    PubMed  CAS  Google Scholar 

  757. Pages JM, Dimarcq JL, Quenin S, et al. Thanatin activity on multidrug resistant clinical isolates of Enterobacter aerogenes and Klebsiella pneumoniae. Int J Antimicrob Agents 2003; 22(3): 265–9

    PubMed  CAS  Google Scholar 

  758. German N, Kaatz GW, Kerns RJ. Synthesis and evaluation of PSSRI-based inhibitors of Staphylococcus aureus multidrug efflux pumps. Bioorg Med Chem Lett 2008; 18(4): 1368–73

    PubMed  CAS  Google Scholar 

  759. Fujita M, Shiota S, Kuroda T, et al. Remarkable synergies between baicalein and tetracycline, and baicalein and β-lactams against methicillin-resistant Staphylococcus aureus. Microbiol Immunol 2005; 49(4): 391–6

    PubMed  CAS  Google Scholar 

  760. Gibbons S, Moser E, Kaatz GW. Catechin gallates inhibit multidrug resistance (MDR) in Staphylococcus aureus. Planta Med 2004; 70(12): 1240–2

    PubMed  CAS  Google Scholar 

  761. Hamilton-Miller JM, Shah S. Activity of the tea component epicatechin gallate and analogues against methicillin-resistant Staphylococcus aureus. J Antimicrob Chemother 2000; 46(5): 852–3

    PubMed  CAS  Google Scholar 

  762. Roccaro SA, Blanco AR, Giuliano F, et al. Epigallocatechin-gallate enhances the activity of tetracycline in staphylococci by inhibiting its efflux from bacterial cells. Antimicrob Agents Chemother 2004; 48(6): 1968–73

    CAS  Google Scholar 

  763. Gibbons S, Oluwatuyi M, Veitch NC, et al. Bacterial resistance modifying agents from Lycopus europaeus. Phytochemistry 2003; 62(1): 83–7

    PubMed  CAS  Google Scholar 

  764. Oluwatuyi M, Kaatz GW, Gibbons S. Antibacterial and resistance modifying activity of Rosmarinus officinalis. Phytochemistry 2004; 65(24): 3249–54

    PubMed  CAS  Google Scholar 

  765. Smith EC, Williamson EM, Wareham N, et al. Antibacterials and modulators of bacterial resistance from the immature cones of Chamaecyparis lawsoniana. Phytochemistry 2007; 68(2): 210–7

    PubMed  CAS  Google Scholar 

  766. Dickson RA, Houghton PJ, Hylands PJ, et al. Antimicrobial, resistance-modifying effects, antioxidant and free radical scavenging activities of Mezoneuron benthamianum Baill., Securinega virosa Roxb. &Wlld. and Microglossa pyrifolia Lam. Phytother Res 2006; 20(1): 41–5

    PubMed  CAS  Google Scholar 

  767. Michalet S, Cartier G, David B, et al. N-caffeoylphenalkylamide derivatives as bacterial efflux pump inhibitors. Bioorg Med Chem Lett 2007; 17(6): 1755–8

    PubMed  CAS  Google Scholar 

  768. Braga LC, Leite AA, Xavier KG, et al. Synergic interaction between pomegranate extract and antibiotics against Staphylococcus aureus. Can J Microbiol 2005; 51(7): 541–7

    PubMed  CAS  Google Scholar 

  769. Stermitz FR, Beeson TD, Mueller PJ, et al. Staphylococcus aureus MDR efflux pump inhibitors from a Berberis and a Mahonia (sensu strictu) species. Biochem Syst Ecol 2001; 29(8): 793–8

    PubMed  CAS  Google Scholar 

  770. German N, Wei P, Kaatz GW, et al. Synthesis and evaluation of fluoroquinolone derivatives as substrate-based inhibitors of bacterial efflux pumps. Eur J Med Chem 2008; 43(11): 2453–63

    PubMed  CAS  Google Scholar 

  771. Gibbons S, Oluwatuyi M, Kaatz GW. A novel inhibitor of multidrug efflux pumps in Staphylococcus aureus. J Antimicrob Chemother 2003; 51(1): 13–7

    PubMed  CAS  Google Scholar 

  772. Abulrob AN, Suller MT, Gumbleton M, et al. Identification and biological evaluation of grapefruit oil components as potential novel efflux pump modulators in methicillin-resistant Staphylococcus aureus bacterial strains. Phytochemistry 2004; 65(22): 3021–7

    PubMed  CAS  Google Scholar 

  773. Samosorn S, Bremner JB, Ball A, et al. Synthesis of functionalized 2-aryl-5-nitro-1H-indoles and their activity as bacterial NorA efflux pump inhibitors. Bioorg Med Chem 2006; 14(3): 857–65

    PubMed  CAS  Google Scholar 

  774. Ball AR, Casadei G, Samosorn S, et al. Conjugating berberine to a multidrug efflux pump inhibitor creates an effective antimicrobial. ACS Chem Biol 2006; 1(9): 594–600

    PubMed  CAS  Google Scholar 

  775. Falcao-Silva VS, Silva DA, Souza MD, et al. Modulation of drug resistance in Staphylococcus aureus by a kaempferol glycoside from Herissantia tiubae (Malvaceae). Phytother Res. Epub 2009 Feb 17

    Google Scholar 

  776. Stermitz FR, Scriven LN, Tegos G, et al. Two flavonols from Artemisa annua which potentiate the activity of berberine and norfloxacin against a resistant strain of Staphylococcus aureus. Planta Med 2002; 68(12): 1140–1

    PubMed  CAS  Google Scholar 

  777. Morel C, Stermitz FR, Tegos G, et al. Isoflavones as potentiators of antibacterial activity. J Agric Food Chem 2003; 51(19): 5677–9

    PubMed  CAS  Google Scholar 

  778. Belofsky G, Carreno R, Lewis K, et al. Metabolites of the “smoke tree”, Dalea spinosa, potentiate antibiotic activity against multidrug-resistant Staphylococcus aureus. J Nat Prod 2006; 69(2): 261–4

    PubMed  CAS  Google Scholar 

  779. Cherigo L, Pereda-Miranda R, Fragoso-Serrano M, et al. Inhibitors of bacterial multidrug efflux pumps from the resin glycosides of Ipomoea murucoides. J Nat Prod 2008; 71(6): 1037–45

    PubMed  CAS  Google Scholar 

  780. Marquez B, Neuville L, Moreau NJ, et al. Multidrug resistance reversal agent from Jatropha elliptica. Phytochemistry 2005; 66(15): 1804–11

    PubMed  CAS  Google Scholar 

  781. Kaatz GW, Moudgal VV, Seo SM, et al. Phenothiazines and thioxanthenes inhibit multidrug efflux pump activity in Staphylococcus aureus. Antimicrob Agents Chemother 2003; 47(2): 719–26

    PubMed  CAS  Google Scholar 

  782. Kristiansen MM, Leandro C, Ordway D, et al. Phenothiazines alter resistance of methicillin-resistant strains of Staphylococcus aureus (MRSA) to oxacillin in vitro. Int J Antimicrob Agents 2003; 22(3): 250–3

    PubMed  CAS  Google Scholar 

  783. Kristiansen MM, Leandro C, Ordway D, et al. Thioridazine reduces resistance of methicillin-resistant Saphylococcus aureus by inhibiting a reserpine-sensitive efflux pump. In Vivo 2006; 20(3): 361–6

    PubMed  CAS  Google Scholar 

  784. Kristiansen JE, Hendricks O, Delvin T, et al. Reversal of resistance in microorganisms by help of non-antibiotics. J Antimicrob Chemother 2007; 59(6): 1271–9

    PubMed  CAS  Google Scholar 

  785. Khan IA, Mirza ZM, Kumar A, et al. Piperine, a phytochemical potentiator of ciprofloxacin against Staphylococcus aureus. Antimicrob Agents Chemother 2006; 50(2): 810–2

    PubMed  CAS  Google Scholar 

  786. Sangwan PL, Koul JL, Koul S, et al. Piperine analogs as potent Staphylococcus aureus NorA efflux pump inhibitors. Bioorg Med Chem 2008; 16(22): 9847–57

    PubMed  CAS  Google Scholar 

  787. Stermitz FR, Cashman KK, Halligan KM, et al. Polyacylated neohesperidosides from Geranium caespitosum: bacterial multidrug resistance pump inhibitors. Bioorg Med Chem Lett 2003; 13(11): 1915–8

    PubMed  CAS  Google Scholar 

  788. Pereda-Miranda R, Kaatz GW, Gibbons S. Polyacylated oligosaccharides from medicinal Mexican morning glory species as antibacterials and inhibitors of multidrug resistance in Staphylococcus aureus. J Nat Prod 2006; 69(3): 406–9

    PubMed  CAS  Google Scholar 

  789. Vidaillac C, Guillon J, Arpin C, et al. Synthesis of omeprazole analogues and evaluation of these as potential inhibitors of the multidrug efflux pump NorA of Staphylococcus aureus. Antimicrob Agents Chemother 2007; 51(3): 831–8

    PubMed  CAS  Google Scholar 

  790. Belofsky G, Percivill D, Lewis K, et al. Phenolic metabolites of Dalea versicolor that enhance antibiotic activity against model pathogenic bacteria. J Nat Prod 2004; 67(3): 481–4

    PubMed  CAS  Google Scholar 

  791. Smith EC, Kaatz GW, Seo SM, et al. The phenolic diterpene totarol inhibits multidrug efflux pump activity in Staphylococcus aureus. Antimicrob Agents Chemother 2007; 51(12): 4480–3

    PubMed  CAS  Google Scholar 

  792. Spies FS, Da Silva PE, Ribeiro MO, et al. Identification of mutations related to streptomycin resistance in clinical isolates of Mycobacterium tuberculosis and possible involvement of efflux mechanism. Antimicrob Agents Chemother 2008; 52(8): 2947–9

    PubMed  CAS  Google Scholar 

  793. Rodrigues L, Wagner D, Viveiros M, et al. Thioridazine and chlorpromazine inhibition of ethidium bromide efflux in Mycobacterium avium and Mycobacterium smegmatis. J Antimicrob Chemother 2008; 61(5): 1076–82

    PubMed  CAS  Google Scholar 

  794. Lechner D, Gibbons S, Bucar F. Plant phenolic compounds as ethidium bromide efflux inhibitors in Mycobacterium smegmatis. J Antimicrob Chemother 2008; 62(2): 345–8

    PubMed  CAS  Google Scholar 

  795. Amaral L, Martins M, Viveiros M, et al. Promising therapy of XDR-TB/MDR-TB with thioridazine an inhibitor of bacterial efflux pumps. Curr Drug Targets 2008; 9(9): 816–9

    PubMed  CAS  Google Scholar 

  796. Hohmann J, Redei D, Forgo P, et al. Jatrophane diterpenoids from Euphorbia mongolica as modulators of the multidrug resistance of L5128 mouse lymphoma cells. J Nat Prod 2003; 66(7): 976–9

    PubMed  CAS  Google Scholar 

  797. Kolaczkowski M, Michalak K, Motohashi N. Phenothiazines as potent modulators of yeast multidrug resistance. Int J Antimicrob Agents 2003; 22(3): 279–83

    PubMed  CAS  Google Scholar 

  798. Kerns RJ, Rybak MJ, Kaatz GW, et al. Piperazinyl-linked fluoroquinolone dimers possessing potent antibacterial activity against drug-resistant strains of Staphylococcus aureus. Bioorg Med Chem Lett 2003; 13(10): 1745–9

    PubMed  CAS  Google Scholar 

  799. Chevalier J, Mulfinger C, Garnotel E, et al. Identification and evolution of drug efflux pump in clinical Enterobacter aerogenes strains isolated in 1995 and 2003. PLoS ONE 2008; 3(9): e3203

    PubMed  Google Scholar 

  800. Klyachko KA, Schuldiner S, Neyfakh AA. Mutations affecting substrate specificity of the Bacillus subtilis multidrug transporter Bmr. J Bacteriol 1997; 179(7): 2189–93

    PubMed  CAS  Google Scholar 

  801. Frempong-Manso E, Raygada JL, Demarco CE, et al. Inability of a reserpine-based screen to identify strains overexpressing efflux pump genes in clinical isolates of Staphylococcus aureus. Int J Antimicrob Agents 2009; 33(4): 360–3

    PubMed  CAS  Google Scholar 

  802. Zhanel GG, Johanson C, Laing N, et al. Pharmacodynamic activity of telithromycin at simulated clinically achievable free-drug concentrations in serum and epithelial lining fluid against efflux (mefE)-producing macrolide-resistant Streptococcus pneumoniae for which telithromycin MICs vary. Antimicrob Agents Chemother 2005; 49(5): 1943–8

    PubMed  CAS  Google Scholar 

  803. Michot JM, Seral C, Van Bambeke F, et al. Influence of efflux transporters on the accumulation and efflux of four quinolones (ciprofloxacin, levofloxacin, garenoxacin, and moxifloxacin) in J774 macrophages. Antimicrob Agents Chemother 2005; 49(6): 2429–37

    PubMed  CAS  Google Scholar 

  804. Alvarez AI, Perez M, Prieto JG, et al. Fluoroquinolone efflux mediated by ABC transporters. J Pharm Sci 2008; 97(9): 3483–93

    PubMed  CAS  Google Scholar 

  805. Projan SJ. (Genome) size matters. Antimicrob Agents Chemother 2007; 51(4): 1133–4

    PubMed  CAS  Google Scholar 

  806. Bronzwaer SL, Cars O, Buchholz U, et al. A European study on the relationship between antimicrobial use and antimicrobial resistance. Emerg Infect Dis 2002; 8(3): 278–82

    PubMed  Google Scholar 

  807. Goossens H. Antibiotic consumption and link to resistance. Clin Microbiol Infect 2009; 15 Suppl. 3: 12–5

    PubMed  CAS  Google Scholar 

  808. Rieg S, Huth A, Kalbacher H, et al. Resistance against antimicrobial peptides is independent of Escherichia coli AcrAB, Pseudomonas aeruginosa MexAB and Staphylococcus aureus NorA efflux pumps. Int J Antimicrob Agents 2009; 33(2): 174–6

    PubMed  CAS  Google Scholar 

  809. Brissette CA, Lukehart SA. Mechanisms of decreased susceptibility to β-defensins by Treponema denticola. Infect Immun 2007; 75(5): 2307–15

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Nikaido.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, XZ., Nikaido, H. Efflux-Mediated Drug Resistance in Bacteria. Drugs 69, 1555–1623 (2009). https://doi.org/10.2165/11317030-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11317030-000000000-00000

Navigation