Skip to main content
Log in

Microbicides in the Prevention of HIV Infection

Current Status and Future Directions

  • Leading Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

More than 28 years since the first cases of HIV/AIDS, there is still no cure or vaccine. The worst affected region is sub-Saharan Africa and, increasingly, it is young women who are bearing the brunt of the epidemic. Consequently, there is an urgent need for HIV prevention options for women in developing countries. Microbicides are topical products that can be used vaginally by women to impede sexual transmission of HIV and thus represent one of the most promising prevention strategies. Efficacy trials with early nonspecific microbicide gels have so far been unsuccessful, but the field has now switched its focus to products containing highly potent and highly specific antiretroviral drugs that are easier to use, and can be formulated in a variety of dosage forms to suit individual and regional preferences. However, these products have their own challenges, with a greater likelihood of absorption, and the potential for systemic toxicities or the development of resistance in infected individuals who are unaware of their HIV status. The conduct of clinical trials is complex for all microbicides, with limited availability of trial sites, difficulties in dose selection and safety monitoring, and a lack of a truly objective measure of adherence. Once a microbicide has been shown to be safe and effective, there will need to be a clear pathway to regulatory approval, and the successful launch of a product will depend on having in place appropriate methods for distribution to the women who need it, along with a strategy for ensuring that they use it correctly. This will require substantial effort in terms of education and community engagement, and these activities need to be initiated well in advance of microbicide rollout.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I

Similar content being viewed by others

References

  1. Centers for Disease Control. Pneumocystis pneumonia: Los Angeles. MMWR Morb Mortal Wkly Rep 1981; 30: 250–2

    Google Scholar 

  2. Centers for Disease Control. Kaposi’s sarcoma and Pneumocystis pneumonia among homosexual men: New York City and California. MMWR Morb Mortal Wkly Rep 1981; 30: 306–8

    Google Scholar 

  3. Wain-Hobson S, Vartanian J, Henry M, et al. LAV revisited: origins of the early HIV-1 isolates from Institute Pasteur. Science 1991; 252: 961–5

    Article  PubMed  CAS  Google Scholar 

  4. Joint United Nations Programme on HIV/AIDS (UNAIDS). AIDS epidemic update. Geneva: UNAIDS, 2009 Dec

    Google Scholar 

  5. Joint United Nations Programme on HIV/AIDS (UNAIDS). Report on the Global AIDS epidemic. Geneva: UNAIDS, 2008 Aug

    Google Scholar 

  6. Wortley RM, Fleming PL. AIDS in women in the United States: recent trends. JAMA 1997; 278(11): 911–6

    Article  PubMed  CAS  Google Scholar 

  7. Centers for Disease Control. Update: barrier protection against HIV infection and other sexually transmitted diseases. MMWR Morb Mortal Wkly Rep 1993; 42: 589–97

    Google Scholar 

  8. Stone AB, Hitchcock PJ. Vaginal microbicides for preventing sexual transmission of HIV. AIDS 1994; 8: S285–93

    Article  Google Scholar 

  9. Elias CJ, Heise LL. Challenges for the development of female-controlled vaginal microbicides. AIDS 1994; 8(1): 1–9

    Article  PubMed  CAS  Google Scholar 

  10. Elias CJ, Coggins C. Female-controlled methods to prevent sexual transmission of HIV. AIDS 1996; 10: S43–51

    Article  PubMed  Google Scholar 

  11. Joint United Nations Programme on HIV/AIDS (UNAIDS). AIDS epidemic update. Special report on HIV prevention. Geneva: UNAIDS, 2005 Dec

    Google Scholar 

  12. Cohen SA. Beyond slogans: lessons from Uganda’s experience with ABC and HIV/AIDS. Guttmacher Rep Public Policy 2003; 6(5): 1–3

    Article  Google Scholar 

  13. Katz IT, Wright AA. Circumcision: a surgical strategy for HIV prevention in Africa. N Engl J Med 2008; 359(23): 2412–5

    Article  PubMed  CAS  Google Scholar 

  14. Combescure C, Vallier N, Ledergerber B, et al. How reliable is an undetectable viral load? HIV Med 2009; 10(8): 470–6

    Article  PubMed  Google Scholar 

  15. Shattock RA, Moore JP. Inhibiting HIV-1 sexual transmission. Nat Rev Microbiol 2003; 1: 25–34

    Article  PubMed  CAS  Google Scholar 

  16. Scordi-Bello IA, Mosoian A, He C, et al. Candidate sulfonated and sulfated topical microbicides: comparison of antihuman immunodeficiency virus activities and mechanisms of action. Antimicrob Agents Chemother 2005; 49(9): 3607–15

    Article  PubMed  CAS  Google Scholar 

  17. Balzarini J, Van Damme L. Intravaginal and intrarectal microbicides to prevent HIV infection. CMAJ 2005; 172(4): 461–4

    Article  PubMed  Google Scholar 

  18. Van Damme L, Ramjee G, Alary M, et al. Effectiveness of COL-1492, a nonoxynol-9 vaginal gel, on HIV-1 transmission in female sex workers: a randomised, controlled trial. Lancet 2002; 360: 962–4

    Article  Google Scholar 

  19. Kreiss J, Ngugi E, Holmes K, et al. Efficacy of nonoxynol 9 contraceptive sponge use in preventing heterosexual acquisition of HIV in Nairobi prostitutes. JAMA 1992; 268(4): 477–82

    Article  PubMed  CAS  Google Scholar 

  20. Roddy RE, Zekeng L, Ryan KA, et al. A controlled trial of nonoxynol 9 film to reduce male-to-female transmission of sexually transmitted diseases. N Engl J Med 1998; 339(8): 504–10

    Article  PubMed  CAS  Google Scholar 

  21. Beer BE, Doncel GF, Krebs FC, et al. In vitro preclinical testing of nonoxynol-9 as potential anti-human immunodeficiency virus microbicide: a retrospective analysis of results from five laboratories. Antimicrob Agents Chemother 2006; 50(2): 713–23

    Article  PubMed  CAS  Google Scholar 

  22. Feldblum PJ, Adeiga A, Bakare R, et al. SAVVY vaginal gel (C31G) for prevention of HIV infection: a randomized controlled trial in Nigeria. PLoS One 2008; 3(1): e1474

    Article  PubMed  Google Scholar 

  23. Peterson L, Nanda K, Opoku BK, et al. SAVVY® (C31G) gel for prevention of HIV infection in women: a phase 3, double-blind, randomized, placebo-controlled trial in Ghana. PLoS One 2007; 2(12): e1312

    Article  PubMed  Google Scholar 

  24. Skoler-Karpoff S, Ramjee G, Ahmed K, et al. Efficacy of Carraguard for prevention of HIV infection in women in South Africa: a randomised, double-blind, placebocontrolled trial. Lancet 2008; 372(9654): 1977–87

    Article  PubMed  CAS  Google Scholar 

  25. Abdool Karim S, Coletti A, Richardson B, et al. Safety and effectiveness of vaginal microbicides BufferGel and 0.5% PRO 2000/5 gel for the prevention of HIV infection in women: results of the HPTN 035 trial [abstract no. 48LB]. 16th Conference on Retroviruses and Opportunistic Infections; 2009 Feb 8–11; Montreal (QC)

  26. Medical Research Council. HIV ‘prevention’ gel PRO 2000 proven ineffective [online]. Available from URL: http://www.mrc.ac.uk/Newspublications/News/MRC006553 [Accessed 2009 Dec 17]

  27. Van Damme L, Govinden R, Mirembe FM, et al. Lack of effectiveness of cellulose sulfate gel for the prevention of vaginal HIV transmission. N Engl J Med 2008; 359(5): 463–72

    Article  PubMed  Google Scholar 

  28. Rupp R, Rosenthal SL, Stanberry LR. VivaGel (SPL7013 Gel): a candidate dendrimer — microbicide for the prevention of HIV and HSV infection. Int J Nanomedicine 2007; 2(4): 561–6

    PubMed  CAS  Google Scholar 

  29. Williams DL, Newman DR, Ballagh SA, et al. Phase I safety trial of two vaginal microbicide gels (Acidform or Buffer-Gel) used with a diaphragm compared to KY jelly used with a diaphragm. Sex Transm Dis 2007; 34(12): 977–84

    Article  PubMed  CAS  Google Scholar 

  30. Page CP, Curtis MJ, Sutter MC, et al., editors. Integrated pharmacology. London: Mosby, 1997

    Google Scholar 

  31. Rustomjee R, Abdool Karim Q, Abdool Karim SS, et al. Phase 1 trial of nonoxynol-9 film among sex workers in South Africa. AIDS 1999; 13(12): 1511–5

    Article  PubMed  CAS  Google Scholar 

  32. Wilkinson D, Ramjee G, Tholandi M, et al. Nonoxynol-9 for preventing vaginal acquisition of sexually transmitted infections by women from men. Cochrane Database Syst Rev 2002; (4): CD003939

  33. Grant RM, Hamer D, Hope T, et al. Whither or wither microbicides? Science 2008; 321: 532–4

    Article  PubMed  CAS  Google Scholar 

  34. Woolfson A, Malcolm R, Morrow R, et al. Intravaginal ring delivery of the reverse transcriptase inhibitor TMC120 as an HIV microbicide. Int J Pharm 2006; 325(1–2): 82–9

    Article  PubMed  CAS  Google Scholar 

  35. Lin P-F, Blair W, Wang T, et al. A small molecule HIV-1 inhibitor that targets the HIV-1 envelope and inhibits CD4 receptor binding. Proc Natl Acad Sci U S A 2003; 100(19): 11013–8

    Article  PubMed  CAS  Google Scholar 

  36. Veazey RS, Klasse PJ, Schader SM, et al. Protection of macaques from vaginal SHIV challenge by vaginally delivered inhibitors of virus-cell fusion. Nature 2005; 438(7064): 99–102

    Article  PubMed  CAS  Google Scholar 

  37. Mori T, Boyd MR. Cyanovirin-N, a potent human immunodeficiency virus-inactivating protein, blocks both CD4-dependent and CD4-independent binding of soluble gp120 (sgp120) to target cells, inhibits sCD4-induced binding of sgp120 to cell-associated CXCR4, and dissociates bound sgp120 from target cells. Antimicrob Agents Chemother 2001; 45(3): 664–72

    Article  PubMed  CAS  Google Scholar 

  38. Liu X, Lagenaur LA, Simpson DA, et al. Engineered vaginal Lactobacillus for mucosal delivery of the HIV inhibitor, Cyanovirin-N. Antimicrob Agents Chemother 2006; 50(10): 3250–9

    Article  PubMed  CAS  Google Scholar 

  39. Zeitlin L, Bohorova N, Hiatt A, et al. Preventing sexual transmission: MAPP66, a multi-purpose vaginal microbicide [abstract no. M-15]. Advancing Prevention Technologies for Sexual Reproductive Health: A Strategy Symposium; 2009 Mar 24–25; Berkeley (CA)

  40. Jacobson JM, Kuritzkes DR, Godofsky E, et al. Safety, pharmacokinetics, and antiretroviral activity of multiple doses of ibalizumab (formerly TNX-355), an anti-CD4 monoclonal antibody, in human immunodeficiency virus type 1-infected adults. Antimicrob Agents Chemother 2009; 53(2): 450–7

    Article  PubMed  CAS  Google Scholar 

  41. US National Institutes of Health. A phase 2b, randomized, double-blinded, 48-week, multicenter, dose-response study of ibalizumab plus an optimized background regimen in treatment-experienced patients infected with HIV-1 [ClinicalTrials.gov identifier NCT00784147]. US National Institutes of Health, ClinicalTrials.gov [online]. Available from URL: http://clinicaltrials.gov [Accessed 2009 Oct 5]

  42. Philpott SM. HIV-1 coreceptor usage, transmission, and disease progression. Curr HIV Res 2003; 1(2): 217–27

    Article  PubMed  CAS  Google Scholar 

  43. Lieberman-Blum SS, Fung HB, Bandres JC. Maraviroc: a CCR5-receptor antagonist for the treatment of HIV-1 infection. Clin Ther 2008; 30(7): 1228–50

    Article  PubMed  CAS  Google Scholar 

  44. Veazey RS, Ling B, Green LC, et al. Topically applied recombinant chemokine analogues fully protect macaques from vaginal simian-human immunodeficiency virus challenge. J Infect Dis 2009; 199: 1525–7

    Article  PubMed  CAS  Google Scholar 

  45. Funf HB, Guo Y. Enfuvirtide: A fusion inhibitor for the treatment of HIV infection. Clin Ther 2004; 26(3): 352–78

    Article  Google Scholar 

  46. Veazey RS, Ketas TA, Klasse PJ, et al. Tropismindependent protection of macaques against vaginal transmission of three SHIVs by the HIV-1 fusion inhibitor T-1249. Proc Natl Acad Sci U S A 2008; 105(30): 10531–6

    Article  PubMed  CAS  Google Scholar 

  47. Ingallinella P, Bianchi E, Ladwa NA, et al. Addition of a cholesterol group to an HIV-1 peptide fusion inhibitor dramatically increases its antiviral potency. Proc Natl Acad Sci U S A 2009; 106(14): 5801–6

    Article  PubMed  CAS  Google Scholar 

  48. Sperling R. Zidovudine. Infect Dis Obstet Gynecol 1998; 6: 197–203

    PubMed  CAS  Google Scholar 

  49. Lyseng-Williamson KA, Reynolds NA, Plosker GL. Tenofovir disoproxil fumarate: a review of its use in the management of HIV infection. Drugs 2005; 65(3): 413–32

    Article  PubMed  CAS  Google Scholar 

  50. Padian NS, Buvé A, Balkus J, et al. Biomedical interventions to prevent HIV infection: evidence, challenges, and way forward. Lancet 2008; 372(9638): 585–99

    Article  PubMed  CAS  Google Scholar 

  51. Grobler JA, Dornadula G, Rice MR, et al. HIV-1 reverse transcriptase plus-strand initiation exhibits preferential sensitivity to non-nucleoside reverse transcriptase inhibitors in vitro. J Biol Chem 2007; 282(11): 8005–10

    Article  PubMed  CAS  Google Scholar 

  52. Nuttall JP, Thake DC, Lewis MG, et al. Concentrations of dapivirine in the rhesus macaque and rabbit following once daily intravaginal administration of a gel formulation of [14C]dapivirine for 7 days. Antimicrob Agents Chemother 2008; 52(3): 909–14

    Article  PubMed  CAS  Google Scholar 

  53. Fernandez-Romero JA, Thorn M, Turville SG, et al. Carrageenan/MIV-150 (PC-815), a combination microbicide. Sex Transm Dis 2007; 34: 9–14

    Article  PubMed  CAS  Google Scholar 

  54. Van Herrewege Y, Michiels J, Van Roey J, et al. In vitro evaluation of nonnucleoside reverse transcriptase inhibitors UC-781 and TMC120-R147681 as human immunodeficiency virus microbicides. Antimicrob Agents Chemother 2004; 48: 337–9

    Article  PubMed  Google Scholar 

  55. D’Cruz OJ, Uckun FM. Dawn of non-nucleoside inhibitorbased anti-HIV microbicides. J Antimicrob Chemother 2006; 57(3): 411–23

    Article  PubMed  Google Scholar 

  56. Di Santo R, Costi R, Artico M, et al. HIV-1 integrase inhibitors that block HIV-1 replication in infected cells: planning synthetic derivatives from natural products. Pure Appl Chem 2003; 75(2–3): 195–206

    Article  Google Scholar 

  57. Serrao E, Odde S, Ramkumar K, et al. Raltegravir, elvitegravir, and metoogravir: the birth of “me-too” HIV-1 integrase inhibitors [published erratum appears in Retrovirology 2009; 6: 33]. Retrovirology 2009; 6: 25

    Article  PubMed  Google Scholar 

  58. Robins T, Plattner J. HIV protease inhibitors: their anti-HIV activity and potential role in treatment. J Acquir Immune Defic Syndr 1993; 6(2): 162–70

    PubMed  CAS  Google Scholar 

  59. Haase AT. Perils at mucosal front lines for HIV and SIV and their hosts. Nat Rev Immunol 2005; 5(10): 783–92

    Article  PubMed  CAS  Google Scholar 

  60. Vermund SH. Prevention of mother-to-child transmission of HIV in Africa. Top HIV Med 2004; 12(5): 130–4

    PubMed  Google Scholar 

  61. Portsmouth SD, Scott CJ. The renaissance of fixed dose combinations: Combivir. Ther Clin Risk Manag 2007; 3(4): 579–83

    PubMed  CAS  Google Scholar 

  62. Blower S, Bodine E, Kahn J, et al. The antiretroviral rollout and drug-resistant HIV in Africa: insights from empirical data and theoretical models. AIDS 2005; 19(1): 1–14

    Article  PubMed  Google Scholar 

  63. Martinez J, Coplan P, Wainberg MA. Is HIV drug resistance a limiting factor in the development of anti-HIV NNRTI and NRTI-based vaginal microbicide strategies? Antiviral Res 2006; 71(2–3): 343–50

    Article  PubMed  CAS  Google Scholar 

  64. Malcolm RK, Woolfson AD, Toner CF, et al. Long-term, controlled release of the HIV microbicide TMC120 from silicone elastomer vaginal rings. J Antimicrob Chemother 2005; 56(5): 954–6

    Article  PubMed  CAS  Google Scholar 

  65. Van de Wijgert J, Jones H. Challenges in microbicide trial design and implementation. Stud Fam Plann 2006; 37(2): 123–9

    Article  PubMed  Google Scholar 

  66. Garg AB, Nuttall J, Romano J. The future of HIV microbicides: challenges and opportunities. Antivir Chem Chemother 2009; 19(4): 143–50

    PubMed  Google Scholar 

  67. Keller MJ, Zerhouni-Layachi B, Cheshenko N, et al. PRO 2000 gel inhibits HIV and herpes simplex virus infection following vaginal application: a double-blind placebocontrolled trial. J Infect Dis 2006; 193: 27–35

    Article  PubMed  CAS  Google Scholar 

  68. Keller MJ, Mesquita PMM, Torres NM, et al. Postcoital bioavailability and antiviral activity of 0.5% PRO 2000 gel: implications for future microbicide clinical trials. PLoS One 2010; 5(1): e8781

    Article  PubMed  Google Scholar 

  69. Elliott J, McGowan I, Adler A, et al. Strong suppression of HIV-1 infection of colorectal explants following in vivo rectal application of UC781 gel: a novel endpoint in a phase I trial [abstract no. 1067]. 16th Conference on Retroviruses and Opportunistic Infections; 2009 Feb 8–11; Montreal (QC)

  70. Wallace A, Mitchell T, Maguire R, et al. Assay for establishing whether microbicide applicators have been exposed to the vagina. Sex Transm Dis 2004; 31: 465–8

    Article  PubMed  Google Scholar 

  71. Wallace AR, Teitelbaum A, Wan L, et al. Determining the feasibility of utilizing the microbicide applicator compliance assay for use in clinical trials. Contraception 2007; 76: 53–6

    Article  PubMed  Google Scholar 

  72. Metzger DS, Koblin B, Turner C, et al. Randomized controlled trial of audio computer-assisted self-interviewing: utility and acceptability in longitudinal studies. Am J Epidemiol 2000; 152(2): 99–106

    Article  PubMed  CAS  Google Scholar 

  73. Mesquita PM, Cheshenko N, Wilson SS, et al. Disruption of tight junctions by cellulose sulfate facilitates HIV infection: model of microbicide safety. J Infect Dis 2009; 200(4): 599–608

    Article  PubMed  CAS  Google Scholar 

  74. Keller MJ, Herold BC. Understanding basic mechanisms and optimizing assays to evaluate the efficacy of vaginal microbicides. Sex Transm Dis 2009; 36 (3 Suppl.): S92–5

    Article  PubMed  CAS  Google Scholar 

  75. Trifonova RT, Doncel GF, Fichorova RN. Polyanionic microbicides modify Toll-like receptor-mediated cervicovaginal immune responses. Antimicrob Agents Chemother 2009; 53(4): 1490–500

    Article  PubMed  CAS  Google Scholar 

  76. Wilson DP, Coplan PM, Wainberg MA, et al. The paradoxical effects of using antiretroviral-based microbicides to control HIV epidemics. Proc Natl Acad Sci U S A 2008; 105(28): 9835–40

    Article  PubMed  CAS  Google Scholar 

  77. Miller V, de Béthune M-P, Kober A, et al. Patterns of resistance and cross-resistance to human immunodeficiency virus type 1 reverse transcriptase inhibitors in patients treated with the nonnucleoside reverse transcriptase inhibitor loviride. Antimicrob Agents Chemother 1998; 42(12): 3123–9

    PubMed  CAS  Google Scholar 

  78. Orrell C, Harling G, Lawn SD, et al. Conservation of firstline antiretroviral treatment regimen where therapeutic options are limited. Antivir Ther 2007; 12: 83–8

    PubMed  CAS  Google Scholar 

  79. Coplan PM, Mitchnick M, Rosenberg ZF. Regulatory challenges in microbicide development. Science 2004; 304: 1911–2

    Article  PubMed  CAS  Google Scholar 

  80. Milstien J, Belgharbi L. Regulatory pathways for vaccines for developing countries. Bull World Health Organ 2004; 82(2): 128–33

    PubMed  Google Scholar 

  81. Committee for Medicinal Products for Human Use (CHMP). Guideline on procedural aspects regarding a CHMP scientific opinion in the context of cooperation with the World Health Organisation (WHO) for the evaluation of medicinal products intended exclusively for markets outside the community. EMEA/CHMP/5579/04 Rev. 1. London: CHMP, 2005

    Google Scholar 

  82. Collaborating with traditional healers for HIV prevention and care in sub-Saharan Africa: suggestions for programme managers and field workers. UNAIDS Best Practice Collection. Geneva: World Health Organization, 2006

    Google Scholar 

  83. van de Wijgert JHHM, Mason PR, Gwanzura L, et al. Intravaginal practices, vaginal flora disturbances, and acquisition of sexually transmitted diseases in Zimbabwean women. J Infect Dis 2000; 181: 587–94

    Article  Google Scholar 

  84. Myer L, Kuhn L, Stein Z, et al. Intravaginal practices, bacterial vaginosis, and women’s susceptibility to HIV infection: epidemiological evidence and biological mechanisms. Lancet Infect Dis 2005; 5(12): 786–94

    Article  PubMed  Google Scholar 

  85. Baleta A. Concern voiced over “dry sex” practices in South Africa. Lancet 1998; 352: 1292

    Article  PubMed  CAS  Google Scholar 

  86. Bendavid E, Young SD, Katzenstein DA, et al. Cost-effectiveness of HIV monitoring strategies in resource-limited settings: a Southern African analysis. Arch Intern Med 2008; 168(17): 1910–8

    Article  PubMed  CAS  Google Scholar 

  87. Lagoy CT, Joshi N, Cragan JD, et al. Medication use during pregnancy and lactation: an urgent call for public health action. J Womens Health (Larchmt) 2005; 14(2): 104–9

    Article  Google Scholar 

  88. Moodley K. Microbicide research in developing countries: have we given the ethical concerns due consideration? BMC Med Ethics 2007; 8: 10

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this review. The author has no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy Nuttall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nuttall, J. Microbicides in the Prevention of HIV Infection. Drugs 70, 1231–1243 (2010). https://doi.org/10.2165/10898650-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/10898650-000000000-00000

Keywords

Navigation