OligoMatcher

Analysis and Selection of Specific Oligonucleotide Sequences for Gene Silencing by Antisense or siRNA

Abstract

OligoMatcher is a web-based tool for analysis and selection of unique oligonucleotide sequences for gene silencing by antisense oligonucleotides (ASOs) or small interfering RNA (siRNA). A specific BLAST® server was built for analysing sequences of ASOs that target pre-mRNA in the cell nucleus. Tissue- and cell-specific expression data of potential cross-reactive genes are integrated in the OligoMatcher program, which allows biologists to select unique oligonucleotide sequences for their target genes in specific experimental systems.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. 1.

    Kramer R, Cohen D. Functional genomics to new drug targets. Nat Rev Drug Discov 2004; 3(11): 965–72

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Crooke ST. Molecular mechanisms of action of antisense drugs. Biochim Biophys Acta 1999; 1489(1): 31–44

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Meister G, Tuschl T. Mechanisms of gene silencing by double-stranded RNA. Nature 2004; 431(7006): 343–9

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Vickers TA, Koo S, Bennett CF, et al. Efficient reduction of target RNAs by small interfering RNA and RNase H-dependent antisense agents: a comparative analysis. J Biol Chem 2003; 278(9): 7108–18

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Martinez J, Patkaniowska A, Urlaub H, et al. Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 2002; 110(5): 563–74

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Ding Y, Lawrence CE. Statistical prediction of single-stranded regions in RNA secondary structure and application to predicting effective antisense target sites and beyond. Nucleic Acids Res 2001; 29(5): 1034–46

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Reynolds A, Leake D, Boese Q, et al. Rational siRNA design for RNA interference. Nat Biotechnol 2004; 22(3): 326–30

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Ui-Tei K, Naito Y, Takahashi F, et al. Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Res 2004; 32(3): 936–48

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Wang L, Mu FY. A web-based design center for vector-based siRNA and siRNA cassette. Bioinformatics 2004; 20(11): 1818–20

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116(2): 281–97

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Altschul SF, Madden TL, Schaffer AA, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25(17): 3389–402

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Hubbard T, Barker D, Birney E, et al. The Ensembl genome database project. Nucleic Acids Res 2002; 30(1): 38–41

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Kasprzyk A, Keefe D, Smedley D, et al. EnsMart: a generic system for fast and flexible access to biological data. Genome Res 2004; 14(1): 160–9

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Stabenau A, McVicker G, Melsopp C, et al. The Ensembl core software libraries. Genome Res 2004; 14(5): 929–33

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Su AI, Wiltshire T, Batalov S, et al. A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci U S A 2004; 101(16): 6062–7

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Barrett T, Suzek TO, Troup DB, et al. NCBI GEO: mining millions of expression profiles: database and tools. Nucleic Acids Res 2005; 33(database issue): D562–6

    PubMed  CAS  Google Scholar 

  17. 17.

    Su AI, Cooke MP, Ching KA, et al. Large-scale analysis of the human and mouse transcriptomes. Proc Natl Acad Sci U S A 2002; 99(7): 4465–70

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Drs Jude Onyia, Eric Su and Birong Liao for their support and critical review. The research reported in this paper was supported in part by National Science Foundation (NSF) Information Technology Research (ITR) grant number NSF-IIS/ITR 0081944, a National Institutes of Health (NIH) BISTI (Biomedical Information Science and Technology Initiative) grant, and NIH-NIGMS (National Institute of General Medical Sciences) grant number P20 GM66402.

The authors have no conflicts of interest that are directly relevant to the content of this article.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dr Shuyu Li.

Additional information

Availability: The OligoMatcher web server is available at http://shelob.cs.iupui.edu:18081/oligomatch.php. The source code is freely available for non-profit use on request to the authors.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mamidipalli, S., Palakal, M. & Li, S. OligoMatcher. Appl-Bioinformatics 5, 121–124 (2006). https://doi.org/10.2165/00822942-200605020-00008

Download citation

Keywords

  • Oligonucleotide Sequence
  • Affymetrix Oligonucleotide Array
  • Oligonucleotide Array Data
  • Effective siRNA Sequence
  • Optimal Oligonucleotide