Skip to main content
Log in

Children Hospitalized with Skin and Soft Tissue Infections

A Guide to Antibacterial Selection and Treatment

  • Therapy In Practice
  • Published:
Pediatric Drugs Aims and scope Submit manuscript

Abstract

Skin and soft tissue infections in children are an important cause for hospitalization. A thorough history and physical examination can provide clues to the pathogens involved. Collection of purulent discharge from lesions should be completed prior to initiating antimicrobial therapy, and results of bacteriologic studies (Gram stain and culture) should guide therapeutic decisions.

The main pathogens involved in these infections are Staphylococcus aureus and group A β-hemolytic streptococci, but enteric organisms also play a role especially in nosocomial infections. Increasing antibacterial resistance is becoming a major problem in the treatment of these infections worldwide. Specifically, the rise of methicillin-resistant S. aureus and glycopeptide-resistant S. aureus pose challenges for the future.

Infections of the skin and soft tissues can be broadly classified based on the extent of tissue involvement. Superficial infections such as erysipelas, cellulitis, bullous impetigo, bite infections, and periorbital cellulitis may require hospitalization and parenteral antibacterials. Deeper infections such as orbital cellulitis, necrotizing fasciitis, and pyomyositis require surgical intervention as well as parenteral antibacterial therapy. Surgery plays a key role in the treatment of abscesses and for the debridement of necrotic tissue in deep infections. Intravenous immunoglobulin, as an adjunctive therapy, can be helpful in treating necrotizing fasciitis.

For most infections an antistaphylococcal β-lactam antibacterial is first-line therapy. Third-generation cephalosporins and β-lactam/β-lactamase inhibitor antibacterials as well as clindamycin or metronidazole are often required to provide broad-spectrum coverage for polymicrobial infections.

Special populations, such as immunocompromised children, those with an allergy to penicillins, and those that acquire infections in hospitals, require specific antibacterial strategies. These usually involve broader antimicrobial coverage with increased Gram-negative (including antipseudomonal) and anerobic coverage. In patients with a true allergy to penicillins, clindamycin and vancomycin play an important role in treating Gram-positive infections. Newer antibacterial agents, such as linezolid and quinupristin/dalfopristin, are increasingly being studied in children for the treatment of skin and soft tissue infections. These agents hold promise for the future especially in the treatment of highly resistant, Gram-positive organisms such as methicillin-resistant S. aureus, vancomycin-resistant S. aureus, and vancomycin-resistant enterococci.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Table I
Table II
Table III

Similar content being viewed by others

References

  1. Fung HB, Chang JY, Kuczynski S. A practical guide to the treatment of complicated skin and soft tissue infections. Drugs 2003; 63(14): 1459–80

    Article  PubMed  CAS  Google Scholar 

  2. Stulberg D, Penrod M, Blatny R. Common bacterial skin infections. Am Fam Physician 2002; 66(1): 119–24

    PubMed  Google Scholar 

  3. Darmstadt G. Cellulitis and superficial skin infections. In: Long S, Pickering L, Prober C, editors. Principles and practice of pediatric infectious diseases. 2nd ed. Philadelphia (PA): Churchill Livingstone, 2003: 424–31

    Google Scholar 

  4. Bonnetblanc J, Bedane C. Erysipelas: recognition and management. Am J Clin Derm 2003; 4(3): 157–63

    Article  Google Scholar 

  5. Hedrick J. Acute bacterial skin infections in pediatric medicine: current issues in presentation and treatment. Pediatr Drugs 2003; 5(1 Suppl.): 35–45

    Google Scholar 

  6. Brook I. Microbiology of nonbullous impetigo. Pediatr Dermatol 1997; 14(3): 192–5

    Article  PubMed  CAS  Google Scholar 

  7. Ladhani S, Joannou C. Difficulties in diagnosis and management of the staphylococcal scalded skin syndrome. Pediatr Infect Dis J 2000; 19(9): 819–21

    Article  PubMed  CAS  Google Scholar 

  8. Barzilai A, Choen H. Isolation of group A streptococci from children with perianal cellulitis and from their siblings. Pediatr Infect Dis J 1998; 17(4): 358–60

    Article  PubMed  CAS  Google Scholar 

  9. Kanra G, Secmeer G, Gonc E, et al. Periorbital cellulitis: a comparison of different treatment regimens. Acta Paediatr Jpn 1996; 38(4): 339–42

    Article  PubMed  CAS  Google Scholar 

  10. Beier K, Heegaard W, Rusnak R. Acute neonatal scalp abscess and E. coli bacteremia in the ED. Am J Emerg Med 1999; 17(3): 241–3

    Article  PubMed  CAS  Google Scholar 

  11. Okada D, Chow A, Bruce V. Neonatal scalp abscess and fetal monitoring: factors associated with infection. Am J Obstet Gynecol 1977; 129(2): 185–9

    PubMed  CAS  Google Scholar 

  12. Efrat M, Mogilner J, Iujtman M, et al. Neonatal mastitis: diagnosis and treatment. Isr J Med Sci 1995; 31(9): 558–60

    PubMed  CAS  Google Scholar 

  13. Rudoy R, Nelson J. Breast abscess during the neonatal period: a review. Am J Dis Child 1975; 129(9): 1031–4

    PubMed  CAS  Google Scholar 

  14. Brook I. The aerobic and anaerobic microbiology of neonatal breast abscess. Pediatr Infect Dis J 1991; 10(10): 785–6

    Article  PubMed  CAS  Google Scholar 

  15. Ameh E, Nmadu P. Major complications of omphalitis in neonates and infants. Pediatr Surg Int 2002; 18: 413–6

    Article  PubMed  Google Scholar 

  16. Brook I. Microbiology of necrotizing fasciitis associated with omphalitis in the newborn infant. J Perinatol 1998; 18(1): 28–30

    PubMed  CAS  Google Scholar 

  17. Mason W, Andrews R, Ross L, et al. Omphalitis in the newborn infant. Pediatr Infect Dis J 1989; 8(8): 521–5

    Article  PubMed  CAS  Google Scholar 

  18. Sawardekar K. Changing spectrum of neonatal omphalitis. Pediatr Infect Dis J 2004; 23(1): 22–6

    Article  PubMed  Google Scholar 

  19. Faridi M, Rattan A, Ahmad S. Omphalitis neonatorum. J Indian Med Assoc 1993; 91(11): 283–5

    PubMed  CAS  Google Scholar 

  20. File T, Tan J. Treatment of skin and soft tissue infections. Am J Surg 1995; 169Suppl. 5A: 27S–33S

    PubMed  Google Scholar 

  21. Goldstein A, Citron D, Merriam C. Activity of gatifloxacin compared to those of five other quinolones versus aerobic and anaerobic isolates from skin and soft tissue samples of animal and human bite wound infections. Antimicrob Agents Chemother 1999; 43: 1475–9

    PubMed  CAS  Google Scholar 

  22. Talan D, Citron DM, Abrahamian FM, et al. Bacteriologic analysis of infected dog and cat bites: Emergency Medicine Animal Bite Infection Study Group. N Engl J Med 1999; 340: 85–92

    Article  PubMed  CAS  Google Scholar 

  23. Hsieh T, Samson L, Jabbour M, et al. Necrotizing fasciitis in children in eastern Ontario: a case-control study. CMAJ 2000; 163(4): 393–6

    PubMed  CAS  Google Scholar 

  24. Laupland K, Davies H, Low D, et al. Invasive group A streptococcal disease in children and association with varicella-zoster virus infection: Ontario Group A Streptococcal Study Group. Pediatrics 2000; 105(5): E60

    Article  PubMed  CAS  Google Scholar 

  25. Fustes-Morales A, Gutierrez-Castrellon P, Duran-Mckinster C, et al. Necrotizing fasciitis. Arch Dermatol 2002; 138: 893–9

    Article  PubMed  Google Scholar 

  26. Singh S, Sinha S, Adhikary S, et al. Necrotising infections of soft tissues: a clinical profile. Eur J Surg 2002; 168: 366–71

    Article  PubMed  Google Scholar 

  27. Headley A. Necrotizing soft tissue infections: a primary care review. Am Fam Physician 2003; 68(2): 323–8

    PubMed  Google Scholar 

  28. Brook I. Aerobic and anaerobic microbiology of necrotizing fasciitis in children. Pediatr Dermatol 1996; 13(4): 281–4

    Article  PubMed  CAS  Google Scholar 

  29. Zerr D, Rubens C. NSAIDS and necrotizing fasciitis. Pediatr Infect Dis J 1999; 18(8): 724–5

    Article  PubMed  CAS  Google Scholar 

  30. Gubbay A, Isaacs D. Pyomyositis in children. Pediatr Infect Dis J 2000; 19(10): 1009–13

    Article  PubMed  CAS  Google Scholar 

  31. Brook I. Microbiology and management of post-surgical wounds infection in children. Pediatr Rehabil 2002; 5(3): 171–6

    PubMed  Google Scholar 

  32. Critchley I, Sahm D, Thornsberry C, et al. Antimicrobial susceptibilities of Streptococcus pyogenes isolated from respiratory and skin and soft tissue infections: United States LIBRA surveillance data from 1999. Diagn Microbiol Infect Dis 2002; 42(2): 129–35

    Article  PubMed  CAS  Google Scholar 

  33. Swartz M. Cellulitis. N Engl J Med 2004; 350(9): 904–12

    Article  PubMed  CAS  Google Scholar 

  34. Givner L. Periorbital versus orbital cellulitis. Pediatr Infect Dis J 2002; 21(12): 1157–8

    Article  PubMed  Google Scholar 

  35. Starkey C, Steele R. Medical management of orbital cellulitis. Pediatr Infect Dis J 2001; 20(10): 1002–5

    Article  PubMed  CAS  Google Scholar 

  36. Fleisher G. The management of bite wounds. N Engl J Med 1999; 340(2): 138–40

    Article  PubMed  CAS  Google Scholar 

  37. Moss R, Musemeche C, Koslokse A. Necrotizing fasciitis in children: prompt recognition and aggressive therapy improve survival. J Pediatr Surg 1996; 31(8): 1142–6

    Article  PubMed  CAS  Google Scholar 

  38. Stevens D, Gibbons A, Bergstrom R, et al. The Eagle effect revisited: efficacy of clindamycin, erythromycin, and penicillin in the treatment of streptococcal myositis. J Infect Dis 1988; 158: 23–8

    Article  PubMed  CAS  Google Scholar 

  39. Stevens D, Yan S, Bryant A. Penicillin-binding protein expression at different growth stages determines penicillin efficacy in vitro and in vivo: an explanation for the inoculum effect. J Infect Dis 1993; 167: 1401–5

    Article  PubMed  CAS  Google Scholar 

  40. Lamothe F, D’Amico P, Ghosn P, et al. Clinical usefulness of intravenous human immunoglobulins in invasive group A streptococcal infections: case report and review. Clin Infect Dis 1995; 21: 1469–70

    Article  PubMed  CAS  Google Scholar 

  41. Cawley M, Briggs M, Haith LJ, et al. Intravenous immunoglobulin as adjunctive treatment for streptococcal toxic shock syndrome associated with necrotizing fasciitis: a case report and review. Pharmacotherapy 1999; 19(9): 1094–8

    Article  PubMed  CAS  Google Scholar 

  42. Fan H, Lo W, Chu M, et al. Clinical characteristics of Staphylococcus pyomyositis. J Microbiol Immunol Infect 2002; 35(2): 121–4

    PubMed  Google Scholar 

  43. Brook I. Antimicrobial therapy of skin and soft tissue infection in children. J Am Podiatry Assoc 1993; 83(7): 398–405

    CAS  Google Scholar 

  44. Brook I. Cutaneous and subcutaneous infections in newborns due to anaerobic bacteria. J Perinat Med 2002; 30(3): 197–208

    Article  PubMed  Google Scholar 

  45. Rennie R, Jones R, Mutnick A, et al. Occurrence and antimicrobial susceptibility patterns of pathogens isolated from skin and soft tissue infections: report from SENTRY Antimicrobial Surveillance Program (United States and Canada, 2000). Diagn Microbiol Infect Dis 2003; 45: 287–93

    Article  PubMed  CAS  Google Scholar 

  46. Sader H. Skin and soft tissue infections in Latin American medical centers: four-year assessment of the pathogen frequency and antimicrobial susceptibility patterns. Diagn Microbiol Infect Dis 2002; 44: 281–8

    Article  PubMed  Google Scholar 

  47. Jones M, Schmitz F, Fluit A, et al. Frequency of occurrence and antimicrobial susceptibility of bacterial pathogens associated with skin and soft tissue infections during 1997 from an international surveillance programme. Eur J Clin Microbiol Infect Dis 1999; 18: 403–8

    Article  PubMed  CAS  Google Scholar 

  48. Eady E, Cove J. Staphylococcal resistance revisited: community-acquired methicillin resistant Staphylococcus aureus: an emerging problem for the management of skin and soft tissue infections. Curr Opin Infect Dis 2003; 16(2): 103–24

    Article  PubMed  CAS  Google Scholar 

  49. Fergie J, Purcell K. Community-acquired methicillin-resistant Staphylococcus aureus infections in south Texas children. Pediatr Infect Dis J 2001; 20(9): 860–3

    Article  PubMed  CAS  Google Scholar 

  50. Sattler C, Mason E, Kaplan S. Prospective comparison of risk factors and demographic and clinical characteristics of community-acquired methicillin-resistant versus methicillin-susceptible Staphylococcus aureus infection in children. Pediatr Infect Dis J 2002; 21: 910–7

    Article  PubMed  Google Scholar 

  51. Fiebelkorn K, Crawford S, McElmeel M, et al. Practical disk diffusion method for detection of inducible clindamycin resistance in Staphylococcus aureus and coagulase-negative staphylococci. J Clin Microbiol 2003; 41(10): 4740–4

    Article  PubMed  CAS  Google Scholar 

  52. Drinkovic D, Fuller E, Shore K, et al. Clindamycin treatment of Staphylococcus aureus expressing inducible clindamycin resistance. J Antimicrob Chemother 2001; 48(2): 315–6

    Article  PubMed  CAS  Google Scholar 

  53. Marcinak J, Frank A. Treatment of community-acquired methicillin-resistant Staphylococcus aureus in children. Curr Opin Infect Dis 2003; 16(3): 265–9

    Article  PubMed  CAS  Google Scholar 

  54. Hiramatsu K, Hanaki H, Ino T, et al. Methicillin-resistant Staphylococcus aureus clinical strain with reduced vancomycin susceptibility. J Antimicrob Chemother 1997; 40: 135–6

    Article  PubMed  CAS  Google Scholar 

  55. Sievert D, Boulton M, Stoltman G. Staphylococcus aureus resistant to vancomycin: United States 2002. MMWR Morb Mortal Wkly Rep 2002; 51: 565–7

    Google Scholar 

  56. Miller D, Urdaneta V, Weltman A. Public health dispatch: vancomycin-resistant Staphylococcus aureus: Pennsylvania, 2002. MMWR Morb Mortal Wkly Rep 2002; 51: 902

    Google Scholar 

  57. Stevens D, Herr D, Lampiris H, et al. Linezolid versus vancomycin for the treatment of methicillin-resistant Staphylococcus aureus infections. Clin Infect Dis 2002; 34(11): 1481–90

    Article  PubMed  CAS  Google Scholar 

  58. Cha R, Brown W, Rybak M. Bactericidal activities of daptomycin, quinupristin-dalfopristin, and linezolid against vancomycin-resistant Staphylococcus aureus in an in vitro pharmacodynamic model with simulated endocardial vegetations. Antimicrob Agents Chemother 2003; 47(12): 3960–3

    Article  PubMed  CAS  Google Scholar 

  59. Kaplan S, Afghani B, Lopez P, et al. Linezolid for the treatment of methicillin-resistant Staphylococcus aureus infections in children. Pediatr Infect Dis J 2003; 22(9 Suppl.): S178–85

    PubMed  Google Scholar 

  60. Deville J, Adler S, Azimi P, et al. Linezolid versus vancomycin in the treatment of known or suspected resistant Gram-positive infections in neonates. Pediatr Infect Dis J 2003; 22(9 Suppl.): S158–63

    PubMed  Google Scholar 

  61. Schweiger E, Weinberg J. Novel antibacterial agents for skin and skin structure infections. J Am Acad Dermatol 2004; 50(3): 331–40

    Article  PubMed  Google Scholar 

  62. Stevens D, Smith L, Bruss J, et al. Randomized comparison of linezolid (PNU-100766) versus oxacillin-dicloxacillin for treatment of complicated skin and soft tissue infections. Antimicrob Agents Chemother 2000; 44: 3408–13

    Article  PubMed  CAS  Google Scholar 

  63. Yogev R, Patterson L, Kaplan S, et al. Linezolid for the treatment of complicated skin and skin structure infections in children. Pediatr Infect Dis J 2003; 22(9 Suppl.): S172–7

    PubMed  Google Scholar 

  64. Elsner H, Sobottka I, Feucht H, et al. Nosocomial outbreak of vancomycin-resistant Enterococcus faecium at a German university pediatric hospital. Int J Hygiene Environ Health 2000; 203(2): 147–52

    Article  CAS  Google Scholar 

  65. Verma A, Dhawan A, Philpott-Howard J, et al. Glycopeptide-resistant Enterococcus faecium infections in paediatric liver transplant recipients: safety and clinical efficacy of quinupristin/dalfopristin. J Antimicrob Chemother 2001; 47(1): 105–8

    Article  PubMed  CAS  Google Scholar 

  66. King A, Phillips I. The in vitro activity of daptomycin against 514 Gram-positive aerobic clinical isolates. J Antimicrob Chemother 2001; 48(2): 219–23

    Article  PubMed  CAS  Google Scholar 

  67. Fuchs P, Barry A, Brown S. In vitro bactericidal activity of daptomycin against staphylococci. J Antimicrob Chemother 2002; 49(3): 467–70

    Article  PubMed  CAS  Google Scholar 

  68. Barry A, Fuchs P, Brown S. In vitro activities of daptomycin against 2,789 clinical isolates from 11 North American medical centers. Antimicrob Agents Chemother 2001; 45(6): 1919–22

    Article  PubMed  CAS  Google Scholar 

  69. Arbeit R, Maki D, Tally F, et al. The safety and efficacy of daptomycin for the treatment of complicated skin and skin-structure infections. Clin Infect Dis 2004; 38(12): 1673–81

    Article  PubMed  CAS  Google Scholar 

  70. Johnston D, Waldhausen J, Park J. Deep soft tissue infections in the neutropenic pediatric oncology patient. J Pediatr Hematol Oncol 2001; 23(7): 443–7

    Article  PubMed  CAS  Google Scholar 

  71. Fergie J, Patrick C, Lott L. Pseudomonas aeruginosa cellulitis and Ecthyma gangrenosum in immunocompromised children. Pediatr Infect Dis J 1991; 10(7): 496–500

    Article  PubMed  CAS  Google Scholar 

  72. Lopez F, Sanders C. Dermatologic infections in the immunocompromised (non-HIV) host. Infect Dis Clin North Am 2001; 15(2): 671–702

    Article  PubMed  CAS  Google Scholar 

  73. Manfredi R, Calza L, Chiodo F. Epidemiology and microbiology of cellulitis and bacterial soft tissue infection during HIV disease: a 10-year survey. J Cutan Pathol 2002; 29(3): 168–72

    Article  PubMed  Google Scholar 

  74. Pichichero M, Pichichero D. Diagnosis of penicillin, amoxicillin, and cephalosporin allergy: reliability of examination assessed by skin testing and oral challenge. J Pediatr 1998; 132(1): 137–43

    Article  PubMed  CAS  Google Scholar 

  75. Langley J, Halperin S, Bortolussi R. History of penicillin allergy and referral for skin testing: evaluation of a pediatric penicillin allergy testing program. Clin Invest Med 2002; 25(5): 181–4

    PubMed  CAS  Google Scholar 

  76. Romano A, Quaratino D, Papa G, et al. Aminopenicillin allergy. Arch Dis Child 1997; 76: 513–7

    Article  PubMed  CAS  Google Scholar 

  77. Ponvert C, Le Clainche L, de Blic J, et al. Allergy to beta-lactam antibiotics in children. Pediatrics 1999; 104(4): e45

    Article  PubMed  CAS  Google Scholar 

  78. Solensky R, Earl H, Gruchalla R. Penicillin allergy: prevalence of vague history in skin test-positive patients. Ann Allergy Asthma Immunol 2000; 85(3): 195–9

    Article  PubMed  CAS  Google Scholar 

  79. Bowrey D, Morris-Stiff G. Drug allergy: fact or fiction? Int J Clin Pract 1998; 52(1): 20–1

    PubMed  CAS  Google Scholar 

  80. Kelkar P, Li J. Cephalosporin allergy. N Engl J Med 2001; 345(11): 804–9

    Article  PubMed  CAS  Google Scholar 

  81. Grady R. Safety profile of quinolone antibiotics in the pediatric population. Pediatr Infect Dis J 2003; 22(12): 1128–32

    Article  PubMed  Google Scholar 

  82. Gendrel D, Chalumeau M, Moulin F, et al. Fluoroquinolones in paediatrics: a risk for the patient or for the community. Lancet Infect Dis 2003; 3(9): 537–46

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

No sources of funding were used to assist in the preparation of this review. The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tajdin Jadavji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vayalumkal, J.V., Jadavji, T. Children Hospitalized with Skin and Soft Tissue Infections. Pediatr-Drugs 8, 99–111 (2006). https://doi.org/10.2165/00148581-200608020-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00148581-200608020-00003

Keywords

Navigation