Carbon Dioxide Poisoning


Carbon dioxide is a physiologically important gas, produced by the body as a result of cellular metabolism. It is widely used in the food industry in the carbonation of beverages, in fire extinguishers as an ‘inerting’ agent and in the chemical industry. Its main mode of action is as an asphyxiant, although it also exerts toxic effects at cellular level. At low concentrations, gaseous carbon dioxide appears to have little toxicological effect. At higher concentrations it leads to an increased respiratory rate, tachycardia, cardiac arrhythmias and impaired consciousness. Concentrations >10% may cause convulsions, coma and death. Solid carbon dioxide may cause burns following direct contact. If it is warmed rapidly, large amounts of carbon dioxide are generated, which can be dangerous, particularly within confined areas. The management of carbon dioxide poisoning requires the immediate removal of the casualty from the toxic environment, the administration of oxygen and appropriate supportive care. In severe cases, assisted ventilation may be required. Dry ice burns are treated similarly to other cryogenic burns, requiring thawing of the tissue and suitable analgesia. Healing may be delayed and surgical intervention may be required in severe cases.

This is a preview of subscription content, access via your institution.

Table I


  1. 1.

    Morey PR, Shattuck DE. Role of ventilation in the causation of building-associated illnesses. Occup Med 1989; 4: 625–42

    PubMed  CAS  Google Scholar 

  2. 2.

    The alleged case of suffocation in St Michael’s church, Cornhill. Adjourned inquest. The London Times 1838 Nov 24: 3

    Google Scholar 

  3. 3.

    Gibbs F, Gibbs E, Lennox W, et al. The value of carbon dioxide in counteracting the effects of low oxygen. J Aviat Med 1943; 14: 250–61

    CAS  Google Scholar 

  4. 4.

    Rittenmeyer H. Carbon dioxide toxicity related to a laparoscopic procedure. J Post Anesth Nurs 1994; 9: 157–61

    PubMed  CAS  Google Scholar 

  5. 5.

    Gardner NHN. Death following tubal insufflation with carbon dioxide. Proc R Soc Med 1966; 59: 833–4

    PubMed  CAS  Google Scholar 

  6. 6.

    Su M, Donnabella V, Hoffman RS, et al. Anoxic encephalopathy from carbon dioxide therapy (CDT) for the treatment of depression. J Toxicol Clin Toxicol 2001; 39: 493

    Article  Google Scholar 

  7. 7.

    Baxter PJ, Kapila M, Mfonfu D. Lake Nyos disaster, Cameroon, 1986: the medical effects of large scale emission of carbon dioxide? BMJ 1989; 298: 1437–41

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Wagner GN, Clark MA, Koenigsberg EJ, et al. Medical evaluation of the victims of the 1986 Lake Nyos disaster. J Forensic Sci 1988; 33: 899–909

    PubMed  CAS  Google Scholar 

  9. 9.

    Freeth SJ, Kay RLF. The Lake Nyos gas disaster. Nature 1987; 325: 104–5

    Article  Google Scholar 

  10. 10.

    Sigurdsson H, Devine J, Tchoua F, et al. Origin of the lethal gas burst from Lake Monoum, Cameroun. J Volcanol Geotherm Res 1987; 39: 97–107

    Google Scholar 

  11. 11.

    Allard P, Dajlevic D, Delarue C. Origin of carbon dioxide emanation from the 1979 Dieng eruption Indonesia: implications for the origin of the 1986 Nyos catastrophe. J Volcanol Geotherm Res 1989; 39: 195–206

    Article  CAS  Google Scholar 

  12. 12.

    de Kort WL, Sangster B. Acute intoxications during work. Vet Hum Toxicol 1988; 30: 9–11

    PubMed  Google Scholar 

  13. 13.

    EPA. Carbon dioxide as a fire suppressant: examining the risks. Washington, DC: US Environmental Protection Agency, Office of Air and Radiation, Stratospheric Protection Division, 2000

    Google Scholar 

  14. 14.

    Litovitz TL, Klein-Schwartz W, Caravati EM, et al. 1998 Annual report of the American Association of Poison Control Centers Toxic Exposure Surveillance System. Am J Emerg Med 1999; 17: 435–87

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Litovitz TL, Klein-Schwartz W, White S, et al. 1999 Annual report of the American Association of Poison Control Centers Toxic Exposure Surveillance System. Am J Emerg Med 2000; 18: 517–74

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Litovitz TL, Klein-Schwartz W, White S, et al. 2000 Annual report of the American Association of Poison Control Centers Toxic Exposure Surveillance System. Am J Emerg Med 2001; 19: 337–95

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Litovitz TL, Klein-Schwartz W, Rodgers GC, et al. 2001 Annual report of the American Association of Poison Control Centers Toxic Exposure Surveillance System. Am J Emerg Med 2002; 20: 391–452

    PubMed  Article  Google Scholar 

  18. 18.

    Watson WA, Litovitz TL, Rodgers GC, et al. 2002 Annual report of the American Association of Poison Control Centers Toxic Exposure Surveillance System. Am J Emerg Med 2003; 21: 353–421

    PubMed  Article  Google Scholar 

  19. 19.

    Watson WA, Litovitz TL, Klein-Schwartz W, et al. 2003 Annual report of the American Association of Poison Control Centers Toxic Exposure Surveillance System. Am J Emerg Med 2004; 22: 335–404

    PubMed  Article  Google Scholar 

  20. 20.

    Watson WA, Litovitz TL, Rodgers GC, et al. 2004 Annual report of the American Association of Poison Control Centers Toxic Exposure Surveillance System. Am J Emerg Med 2005; 23: 589–666

    PubMed  Article  Google Scholar 

  21. 21.

    Jaulmes P, Hamelle G. Asphyxie par le gaz carbonique à bord d’un bateau-citerne. Med Leg Dommage Corpor 1968; 1: 216–7

    PubMed  CAS  Google Scholar 

  22. 22.

    Sorahan T, Williams SP. Mortality of workers at a nickel carbonyl refinery, 1958–2000. Occup Environ Med 2005; 62: 80–5

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Guillemin MP, Horisberger B. Fatal intoxication due to an unexpected presence of carbon dioxide. Ann Occup Hyg 1994; 38: 951–7

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Troisi FM. Delayed death caused by gassing in a silo containing green forage. Br J Ind Med 1957; 14: 56–8

    PubMed  CAS  Google Scholar 

  25. 25.

    Romeo L, Prigioni P, Marcheselli S, et al. Intossicazione acuta da anidride carbonica: descrizione di due casi mortali. Med Lav 2002; 93: 26–33

    PubMed  CAS  Google Scholar 

  26. 26.

    Gill JR, Ely SF, Hua Z. Environmental gas displacement: three accidental deaths in the workplace. Am J Forensic Med Pathol 2002; 23: 26–30

    PubMed  Article  Google Scholar 

  27. 27.

    Yamazaki M, Islam MN, Ogura Y, et al. An autopsy case of carbon dioxide intoxication [in Japanese]. Jpn J Leg Med 1997; 51: 446–51

    CAS  Google Scholar 

  28. 28.

    Schmunk GA, Kaplan JA. Asphyxiai deaths caused by automobile exhaust inhalation not attributable to carbon monoxide toxicity: study of 2 cases. Am J Forensic Med Pathol 2002; 23: 123–6

    PubMed  Article  Google Scholar 

  29. 29.

    Amos T, Appleby L, Kiernan K. Changes in rates of suicide by car exhaust asphyxiation in England and Wales. Psychol Med 2001; 31: 935–9

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Max B. This and that: the neurotoxicity of carbon dioxide. Trends Pharmacol Sci 1991; 12: 408–11

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Kiely DG, Cargill RI, Lipworth BJ. Effects of hypercapnia on hemodynamic, inotropic, lusitropic, and electrophysiologic indices in humans. Chest 1996; 109: 1215–21

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Ikeda N, Takahashi H, Umetsu K, et al. The course of respiration and circulation in death by carbon dioxide poisoning. Forensic Sci Int 1989; 41: 93–9

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Hsieh C-C, Shih C-L, Fang C-C, et al. Carbon dioxide asphyxiation caused by special-effect dry ice in an election campaign. Am J Emerg Med 2005; 23: 567–8

    PubMed  Article  Google Scholar 

  34. 34.

    Friedlander WJ, Hill T. EEG changes during administration of carbon dioxide. Dis Nerv Syst 1954; 15: 71–5

    PubMed  CAS  Google Scholar 

  35. 35.

    Cotes J. Lung function. In: Assessment and application in medicine. Oxford: Blackwell Scientific Publications, 1979

    Google Scholar 

  36. 36.

    Schulte JH. Sealed environments in relation to health and disease. Arch Environ Health 1964; 85: 438–52

    Google Scholar 

  37. 37.

    Schneider E, Truesdale E. The effects on the circulation and respiration of an increase in the carbon dioxide content of the blood in man. Am J Physiol 1922; 63: 155–75

    CAS  Google Scholar 

  38. 38.

    Kety S, Schmidt C. The effects of altered arterial tensions of carbon dioxide and oxygen on cerebral blood flow and cerebral oxygen consumption of normal young men. J Clin Invest 1948; 27: 484–92

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    Grollman A. Physiological variations in the cardiac output of man: IX. The effect of breathing carbon dioxide, and of voluntary forced ventilation on the cardiac output of man. Am J Physiol 1930; 94: 287–99

    CAS  Google Scholar 

  40. 40.

    Lambertsen C. Therapeutic gases: oxygen, carbon dioxide and helium. In: DiPalma J, editor. Drill’s pharmacology in medicine. New York: McGraw-Hill, 1971

    Google Scholar 

  41. 41.

    Patterson JL, Heyman A, Battey LL, et al. Threshold of response of the cerebral vessels of man to increase in blood carbon dioxide. J Clin Invest 1955; 34: 1857–64

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    MacDonald FM, Simonson E. Human electrocardiogram during and after inhalation of thirty per cent carbon dioxide. J Appl Physiol 1953; 6: 304–10

    PubMed  CAS  Google Scholar 

  43. 43.

    Halpern P, Raskin Y, Sorkine P, et al. Exposure to extremely high concentrations of carbon dioxide: a clinical description of a mass casualty incident. Ann Emerg Med 2004; 43: 196–9

    PubMed  Article  Google Scholar 

  44. 44.

    Dripps R, Comroe JJ. The respiratory and circulatory response of normal man to inhalation of 7.6 and 10.4 per cent carbon dioxide with a comparison of the maximal ventilation produced by severe muscular exercise, inhalation of carbon dioxide and maximal voluntary hyperventilation. Am J Physiol 1947; 149: 43–51

    PubMed  CAS  Google Scholar 

  45. 45.

    Van Ypersele de Strihou C, Brasseur L, De Coninck JD. The ‘carbon dioxide response curve’ for chronic hypercapnia in man. N Engl J Med 1966; 275: 117–22

    Article  Google Scholar 

  46. 46.

    Schaefer KE, Hastings BJ, Carey CR, et al. Respiratory acclimatization to carbon dioxide. J Appl Physiol 1963; 18: 1071–8

    PubMed  CAS  Google Scholar 

  47. 47.

    Gelhorn E, Spiesman I. Influence of hyperpnea and of variations of oxygen and carbon dioxide-tension in the inspired air upon hearing. Am J Physiol 1934; 112: 519–28

    Google Scholar 

  48. 48.

    Dalgaard JB, Dencker F, Fallentin B, et al. Fatal poisoning and other health hazards connected with industrial fishing. Br J Ind Med 1972; 29: 307–16

    PubMed  CAS  Google Scholar 

  49. 49.

    Sechzer PH, Egbert LD, Linde HW, et al. Effect of carbon dioxide inhalation on arterial pressure, ECG and plasma catecholamines and 17-OH corticosteroids in normal man. J Appl Physiol 1960; 15: 454–8

    PubMed  CAS  Google Scholar 

  50. 50.

    Christensen HE, McMartin H, Silver SD, editors. NIOSH criteria for a recommended standard occupational exposure to carbon dioxide. Washington, DC: US Department of Health, Education and Welfare, 1976

    Google Scholar 

  51. 51.

    Sinclair RD, Clark JM, Welch BE. Comparison of physiological responses of normal man to exercise in air and in acute hypercapnia. In: Lambertsen CJ, editor. Underwater physiology. New York: Academic Press, 1971: 409–17

    Google Scholar 

  52. 52.

    Glatte HA, Hartman BO, Welch BE. Nonpathologic hypercapnea in man. San Antonia (TX): US Air Force School of Aerospace Medicine, 1967

    Google Scholar 

  53. 53.

    Glatte HA, Motsay GJ, Welch BE. Carbon dioxide tolerance studies. San Antonia (TX): US Air Force School of Aerospace Medicine, 1967

    Google Scholar 

  54. 54.

    Pingree BJ. Acid-base and respiratory changes after prolonged exposure to 1% carbon dioxide. Clin Sci Mol Med 1977; 52: 67–74

    PubMed  CAS  Google Scholar 

  55. 55.

    Storm WF, Giannetta CL. Effects of hypercapnia and bedrest on psychomotor performance. Aerosp Med 1974; 45: 431–3

    PubMed  CAS  Google Scholar 

  56. 56.

    Wong KL. Carbon dioxide. In: Subcommittee on Spacecraft Maximum Allowable Concentrations. Spacecraft maximum allowable concentrations for selected airborne contaminants. Washington, DC: National Academy Press, 1996: 105–187

    Google Scholar 

  57. 57.

    Kryger M. Respiratory failure 2: carbon dioxide. In: Kryger M, editor. Pathophysiology of respiration. New York: John Wiley & Sons, 1981: 205–219

    Google Scholar 

  58. 58.

    Messier AA, Heyder E, Braithwaite WR, et al. Calcium, magnesium, and phosphorus metabolism, and parathyroid-calcitonin function during prolonged exposure to elevated CO2 concentrations on submarines. Undersea Biomed Res 1979; 6: S57–70

    PubMed  Google Scholar 

  59. 59.

    Tansey WA, Wilson JM, Schaefer KE. Analysis of health data from 10 years of Polaris submarine patrols. Undersea Biomed Res 1979; 6: S217–46

    PubMed  Google Scholar 

  60. 60.

    Vandemark NL, Schanbacher BD, Gomes WR. Alterations in testes of rats exposed to elevated atmospheric carbon dioxide. J Reprod Fertil 1972; 28: 457–9

    PubMed  Article  CAS  Google Scholar 

  61. 61.

    Haring O. Cardiac malformations in rats induced by exposure of the mother to carbon dioxide during pregnancy. Circ Res 1960; 8: 1218–27

    PubMed  Article  CAS  Google Scholar 

  62. 62.

    BOC gases. Material safety data sheet: Carbon dioxide, solid. Murray Hill (NJ): BOC Gases, 1999

    Google Scholar 

  63. 63.

    Dunn JP, Berger ST, Mondino BJ, et al. Ocular trauma caused by exploding glass bottles containing dry ice and water. Ophthalmic Surg 1990; 21: 628–31

    PubMed  Google Scholar 

  64. 64.

    Gamble WB, Bonnecarre ER. Coffee, tea, or frostbite? A case report of inflight freezing hazard from dry ice. Aviat Space Environ Med 1996; 67: 880–1

    PubMed  CAS  Google Scholar 

  65. 65.

    Gorrin NR, Moore TC, Asch MJ. Glass shrapnel injuries to children resulting from ‘dry ice bomb’ explosions: a report of three cases. J Pediatr Surg 1990; 25: 296

    PubMed  Article  CAS  Google Scholar 

  66. 66.

    Inkelis SH, Smith M, Lubitz DS, et al. Blast injuries from glass bottles containing dry ice. Ann Emerg Med 1988; 17: 1087–90

    PubMed  Article  CAS  Google Scholar 

  67. 67.

    Sharp S, Cummins D, Halloran S, et al. Explosions may occur if dry ice is placed in airtight containers [letter]. BMJ 2001; 322: 434

    PubMed  Article  CAS  Google Scholar 

  68. 68.

    Biem J, Koehncke N, Classen D, et al. Out of the cold: management of hypothermia and frostbite. CMAJ 2003; 168: 305–11

    PubMed  Google Scholar 

  69. 69.

    Wilson J. Radio station fined for game that left three with frostbite. Guardian 2003 Jan 25

    Google Scholar 

  70. 70.

    Carbon dioxide. In: NIOSH pocket guide to chemical hazards. Washington, DC: US Government Printing Office, 2004

    Google Scholar 

  71. 71.

    Health and Safety Executive. EH40/2005: workplace exposure limits — containing the list of workplace exposure limits for use with the Control of Substances Hazardous to Health Regulations 2002 (as amended). Sudbury: HSE Books, 2005

    Google Scholar 

Download references


No sources of funding were used to assist in the preparation of this review. The author has no conflicts of interest that are directly relevant to the content of this review.

Author information



Corresponding author

Correspondence to Nigel J. Langford.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Langford, N.J. Carbon Dioxide Poisoning. Toxicol Rev 24, 229–235 (2005).

Download citation


  • Carbon Dioxide
  • Carbon Dioxide Concentration
  • Occupational Exposure Limit
  • Fire Extinguisher
  • Plasma Calcium Concentration