Skip to main content

Toxicological Aspects of the South American Herbs Cat’s Claw (Uncaria tomentosa) and Maca (Lepidium meyenii)

A Critical Synopsis

Abstract

Recent exceptional growth in human exposure to natural products known to originate from traditional medicine has lead to a resurgence of scientific interest in their biological effects. As a strategy for improvement of the assessment of their pharmacological and toxicological profile, scientific evidence-based approaches are being employed to appropriately evaluate composition, quality, potential medicinal activity and safety of these natural products. Using this approach, we comprehensively reviewed existing scientific evidence for known composition, medicinal uses (past and present), and documented biological effects with emphasis on clinical pharmacology and toxicology of two commonly used medicinal plants from South America with substantial human exposure from historical and current global use: Uncaria tomentosa (common name: cat’s claw, and Spanish: uña de gato), and Lepidium meyenii (common name: maca). Despite the geographic sourcing from remote regions of the tropical Amazon and high altitude Andean mountains, cat’s claw and maca are widely available commercially in industrialised countries. Analytical characterisations of their active constituents have identified a variety of classes of compounds of toxicological, pharmacological and even nutritional interest including oxindole and indole alkaloids, flavonoids, glucosinolates, sterols, polyunsaturated fatty acids, carbolines and other compounds.

The oxindole alkaloids from the root bark of cat’s claw are thought to invoke its most widely sought-after medicinal effects as a herbal remedy against inflammation. We find the scientific evidence supporting this claim is not conclusive and although there exists a base of information addressing this medicinal use, it is limited in scope with some evidence accumulated from in vitro studies towards understanding possible mechanisms of action by specific oxindole alkaloids through inhibition of nuclear factor (NF)-κB activation. Although controlled clinical studies have demonstrated reduction in pain associated with cat’s claw intake in patients with various chronic inflammatory disorders, there is insufficient clinical data overall to draw a firm conclusion for its anti-inflammatory effects. An important observation was that experimental results were often dependent upon the nature of the preparation used. It appears that the presence of unknown substances has an important role in the overall effects of cat’s claw extracts is an important factor for consideration. The available animal toxicological studies did not indicate severe toxicity from oral intake of cat’s claw preparations but rather were suggestive of a low potential for acute and subacute oral toxicity, and a lack of evidence to demonstrate genotoxic potential and mutagenic activity.

Maca is a clear example of a herb with substantial medicinal use in traditional herbal medicine by indigenous cultures in South America since the first recorded knowledge of it in the seventeenth century. The hypocotyls of maca are the edible part of the plant used for nutritional and proposed fertility-enhancing properties. Maca has been described to possess many other medicinal properties in traditional herbal medicine but only a few of them have been well studied scientifically. Published clinical studies of maca seem to be related to its property as a nutrient, for male fertility and for energy. There are inadequate data regarding the precise mechanism of action of maca. Some studies suggest that secondary metabolites found in maca extracts are important constituents responsible for its physiological effects. Maca has been reported in the scientific literature to have a low degree of acute oral toxicity in animals and low cellular toxicity in vitro.

An important finding unveiled by this review is the importance of standardisation in quality and additional basic and clinical research to scientifically validate and understand composition, biological activity, safety and risk. Development of a comprehensive pharmacological and toxicological profile through critical evaluation of existing and future experimental data, especially carefully conducted clinical studies would facilitate the scientific evidence-based approach to understanding potential biological effects of these major traditionally based herbals in current global use.

This is a preview of subscription content, access via your institution.

Table I.
Fig. 1.
Table II.
Table III.

Notes

  1. The use of trade names is for product identification purposes only and does not imply endorsement.

References

  1. Dev S. Ethnotherapeutics and modern drag development: the potential of Ayurveda. Curr Sci 1997; 73: 909–28

    CAS  Google Scholar 

  2. Dev S. Ancient-modern concordance in Ayurvedic plants: some examples. Environ Health Perspect 1999; 107: 783–9

    PubMed  CAS  Article  Google Scholar 

  3. Barnes P, Powell-Griner E, McFann K, et al. Complementary and alternative medicine use among adults: United States, 2002. Hyattsville (MD): US Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Health Statistics; 2004 May. Advance data report no. 343

    Google Scholar 

  4. Mahady, Gail B, Fong HS, et al., editors. Botanical dietary supplements: quality, safety and efficacy. Lisse: Swets & Zeitlinger, 2001

    Google Scholar 

  5. Eisenberg DM, Davis RB, Ettner SL, et al. Trends in alternative medicine use in the United States, 1990–1997: results of a follow-up national survey. JAMA 1998; 280: 1569–75

    PubMed  CAS  Article  Google Scholar 

  6. Committee on the Framework for Evaluating Safety of Dietary Supplements Food and Nutrition Board on Life Sciences, Institute of Medicine and National Research Council of the National Academies. Scientific principals for integrating and evaluating the available data. In: Dietary supplements: a framework for evaluating safety. Washington, DC: The National Academies Press, 2004: 1–13

    Google Scholar 

  7. Desmarchelier C, Schaus FW. Sixty medicinal plants from the Peruvian amazon: ecology, ethnomedicine and bioactivity. 1st ed. Lima: Bio2000, 2000

    Google Scholar 

  8. Mulry M. Review of the First International Conference on St John’s wort. Herbal-Gram 1999; 45: 61–5

    Google Scholar 

  9. Keplinger K, Laus G, Wurm M, et al. Uncaria tomentosa (Willd.) DC-ethnomedicinal use and new pharmacological, toxicological and botanical results. J Ethnopharmacol 1999; 64: 23–4

    PubMed  CAS  Article  Google Scholar 

  10. Williams JE. Review of antiviral and immunomodulating properties of plants of the Peruvian rainforest with a particular emphasis on uña de gato and sangre de grado. Altem Med Rev 2001; 6: 567–79

    CAS  Google Scholar 

  11. Reinhard KH. Uncaria tomentosa (Willd.) D.C.: cat’s claw, uña de gato, or savéntaro. J Altern Complement Med 1999; 2: 143–51

    Article  Google Scholar 

  12. Hammond G, Fernández ID, Villegas LF, et al. A survey of traditional medicinal plants from the Callejón de Huaylas, Department of Ancash, Peru. J Ethnopharmacol 1998; 61: 17–30

    PubMed  CAS  Article  Google Scholar 

  13. Villegas LF, Fernández ID, Maldonado H, et al. Evaluation of the wound-healing activity of selected traditional medicinal plants from Peru. J Ethnopharmacol 1997; 55: 193–200

    PubMed  CAS  Article  Google Scholar 

  14. Fong HHS. Integration of herbal medicine into modern medical practices: issues and prospects. Integr Cancer Ther 2002; 1: 287–93

    PubMed  Article  Google Scholar 

  15. World Health Organization. IARC monographs on the evaluation of carcinogenic risks to humans: some traditional herbal medicines, some mycotoxins, naphthalene and styrene. Vol. 82. Lyon: IARC Press, 2002

    Google Scholar 

  16. Taylor L. Herbal secrets of the rainforest: technical data report for cat’s claw ‘uña de gato’ (Uncaria tomentosa). 2nd ed. Austin (TX): Sage Press Inc., 2002

    Google Scholar 

  17. Duke J, Vasquez R. Amazonian ethobotanical dictionary. Boca Raton (FL): CRC Press, 1994

    Google Scholar 

  18. Piscoya J, Rodriguez Z, Bustamante SA, et al. Efficacy and safety of freeze-dried cat’s claw in osteoarthritis of the knee: mechanisms of action of the species Uncaria guianensis. Inflamm Res 2001; 50: 442–8

    PubMed  CAS  Article  Google Scholar 

  19. Gattuso M, Di Sapio O, Gattuso S, et al. Morphoanatomical studies of Uncaria tomentosa and Uncaria guianensis bark and leaves. Phytomedicine 2004; 11: 213–23

    PubMed  CAS  Article  Google Scholar 

  20. Foster BC, Vandenhoek S, Hana J, et al. In vitro inhibition of human cytochrome P450-mediated metabolism of marker substrates by natural products. Phytomedicine 2003; 10: 334–42

    PubMed  CAS  Article  Google Scholar 

  21. Laus G, Keplinger K. Radix Uncarie tomentosae (Wild.) DC. Z Phytother 1997; 18: 122–6

    Google Scholar 

  22. Jones K. The herb report: uña de gato, life-giving vine of Peru. Am Herb Assoc 1994; 10: 4

    Google Scholar 

  23. The review of natural products by facts and comparisons. St Louis (MO): Wolters Kluwer Co., 1999

  24. Beckstrom-Sternberg S, Duke J, Wain K. Chemicals in Uncaria tomentosa DC (Pedaliaceae): the ethnobotany database. Fulton (MD): Agricultural Research Service, 1996

    Google Scholar 

  25. Heitzman ME, Neto CC, Winiarz E, et al. Ethnobotany, phytochemistry and pharmacology of Uncaria (Rubiaceae). Phytochem 2005; 66: 5–29

    CAS  Article  Google Scholar 

  26. Montoro P, Carbone V, Quiroz Jde D, et al. Identification and quantification of components in extracts of Uncaria tomentosa by HPLC-ES/MS. Phytochem Anal 2004; 15: 55–64

    PubMed  CAS  Article  Google Scholar 

  27. Aquino R, De Feo V, De Simone F, et al. Plant metabolites: new compounds and anti-inflammatory activity of Uncaria tomentosa. J Nat Prod 1991; 54: 433–59

    Article  Google Scholar 

  28. Laus G, Brössner D, Keplinger K. Alkaloids of Peruvian Uncaria tomentosa. Phytochemistry 1997; 45: 855–60

    CAS  Article  Google Scholar 

  29. Hemingway SR, Phillipson JD. Alkaloids from S. American species of Uncaria (Rubiaceae) [abstract]. J Pharm Pharmacol 1974; 26 Suppl.: 113P

    Article  Google Scholar 

  30. Stuppner H, Sturm S. Capillary electrophoretic analysis of oxindole alkaloids from Uncaria tomentosa. J Chromatogr 1992; 609: 375–80

    CAS  Article  Google Scholar 

  31. Ganzera M, Muhammad I, Khan RA, et al. Improved method for the determination of oxindole alkaloids in Uncaria tomentosa by high performance liquid chromatography. Planta Med 2001; 67: 447–50

    PubMed  CAS  Article  Google Scholar 

  32. Stuppner H, Sturm S, Konwalinka G. HPLC analysis of the main oxindole alkaloids from Uncaria tomentosa. Chromatographia 1992; 34: 597–00

    CAS  Article  Google Scholar 

  33. Kitajima M, Hashimoto K, Yokoya M, et al. A new gluco indole alkaloid, 3, 4-dehydro-5-carboxystrictosidine, from Peruvian una de gato (Uncaria tomentosa). Chem Pharm Bull (Tokyo) 2000; 48: 1410–2

    CAS  Article  Google Scholar 

  34. Muhammad I, Dunbar D, Khan R, et al. Investigation on uña de gato I. 7-deoxyloganic acid and 15N NMR spectroscopic studies on pentacyclic oxindole alkaloids from Uncaria tomentosa. Phytochemistry 2001; 57: 781–5

    PubMed  CAS  Article  Google Scholar 

  35. Aquino R, Conti C, Stein ML. Plant metabolites: structure and in vitro antiviral activity of quinovic acids glycosides from Uncaria tomentosa and Guettarda platypoda. J Nat Prod 1989; 52: 679–85

    PubMed  CAS  Article  Google Scholar 

  36. Aquino R, De Tommasi N, De Simone F, et al. Triterpenes and quinovic acid glycosides from Uncaria tomentosa. Phytochemistry 1997; 45: 1035–40

    CAS  Article  Google Scholar 

  37. Cerri R, Aquino R, De Simone F, et al. New quinovic acid glycosides from Uncaria tomentosa. J Nat Prod 1988; 51: 257–61

    CAS  Article  Google Scholar 

  38. Yepez M, Lock de Ugaz O, Alvarez ACM, et al. Quinovic acid glycosides from Uncaria guianensis. Phytochemistry 1991; 30: 1635–7

    PubMed  CAS  Article  Google Scholar 

  39. Kitajima M, Yokoya M, Takayama H, et al. Two new nor-triterpene glycosides from Peruvian ‘uña de gato’ (Uncaria tomentosa). J Nat Prod 2003; 66: 320–3

    PubMed  CAS  Article  Google Scholar 

  40. Montenegro De Matta S, Delle Monache F, Ferrari F, et al. Alkaloid and procyanidins of an Uncaria sp. from Peru. II. Fármaco 1976; 31: 527–35

    CAS  Google Scholar 

  41. Aquino R, De Simone F, Vincieri F, et al. New polyhydroxylated triterpenes from Uncaria tomentosa. J Nat Prod 1990; 53: 559–64

    PubMed  CAS  Article  Google Scholar 

  42. Kitajima M, Hashimoto K, Yokoya M, et al. Two new 19-hydroxyursolic acid-type triterpenes from Peruvian ‘uña de gato’ (Uncaria tomentosa). Tetrahedron 2000; 56: 547–52

    CAS  Article  Google Scholar 

  43. Wirth C, Wagner H. Pharmacologically active procyanidines from the bark of Uncaria tomentose. Phytomedicine 1997; 4: 265–7

    PubMed  CAS  Article  Google Scholar 

  44. Senatore A, Cataldo A, Laccarino FP, et al. Ricereche fitochjmjehe e biologiche sull Uncaria tomentosa. Boll Soc Ital Biol Sper 1989; 656: 517–20

    Google Scholar 

  45. Laus G, Keplinger K. Separation of steroisomeric oxindole alkaloids from Uncaria tomentosa by high performance liquid chromatography. J Chromatogr A 1997; 662: 243–9

    Google Scholar 

  46. Laus G, Brössner D, Senn G, et al. Analysis of the kinetics of isomerization of spiro oxindole alkaloids. J Chem Soc Perkin Trans 1996; 2: 1931–6

    Google Scholar 

  47. Laus G. Kinetics of isomerization of tetracyclic spiro oxindole alkaloids. J Chem Soc Perkin Trans 1998; 2: 315–7

    Google Scholar 

  48. Obregón Vilches L. Uña de gato. Género Uncaria, estudios botánicos, químicos y farmacológicos de Uncaria tomentosa y Uncaria guianensis. Lima (Perú): Institute de Fitoterapia Americano ed., 1997: 53–7

    Google Scholar 

  49. Mur E, Hartig F, Eibl G, et al. Randomized double blind trial of an extract from the pentacyclic alkaloid-chemo-type of Uncaria tomentosa for the treatment of rheumatoid arthritis. J Rheumatol 2002; 29: 678–81

    PubMed  CAS  Google Scholar 

  50. Wolters Kluwer Health Inc. eFacts: review of natural products. Facts and comparisions. Cat’s claw [online]. Available from URL: http://www.efactsweb.com/RNP/RNPMonoDetail.asp?.itemID =61063&optIndexID=61064 [Accessed 2004 Sep 1]

  51. Schauss AG. Cat’s claw (Uncaria tomentosa). Nat Med J 1998; 1: 16–9

    Google Scholar 

  52. Gruenwalk J, Brendler T, Jaenicke C, editors. PDR for herbal medicines. Montvale (NJ): Medical Economics Company Inc., 2000

    Google Scholar 

  53. Sheng Y, Bryngelsson C, Pero RW. Enhanced DNA repair, immune function and reduced toxicity of C-MED100™, a novel aqueous extract from Uncaria tomentosa. J Ethnopharmacol 1999; 69: 115–26

    Article  Google Scholar 

  54. Sheng Y, Li L, Holmgren K, et al. DNA repair enhancement of aqueous extracts of Uncaria tomentosa in a human volunteer study. Phytomedicine 2001; 8: 275–82

    PubMed  CAS  Article  Google Scholar 

  55. Leon FR, Ortiz N, Antunez de Mayolo A, et al. Antimutagenic activity of a freeze-dried aqueous extract of Uncaria tomentosa in smokers and non-smokers. Third European Colloquium on Ethnopharmacology; 1996 May 29–Jun 2; Genova (Italy): European colloquim on Ethnopharmacology, 1996: 255

    Google Scholar 

  56. Rizzi R, Re F, Bianchi A, et al. Mutagenic and antimutagenic activities of Uncaria tomentosa and its extracts. J Ethnopharmacol 1993; 38: 63–7

    PubMed  CAS  Article  Google Scholar 

  57. Hilepo JN, Bellucci AG, Mossey RT. Acute rental failure caused by ‘cat’s claw’ herbal remedy in a patient with systemic lupus erythematosus [letter]. Nephron 1997; 77: 361–9

    PubMed  CAS  Article  Google Scholar 

  58. Budzinski JW, Foster BC, Vandenhoek S, et al. An in vitro evaluation of human cytochrome P450 3A4 inhibition by selected commercial herbal extracts and tinctures. Phytomedicine 2000; 7: 273–82

    PubMed  CAS  Article  Google Scholar 

  59. Hammerly M, Murray MT, Spoerke DG. Micromedex systems. AltMedex. Cat’s claw [online]. Available from URL: http://csi.micromedex.com/DKS/DATA/AL/AL0069.HTM?.Top=Yes [Accessed 2005 Jan 13]

  60. Natural Medicines Comprehensive Database. 2004. ‘Maca’ [online]. Available from URL: http://www.naturaldatabase.com/monograph.asp?.mono_id=555&brand_id= [Accessed 2004 Apr 20]

  61. McGuffin M, Hobbs C, Upton R, et al. editors. American Herbal Products Association’s Botanical Safety Handbook. Boca Raton (FL): CRC Press, 1997

    Google Scholar 

  62. Kynoch SR, Lloyd GK. Acute oral toxicity to mice of substance E-2919. Huntington (England): Huntington Research Centre, 1975. (Data on file)

    Google Scholar 

  63. Kreutzkamp B. Niedermolekulare Inhaltsstoffe mit immunstimulierenden Eigenschaften aus Uncaria tomentosa and Okoubaka aubrevillei und anderen Drogen [dissertation]. Munich: University of Munich, 1984

    Google Scholar 

  64. Svendsen O, Skydsgaard K. Test report (Extraction radicis Uncariae tomentosae). Denmark: Scantox Biological Laboratory Ltd, 1986. (Data on file)

    Google Scholar 

  65. Sheng Y, Pero RW, Wagner H. Treatment of chemotherapy-induced leukopenia in a rat model with aqueous extract from Uncaria tomentosa. Phytomedicine 2000; 7: 137–43

    PubMed  CAS  Article  Google Scholar 

  66. Aguilar J, Rojas P, Marcelo A, et al. Anti-inflammatory activity of two different extracts of Uncaria tomentosa (Rubiacea). J Ethnopharmacol 2002; 81: 271–6

    PubMed  Article  Google Scholar 

  67. Sandoval-Chacon M, Thompson JH, Zhang XJ, et al. Antiinflammatory actions of cat’s claw: the role of NF-kappaB. Alimentary Pharmacol Ther 1998; 12: 1279–89

    CAS  Article  Google Scholar 

  68. Cisneros FJ, Jayo M, Niedziela L. An Uncaria tomentosa (cat’s claw) extract protects mice against ozone-induced lung inflammation. J Ethnopharmacol 2005; 96: 355–64

    PubMed  Article  Google Scholar 

  69. Mestanza D. Evalución de la actividad immunoestimulante de Uncaria tomentosa (Willd.) DC. uña de gato en ratones albinos. Bioversidad Salud 1999; 1: 16–9

    Google Scholar 

  70. Santa Maria A, Lopez A, Diaz MM, et al. Evaluation of the toxicity of Uncaria tomentosa by bioassays in vitro. J Ethnopharmacol 1997; 57: 183–7

    Article  Google Scholar 

  71. Sandoval M, Charbonnet RM, Okuhama NN, et al. Cat’s claw inhibits TNFα production and scavenges free radicals: role in cytoprotection. Free Radic Biol Med 2000; 29: 71–8

    PubMed  CAS  Article  Google Scholar 

  72. Desmarchelier C, Mongelli E, Coussio J, et al. Evaluation of the in vitro antioxidant activity in extracts of Uncaria tomentosa (Willd.) DC. Phytother Res 1997; 11: 254–6

    Article  Google Scholar 

  73. Miller MJ, Angeles FM, Reuter BK, et al. Dietary antioxidants protect gut epithelial cells from oxidant-induced apoptosis. BMC Complement Altern Med 2001; 1: 1–10

    Article  Google Scholar 

  74. Sandoval M, Ronzio RA, Mwanza DN, et al. Protection from peroxynitrite-induced apoptosis by plant-derived antioxidants [abstract]. FASEB J 1997; 11: A648

    Google Scholar 

  75. Riva L, Cordini D, Di Frunzo G, et al. The antiproliferative effects of Uncaria tomentosa extracts and fractions on the growth of breast cancer cell line. Anticancer Res 2001; 21: 2457–61

    PubMed  CAS  Google Scholar 

  76. Stuppner H, Sturm S, Geisen G, et al. A differential sensitivity of oxindole alkaloids to normal and leukemic cell lines. Planta Med 1993; 59Suppl. A: 583

    Article  Google Scholar 

  77. Sheng Y, Pero RW, Amiri A. Induction of apoptosis and inhibition of proliferation in human tumor cells treated with extracts of Uncaria tomentosa. Anticancer Res 1998; 18: 3363–8

    PubMed  CAS  Google Scholar 

  78. Akesson CH, Pero RW, Ivars F. C-Med 100, a hot water extract of Uncaria tomentosa, prolongs lymphocyte survival in vivo. Phytomedicine 2003; 10: 23–33

    PubMed  Article  Google Scholar 

  79. Wagner H, Kreutzkamp B, Jurcic K. Die Alkaloide von Uncaria tomentosa und ihre Phagozytose-steigernde Wirkung. Planta Med 1985; 5: 419–23

    PubMed  Article  Google Scholar 

  80. Wurm M, Kacani L, Laus G, et al. Pentacyclic oxindole alkaloids from Uncaria tomentosa induce human endothelial cells to release a lymphocyte-proliferation-regulating factor. Planta Med 1998; 64: 701–4

    PubMed  CAS  Article  Google Scholar 

  81. Baeuerle PA, Henkel T. Function and activation of NF-κB in the immune system. Annu Rev Immunol 1994; 12: 141–79

    PubMed  CAS  Article  Google Scholar 

  82. Bernard P, Scior T, Didier B, et al. Ethnopharmacology and bioinformatics combination for leads discovery: application to phospholipase A2 inhibitors. Phytochemistry 2001; 58: 865–74

    PubMed  CAS  Article  Google Scholar 

  83. Sandoval M, Okuhama NN, Zhang XJ, et al. Anti-inflammatory and antioxidant activities of cat’s claw (Uncaria tomentosa and Uncaria guianensis) are independent of their alkaloid content. Phytomedicine 2002; 9: 325–37

    PubMed  CAS  Article  Google Scholar 

  84. Lemaire I, Assinewe V, Cano P, et al. Stimulation of interleukin-1 and -6 production in alveolar macrophages by the neotropical liana, Uncaria tomentosa (una de gato). J Ethnopharmacol 1999; 64: 109–15

    PubMed  CAS  Article  Google Scholar 

  85. Keplinger K, Wagner H, Kreutzkamp B. Oxindole alkaloids having properties stimulating the immunological system. US Patents 4,244,901, 1989

  86. Keplinger K, Wagner H, Kreutzkamp B. Oxindole alkaloids having properties stimulating the immunological system. US patents 4,940,425, 1990

  87. Cieza de Leon P. Chronicle of Peru. First part 1553; 240: 354

    Google Scholar 

  88. Cobo B. History of the new world. Madrid: Biblioteca de autores españoles, 1956: 1–430

    Google Scholar 

  89. Quiroz C, Aliaga R. Maca (Lepidium meyenii Walp.) Andean roots and tubers: ahipa, arracacha, maca and yacon. In: Hermann M, Hellers J, editors. Promoting the conservation and use of underutilized neglected crops. Rome: International Plant Genetic Resources Institute, 1997; 21: 173–97

    Google Scholar 

  90. Tello J, Hermann M, Calderon A. La maca (Lepidium meyenii Walp.) cultivo alimenticio potencial para las zonas andinas. Boletín Lima 1992; 14: 59–66

    Google Scholar 

  91. National Research Council. Lost crops of the Incas: little-known plants of the Andes with promise for worldwide cultivation. Washington, DC: The National Academies Press, 1989: 56–65

    Google Scholar 

  92. Balick MJ, Lee R. Maca: from traditional food crop to energy and libido stimulant. Altern Ther Health Med 2002; 8: 96–8

    Google Scholar 

  93. Toledo J, Dehal P, Jarrin F, et al. Genetic variability of Lepidium meyenii and other Lepidium species (Brassicaceae) assessed by molecular markers. Ann Bot (Lond) 1998; 82: 523–30

    CAS  Article  Google Scholar 

  94. Bracko L, Zarucchi J. Catalogue of the flowering plants and gymnosperms of Peru. In: monographs in systematic botany. New York: Missouri Botanical Garden 1993; 45: 1–1286

    Google Scholar 

  95. Quiroz CF, Epperson A, Hu J, et al. Physiological and cytological characterization of maca, Lepidium meyenii Walp. Econ Bot 1996; 50: 216–23

    Article  Google Scholar 

  96. Yllescas M. Chemical and physicochemical study of three ecotypes of Lepidium meyenii from Carhuamayo [dissertation]. Lima: Faculty of Pharmacy and Biochemistry. Universidad Nacional Mayor de San Marcos, 1994

    Google Scholar 

  97. Bianchi A. Maca Lepidium meyenii. Boletin Latino americano y del caribe de plantas medicinales y aromáticas 2003; 2: 30–6

    Google Scholar 

  98. Piacente S, Carbone V, Plaza A, et al. Investigation of the tuber constituents of maca (Lepidium meyenii Walp). J Agric Food Chem 2002; 50: 5621–5

    PubMed  CAS  Article  Google Scholar 

  99. Carrillo F, Poma de Ayala G, editors. Cronistas Indios y Mestizos. Lima: Enciclopedia Histórica de la Literatura Peruana 7. Editorial Horizonte, 1992: 343

    Google Scholar 

  100. Rea J. Andean roots. In: Bermejo JEH, Leon J, editors. Neglected crops: 1492 from a different perspective. Plant production and protection series no. 26. Rome: Food and Agriculture Organization (FAO), 1994: 165–79

    Google Scholar 

  101. Dini A, Migliuolo G, Ratrelli L, et al. Chemical composition of Lepidium meyenii. Food Chem 1994; 49: 347–9

    CAS  Article  Google Scholar 

  102. Li G, Ammermann U, Quiros CF. Glucosinolate contents in maca (Lepidium peruvianum Chacon) seeds, sprouts, mature plants and several derived commercial products. Econ Bot 2001; 55: 255–62

    CAS  Article  Google Scholar 

  103. Baquerizo-Vasquez GL. Estudio quimico-bromatológico del Lepidium meyenii Walp. (maca) y el Aiphanes var. Deltoidea burret (Shica-shica) [dissertation]. Lima: Faculty of Medicine, Universidad Nacional Mayor de San Marcos, 1968

    Google Scholar 

  104. Espinoza CL, Poma IP. Determination de aminoácidos esenciales de la maca (Lepidium meyenii Walp.) y elaboración de una mezcla proteina a base de alimentos andinos [dissertation]. Huancayo (Peru): Faculty of Engineering in Alimentary Industries, Universidad Nacional del Centro del Peru, 1995

    Google Scholar 

  105. Chacón G. Phytochemical Studies of Lepidium meyenii Walp [dissertation in Spanish]. Lima: Universidad Nacional Mayor de San Marcos, 1961

    Google Scholar 

  106. Johns T. The anu and the maca. J Ethnobiol 1981; 1: 208–12

    Google Scholar 

  107. Fahey JW, Zalcmann AT, Talalay P. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 2001; 56: 5–51

    PubMed  CAS  Article  Google Scholar 

  108. Zheng BL, He K, Kim CH, et al. Effect of a lipidic extract from Lepidium meyenii on sexual behavior in mice and rats. Urology 2000; 55: 598–602

    PubMed  CAS  Article  Google Scholar 

  109. Dini I, Tenore GC, Dini A. Glucosinolates from maca (Lepidium meyenii). Biochem Syst Ecol 2002; 30: 1087–90

    CAS  Article  Google Scholar 

  110. Tellez MR, Khan IA, Kobaisy M, et al. Composition of the essential oil of Lepidium meyenii (Walp.). Phytochemistry 2002; 61: 149–55

    PubMed  CAS  Article  Google Scholar 

  111. Ciska E, Martyniak-Przybyszwska B, Kozlowska H. Content of glucosinolates in cruciferous vegetables grown at the same site for two years under different climatic conditions. J Agric Food Chem 2000; 48: 2862–7

    PubMed  CAS  Article  Google Scholar 

  112. Muhammad I, Zhao J, Dunbar DC. Constituents of Lepidium meyenii ‘maca’. Phytochemistry 2002; 59: 105–10

    PubMed  CAS  Article  Google Scholar 

  113. Ganzera M, Zhao J, Muhammad I, et al. Chemical profiling and standardization of Lepidium meyenii (maca) by reversed phase high performance liquid chromatography. Chem Pharm Bull (Tokyo) 2002; 50: 988–91

    CAS  Article  Google Scholar 

  114. Jeri H. Estudio fitoqufmico de la maca [dissertation]. Pasco (Peru): Engineering Faculty. Universidad Nacional Daniel Alcides Carrion, 1990

    Google Scholar 

  115. Lee K-J, Dabrowski K, Rinchard J, et al. Supplementation of maca (Lepidium meyenii) tuber meal in diets improves growth rate and survival of rainbow trout Oncorhynchus mykiss (Walbaum) alevins and juveniles. Aquac Res 2004; 35: 215–23

    Article  Google Scholar 

  116. Cui B, Zheng BL, He K, et al. Imidazole alkaloids from Lepidium meyenii. J Nat Prod 2003; 66: 1101–3

    PubMed  CAS  Article  Google Scholar 

  117. Ruiz H. Relación histórica del viaje a los reinos del Peru y Chile, 1777–1778. Madrid: Madrid Acad De Ciencias Exactas, Fis y Nat, 1952: 1–526

    Google Scholar 

  118. Aslam H, Rosiepen G, Krishnamurthy H, et al. The cycle duration of the seminiferous epithelium remains unaltered during GnRH antagonist-induced testicular involution in rats and monkeys. J Endocrinol 1999; 161: 281–8

    PubMed  CAS  Article  Google Scholar 

  119. Gonzales GF, Gasco M, Córdova A, et al. Effect of Lepidium meyenii (maca) on spermatogenesis in male rats acutely exposed to high altitude (4340 m). J Endocrinol 2004; 180: 87–95

    PubMed  CAS  Article  Google Scholar 

  120. Alvarez CJ. Utilización de diferentes niveles de maca en la fertilidad de cobayos [dissertation]. Pasco (Peru): Faculty of Agriculture and Cattle Sciences, Universidad Nacional Daniel Alcides Carrión, 1993

    Google Scholar 

  121. Willard T. Sowing your wild oats and reaping love’s benefits. Total Health 2000; 22: 62–3

    Google Scholar 

  122. Ahmed AJ. Maca-stimulin libido Redux. Total Health 2003; Suppl. 25: 15–6

    Google Scholar 

  123. Gonzales GF, Córdova A, Gonzales C, et al. Improved sperm count after administration of Lepidium meyenii (maca) in adult men. Asian J Androl 2001; 3: 301–4

    PubMed  CAS  Google Scholar 

  124. Canales M, Aguilar J, Prada A, et al. Nutritional evaluation of Lepidium meyenii (maca) in albino mice and their descendants [in Spanish]. Arch Latinoam Nutr 2000; 50: 126–33

    PubMed  CAS  Google Scholar 

  125. Cicero AF, Bandieri E, Arletti R. Lepidium meyenii Walp. improves sexual behaviour in male rats independently from its action on spontaneous locomotor activity. J Ethnopharmacol 2001; 75: 225–9

    PubMed  CAS  Article  Google Scholar 

  126. Cicero AF, Piacente S, Plaza A, et al. Hexanic maca extract improves rat sexual performance more effectively than methanolic and chloroformic maca extracts. Andrologia 2002; 34: 177–9

    PubMed  CAS  Article  Google Scholar 

  127. Gonzales GF, Córdova A, Vega K, et al. Effect of Lepidium meyenii (maca) on sexual desire and its absent relationship with serum testosterone levels in adult healthy men. Andrologia 2002; 34: 367–72

    PubMed  CAS  Article  Google Scholar 

  128. Oshima M, Gu Y, Tsukada S. Effects of Lepidium meyenii Walp and Jatropha macrantha on blood levels of estradiol-17β, progesterone, testosterone and the rate of embryo implantation in mice. J Vet Med Sci 2003; 65: 1145–6

    PubMed  Article  Google Scholar 

  129. Gonzales GF, Ruiz A, Gonzales C. Effect of Lepidium meyenii (maca) roots on spermatogenesis of male rats. Asian J Androl 2001; 3: 231–3

    PubMed  CAS  Google Scholar 

  130. Gonzales GF, Córdova A, Vega K, et al. Effect of Lepidium meyenii (maca), a root with aphrodisiac and fertility-enhancing properties, on serum reproductive hormone levels in adult healthy men. J Endocrinol 2003; 176: 163–8

    PubMed  CAS  Article  Google Scholar 

  131. Gonzales GF, Rubio J, Chung A, et al. Effect of alcoholic extract of Lepidium meyenii (maca) on testicular function in male rats. Asian J Androl 2003; 5: 349–52

    PubMed  Google Scholar 

  132. Zheng BH, He K, Hwang ZY, et al. Effect of aqueous extract from Lepidium meyenii on mouse behavior in forced swimming test. In: Quality management of nutraceuticals. ACS symposium series 803; 2002; 259–68; Washington, DC: American Chemical Society, 2002

    Google Scholar 

  133. Tapia A, López C, Marcelo A, et al. The maca (Lepidium meyenii) and their effect anti-stress in an animal model in mice [in Spanish]. Acta Andina 1999–2000; 8: 45–56

    Google Scholar 

  134. Sandoval M, Okuhama NN, Angeles FM, et al. Antioxidant activity of the cruciferous vegetable maca (Lepidium meyenii). Food Chem 2002; 79: 207–13

    CAS  Article  Google Scholar 

  135. Park TH, Kwon OS, Park SY, et al. N-methylated beta-carbolines protect PC12 cells from cytotoxic effect of MTP+ by attenuation of mitochondrial membrane permeability change. Neurosci Res 2003; 46: 349–58

    PubMed  CAS  Article  Google Scholar 

  136. Marcelo A, Canales M, Aguilar J. Toxicity testing of maca. Lima: Instituto de Medicina Tropical Alexander von Humboldt, 2004. (Data on file)

    Google Scholar 

  137. Obregon L. Maca. Planta medicinal y nutritiva del Peru. 1st ed. Lima: Instituto de Fitoterapia Americana, 1998: 143–44

    Google Scholar 

  138. Blumenthal M, editor. The Complete German Commission E monographs: therapeutic guide to herbal medicines. Boston (MA): American Botanical Council, 1998: 12

    Google Scholar 

  139. Sparreboom A, Cox MC, Acharya MR, et al. Herbal remedies in the United States: potential adverse interactions with anticancer agents. J Clin Oncol 2004; 22: 2489–503

    PubMed  CAS  Article  Google Scholar 

  140. Wang Z, Gorski JC, Hamman MA, et al. The effects of St John’s wort (Hyperionm perforation) on human cytochrome P450 activity. Clin Pharmacol Ther 2001; 70: 317–26

    PubMed  CAS  Google Scholar 

  141. Wang Z, Hamman MA, Huang S-M, et al. Effect of St John’s wort on the pharmacokinetics of fexofenadine. Clin Pharmacol Ther 2002; 71: 414–20

    PubMed  CAS  Article  Google Scholar 

  142. Hennessy M, Kelleher D, Spiers JP, et al. St Johns wort increases expression of P-glycoprotein: implications for drug interactions. Br J Clin Pharmacol 2002; 53: 75–82

    PubMed  CAS  Article  Google Scholar 

  143. Dürr D, Stieger B, Kullak-Ublick GA, et al. St John’s wort induces intestinal P-glycoprotein/MDR1 and intestinal and hepatic CYP3A4. Clin Pharmacol Ther 2000; 68: 598–4

    PubMed  Article  Google Scholar 

  144. Moore LB, Goodwin B, Jones SA, et al. St John’s wort induces hepatic drug metabolism through activation of the pregnane X receptor. Proc Natl Acad Sci U S A 2000; 97: 7500–2

    PubMed  CAS  Article  Google Scholar 

  145. Choudhuri S, Valerio LG. Usefulness of studies on the molecular mechanism of action of herbals/botanicals: the case of St John’s wort. J Biochem Mol Toxicol 2005; 19: 1–11

    PubMed  CAS  Article  Google Scholar 

  146. Piscitelli SC, Burstein AH, Chaitt D, et al. Indinavir concentrations and St John’s wort. Lancet 2000; 355: 547–8

    PubMed  CAS  Article  Google Scholar 

  147. Ruschitzka F, Meier PJ, Turina M, et al. Acute heart transplant rejection due to Saint John’s wort [letter]. Lancet 2000; 355: 548–9

    PubMed  CAS  Article  Google Scholar 

  148. Markowitz JS, Donovan JL, DeVane CL, et al. Effect of St John’s wort on drug metabolism by induction of cytochrome P450 3A4 enzyme. JAMA 2003; 290: 1500–4

    PubMed  CAS  Article  Google Scholar 

  149. Barone GW, Gurley BJ, Ketel BL, et al. Drug interaction between St. John’s wort and cyclosporine. Ann Pharmacother 2000; 34: 1013–6

    PubMed  CAS  Article  Google Scholar 

  150. Huang S-M, Lesko LJ. Drug-drug, drug-dietary supplement, and drug-citrus fruit and other food interactions: what have we learned? J Clin Pharmacol 2004; 44: 559–69

    PubMed  CAS  Article  Google Scholar 

  151. Raucy JL. Regulation of CYP3A4 expression in human hepatocytes by Pharmaceuticals and natural products. Drug Metab Dispos 2003; 31: 533–9

    PubMed  CAS  Article  Google Scholar 

  152. Gorski JC, Huang S-M, Zaheer N, et al. The effect of echinacea on CYP3A activity in vivo. Clin Pharmacol Ther 2004; 75: 89–100

    PubMed  Article  Google Scholar 

  153. Valentova K, Ulrichova J. Smallanthus sonchifolius and Lepidium meyenii: prospective Andean crops for the prevention of chronic diseases. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2003; 147: 119–30

    PubMed  Article  Google Scholar 

  154. Malini T, Vanithakumari G. Antifertility effects of beta-sitosterol in male albino rats. J Ethnopharmacol 1991; 35: 149–53

    PubMed  CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank Dr Ronald F. Chanderbhan for his helpful comments of this manuscript. No sources of funding were used to assist in the preparation of this manuscript. The authors have no conflicts of interest that are directly relevant to the content of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis G. Valerio Jr.

Additional information

The opinions and conclusions expressed in this article are solely the views of the author and do not necessarily reflect those of the U.S. Food and Drug Administration

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Valerio, L.G., Gonzales, G.F. Toxicological Aspects of the South American Herbs Cat’s Claw (Uncaria tomentosa) and Maca (Lepidium meyenii). Toxicol Rev 24, 11–35 (2005). https://doi.org/10.2165/00139709-200524010-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00139709-200524010-00002

Keywords

  • Alkaloid
  • Aqueous Extract
  • Stem Bark
  • Hydroalcoholic Extract
  • Herbal Ingredient